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1. Introduction 

The bootstrap method proposed by Chew and Frautschi about four years 

ago/ l/ is at present rather widely known. The essence of this method, its ad

vantages and disadvantages are presented in the report by ShirkoJ 
2

/ • The boot

strap method is used to describe almost all presently available meson and baryon 

resonances. 

In the present paper the bootstrap method is used to find the K*-reso-

nance parameters ( T = ½ , J = l the mass MK* is 888 MeV, the width r : .. 
is 50 MeV). This problem was already considered in a number of papers/ 3- 5/ • 

Capps/ 
3

/ treated a three-channel pr~blem ( 1rK , "71 , 71K ) but he has 

not succeeded in finding good agreement with experimental data especially in 

estimating the resonance width, It •was also noted when the vector particle ex

change occurs further approximations in the 2:, method lead to divergences, In 

author's opinion the bootstrap method may be imp,roved by using the Regge rep

resentation for the asymptotic behaviour of the amplitude. In papers by Diu et Ji 'li/ 
both the single- channel and two- channel problems were considered. In both cas

es the authors have not succeeded in obtaining convincing arguments of the 

existence of bootstrap solutions, The two essential features were noted there: 

a) the dependence of the results on the cut- off and, as a consequence, the in

fluence of . the choice of the asymptotic behaviour on the bootstrap solution, 

b) in the two- channel problem there arises the problem of stability of the obtained 

solutions, Fulco et a1/ 5/ have considered the effect of neighboring inelastic 

channels on the resonance width, The authors have obtained interesting results 

pointing to the fact that the resonance width becomes narrow by taking into ac

count neighboring channels ( in particular, the K,* -resonance width decreased 

from 210 MeV down to 150 MeV in taking into account the second channel). However, 

their results essentially depend on the cutoff as well, The authors think that the 

model can be improved by considering more carefully the asymptotic behaviour 

of the amplitudes and taking into account inelastic processes. 

A series of papers by Capps/ 
5

/ was devoted to the finding of bootstrap 

solution in the framework of the SU(3) symmetry. It was found that such solu

tions may exist if we assumed beforehand the existence of six types of mesons 

( 7/ , ,r , <» , p , K , K* ) and ascribe to them all known quantum numbers 

( isospin, strangeness and so on), However the bootstrap equation themselve~ do 
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riot lead to the well- known meson octets and are satisfied by smaller sets of 

particles. A detailed calculation of the 

there. 

K* -meson characteristics is not given 

In the present papers the K*. -resonance parameters are determined by 

the Balaz method according to which the asymptotic behaviour of the amplitudes 

ls described by the Regge poles from the crossing channels, and the effect of 

inelastic processes is taking into account by introducing a certain function into 

the .two- particle unitarity condition. As far as in the one channel case the prob

lem depends on many parameters ( the slope of the Regge trajectory, the coup!-

ing constants ·pmr and ·pKK , the account of inelastic processes), there 

is a relative freedom in the choice of the parameters to obtain the bootstrap so

lution. The relative freedom implies here the restriction of the above parameters 

. in the limits of reasonable values. Thus, in the present paper solutions close to 

the experimental data are found as well as the dependence of these solutions on 

the choice of the parameters is investigated. In particular, the obtained solutions 

turn out to be essentially dependent on the choice of the point of comparison. 

A similar result has been obtained in some other papers, e.g/ a/ . 

II. Kinematics. Formulation of the Problem 

The scattering amplitude w(q
1
)+K(p

1
) .. ,r(q

2
)+ K(p

2
) is considered as a 

function of the variables ·s , u , t • In the 

of the form 

S - channel these variables are 

where M 

respecitvely, 

and l'

k. 

2 2 2 2 22 2 
s - ( P 1 + q 1 ) - II + I'- + 2k • + 2y(k •+I'- XI<: + II ) 

2 2 2 U=(p 1-q 2 ) = 2(11 +/l )7s-t ( 1) 

2 2 
t= (ql-q2) =-2k•(l-z•)' 

are the . masses of the K - meson and the 11 -meson 

and z • are the momentum and the cosine of the scattel'-

ing angle in the c.m.s. In 

u interchange. In the 

the variables ·s , u , 

the crossing u - channel ( 11' + K .. w' + K ) ·s and 

- channel ( the annihilation channel rr + 11 .. K + K ) 
in the c.m.s. of the third channel are of the form: 

s - - p 
2 

- q 
2 

+ 2pqz, 

u = 2(11 2 + I'- 2
) - s - t 

t = 4( q 2 + I'- 2) = 4(p 2 + M 2) 

4 

( 2) 

I 

where z, 

between the 

is the cosine of the scattering angle in this channel. The connection 
-· 11K and 11'K scattering amplitudes and the • mr .. K K 

litudes is given by the rule: 

where 

I •1' -1' 
A (s,t) = :l: a

11
,A (u,t) = :l: A

1 
,A (t;s) 

an'-=: 

1' 1' I 

1 .4 

·i 1 

-1 

2 
1 

All, = <_½ 
1 

y6 ) 
:..1 
y6 

amp-

(3) 

(4) 

From the Mandelstam representation it follows that the partial wave amplitudes in 

the S - channel have in the S - plane the following cuts, see Fig. 1. 

In the Balaz method these three cuts are approximated by the two cuts 

along the real axis: 

1. the right cut ( physical) - [M + I'- , 00 ] 

• 2 
2. the left cut ( unphysical)- [-"" , M 2- ,,_ ] 

The problem is to find the amplitude 
T=K 

A J= 
1 

(s) by means of which the K* 

- resonance parameters are determined. Forces on the left cut in the low energy 

range are given 'by the diagrams of Fig. 2 and in the high- energy range are 

· defined by the Regge pole from the S - channel. The position of the p 

meson and the coupling constants g pmr and gpKir are the given parameters. 

The position and the width of the K* -meson are determined from the boot

strap method equations. 

m. Derivation .bf the Bootstrap Method Equations 

The amplitude 
K 

A ,(s) is written in the form 

K 
H 1 (s) a 1 •AK (s) _ N(s) 

s-(M+,,_)i I D(s) (5) 

where N(s) has the left cut only and D(s) has the right cut only. We write 
K 

the unitarity condition for the function H 1 (s)·: 

K -1 k 2 
Im[H 1 (s)] =- • [s-( II+,,_) ] 0 R(s) vs ( 6) 

where R(s) is the ratio of the total cross section for the 11- K scattering 

to the elastic scattering one. The function R(s) implies the contribution of 

inelastic processes. 
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Fig. 1 

Position of the cuts of the partial amplitudes of the 11K-11K scattering 

at the s - plane. 
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From eq, (5) we find ImN(s) 

right one), after this we write down 
M2--µ2 

( on the left cut) and 

D(s) = 

the equations for N(s) 

N(s) = 2.. f els' 

K 
D(s')ImH 1 (s') 

"-oo 

. k' 
1 - ~ f ds'-"

" <M+µ,2 v? 

s'- s 

2 
N(s'),R(s')[s'-(M +µ) ] 

(s'- s)(s' - s 
O

) 

ImD(s) ( on the 

and D(s) 

( 7) 

Tue dispersion relation for D(s) is written with one subtraction at the point 

s 
O 

, D(s 
O 

) = 1 • We suppose that the contribution from the left cut can be 

represented as a sum of the two poles; 

N(11) = :I _a_1_ 
l=l,2 s - ·s 1 

( a) 

where a I is the residue of the suitable poles, The position of the poles is 

determined by the way indicated in ref/ 7/, They are located at the points 

s 
1 
= - '!fl and s 2 = 10,5 ( if the cut from the t- channel is taken into account) 

or at the points s 
1 
= - 57 and s 2 = .4,5 ( if the cut from the t- channel is 

neglected), The second pair of poles corresponds to the case when the influen-

ce of the p - meson forces reduces practically to zero, 

The parameters a I and a
2 

areKdetermined from the comparison of the 

amplitude ( 5} and its first derivative ilH j (s) with the calculated function 
S' 

H ~ ( s) and its first derivative respectively at a certain point of comparison 

s compar. To reduce the number of parameters we assume s - s compar. o 
K 

We calculate the function H 1 (s), For fixed s we can write the following dis-

persion relation for the partial wave 

K 
A 1 (s) 

1 00 
K t' -- I f A (s,t')Q 

1 
(1 + _)dt' 

2rr k; ~ 2 ' 2k: 
, (M 2-,,2)2 

u - ---K 

( 9) 

- f A (s,u'), Q 
1 
(-1- 8 )du' I 

(M+µ)2 u 2k: 

K K 
where A, (s,t') and Au (s,n') are the imaginary parts of the amplitudes in the 

t- and u-- channels re_spectively for which the ordinary expansions in the phy

sical channels hold: 

8 

. ) 

) 
I 
! ~-
l 
I 
"I 

I:, ., 

! 
I <.., 

qf 
:ij, 

I 
j 

K 1' 
A

11 
(s,u') = :I a

1
, Ai (u')P 0 (z ) 

f, I' I u c U 

K 1' • 
A, (s,t') =f,~' >-u,Af (t')Pl (z t) 

One of the restrictions on the choice of the point of comparison 
K 

follows from the consideration of the analyticity domain of A ., 

( 10a) 

( 10b) 

·s 
comp.• so 

and A,K 

The point of comparison is taken only in that region of the variable 

the expansions ( 10) are allowed, 

s where 

In eq. ( 9) each of the integrals in d~vided into two parts, i.e, the low- ener-
•~ K~) 

gy part A (s) and the high energy one A 1 (-s) , It is supposed that the 

main contribution to the low-energy part in the u-- channel is given by the ( 2a) 

diagram which is due to the K* - meson exchange and therefore in the expan-
. 1' 

sion ( 10d) there remains only one term with l • 1 The partial wave A 
1
,, (u') 

is approximated by the Breit- Wigner formula which, in the zero width approxima,.. 

tion, is expressed as 
t' 2 K 

· A lu ( n ') m - [ n' - ( M + /l ) ] , rr• r 
1 

, ll ( n ' - n 

( 11) 
K 

where n, is the K* - resonance position and r I is connected with the 
K k [s - (M + µ)2] K , 

K* -resonance width by the equation r z:*= • r . The expression 
s I 

for Al, (t') is found from the diagram ( 2b) by m~ans of perturbation theory: 

1' 
A 0 (t') = 3(pq), rr,r: , ll(t'-t ) ~, , ( 12) 

I 8 
where r I = - g g - • 

3 mrp KICp 

for the low- energy part 

2 
t, m M.P 

A ~<Lts) 
_is the p -meson mass, Using ( 11) and ( 12) 

of the amplitude ( 9) we obtain the expression: ' 

K(L) 3,r I 2 2 ( 1 t r ) + 
·A (s)=...::.:..:....L(s+p,+q,)•Q1 +~ 

I 4k 2 .• • 
rK 

+ - 1-- 1 u 2 20 [ 2 2 2k. 2 • - (M + µ) + • 2(M +µ )-n - ·s . . n,-(M-µ) 

IQ n,_(M2-,,2)t13) 
I ( 1+ ___ :::i'"c__:-

2k 2 ) . 
K(H) 

The high-energy contribution of A 
1 

(s) is believed to be defined by the K* ·-

meson from the S - channel, i.e. 
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K ,r[2a(s) + 1] • fJ(s)[P (-z) -P (z)] A (st)= - _:._.....;___ a a 
a ' 2Sin ,ra (s) ( 14) 

½ 
A similar expression is written for A a (s,u) . The cuts of the functions Pa (-z) 

and Pa ( z) in the t and u- channels are known. Using ( 14) we get the follow-

ing expressions for the imaginary parts of the amplitude A~ in the correspond

ing channels: 

Ii " A ( s,u) = - - [ 2a(s) + l] • fJ (s) • P [ 1 + 
ua 2 a 

u-
(M 2-µ2} 2 

s 
2k 2 

• 
Ii " t At (s,t)=--[2a(s)+ll•fJ(s)•P [l+ __ ] 
a 2 a 2k 2 . 

K K 
Employing the asymptotic values for A ua and A •a and the functions 

and Q 1( z t ) substituting them into ( 9) we get: 

K{B) 

A 
1 

(s) 
a-t 

[2a(s) +1] •fJ(s)•C.(a) (~ ( t d= sd) 
1 ----:--~ ~ 3 a-1 

( 15a) 

( 15b) 

Qt(zu) 

( 16) 

where t d is the lower boundary in both integrals ( 9), determined from the 

two considerations: a) first, this boundary must be sufficienUy distant in order 

that we might speak about the asymptotic behaviour of the amplitude and, second, 

it can not start nearer the singularities of the functions Pa (z t) and Pa (-z t) • 

The point ( a ::::._ 130 satisfies these requirements. In our paper ta = 130 

Supposex/ that 

1 
C 1 (a)[2a(s) +l]• fJ(s)(~) 

a-1 

= Const ( 17) . 
Rea= 1+,(s-s,) ( 18) 

where 

fJ( s): 

is the slope of the Regge trajectory. We determine also the residue 

Eqs. ( 16 )- ( 19) yield 

2 K d 
/J(s)=[s-(M+µ) ].r -~ I 

1 ds •-=•, 

K(B) K 
A 

1 
• (s) = •r 1 • 

2 
s-(M+µ) 

s, -s 
• (t d )<(•-•,) 

( 19) 

(20) 

x] 1n ref.f 9/ it is shown that the choice of such a condition provides a sa
tisfactory narrowing of the diffraction peak, 

10 

Thus, from eqs, (5), (8),'(9), (13) and (20) we get the following equations 

for the determination of the residues a 1 and 8 2 

K 2 a a 
A 

1 
(s

0
) =[s

0 
-(M +µ) ][ __ 1_ + __ 2 

K 1 
aA 1(s) ·1 = l: a 1--
--- I -s as e=aO l=l,2 So l 

so .. - s 1 s O - s 2 

2 
s 0-(M+ µ) 
(s-0-s,)2 

+ 

l ; 

K • , [ , 2] AK ( 00 
, [ , ( )2] 

(21) 

A 1 (s 0) fdd, k.: s -(M+µ) _ 1_,sn)R( )fd, k s - M+µ 
+ --- s -- • ----,..-c- + ~ s s _..I!. 

" CM+,02 ,;7 (s'- s /(s'-s 1) " "d ,/7 (s'-s
0

)
2 (sr-s

1
) 

1n eq, ( 21) R(s) is put to be constant. An approximate expression for it 

will be given below, On the left, instead of A~ (s 0) at the point s ·=s the 
o comp. 

sum of the expressions ( 13) and ( 20) is inserted, and instead of the derivati:.. 

ve iJA l<s) I • the derivative of the same sum. Now the function D(s) can be 
s s= ■o 

found after substitution of a I and a 
2 

from ( 21) into eq. ( 7 ), .then the posi-

tion and the width of the resonance are determined from the conditions 

Re D (s, ) = O 

N(s,) 
K ---

r. = - aReD(s}I.,=• 
a-s • 

(22) 

respectively. The behaviour of ReD(s) near the resonance is rather well ap

proximated by the expression ( see Fig, 3): 

from where 

ReD(s) .. ~ 
·so - s r 

K r 1 = (s , - s O ) • N (s , ) ( 23) 

The quantity R(s) is calculated under the assumption that the contribution of 

inelastic processes to the 11K - ,rK 

chuk pole:: 

scattering is provided by the Porn.er~ 

0 ,,[ :b( ) l -Ulll(t) 2 
A (t,s) =,y(t) 8 +l [1 + e l• C 

1
(a)(.2!..) a(t)(L._)a(t) 

2Sin,ra(t) µ 2 2 

Near the resonance the quantity <t ls rather small and in this approximation 

the expression for ·A 
0
(t,s) takes on the form 

11 



0 «~· 
A (t,s) = - 3y(O)(!!!.!.. + i) ~ e ,;Jl 

2 4 
+I 0 

A!ter simple integration the partial wave A ~(s) = ½ f dz • z A (t,s) is expressed as 
-I • 

8 y6 
follows 

where 

BR 

Ii 
A 1 (s) 

IT 

21n s 

~ 

+ 

311° s 

16y6 
,y(O) la R +ia 

k2 < 1n ..; . ,, 

ITf 

2k 
2(,ln~ )

2 

• ,, 2 

al a 1 -
2k

2 ·<•In _s_ 
• ,, 2 

l\1aking use of the relations: 

and 

vs 2 
Im Al (s) = - IAf(s)I • R(s) 

k• 

•y(O) = _ '1/6 
12112 

• O lot 

where o lot is the total cross section for the mr ➔ KK annihilation, it is easy 

to obtain an approximate expression for R(s): 

R(s) = 
6411, Ins (24) 

0 (1 + ~ ) 
tot 41n 2 8 

To simplify the calculations this expression is considered everywhere at the 

point S = S d 

tity R( s) is 

For particular values of o = SOmb 
lot 

R(s) = 300, = 15. 

and < = 1 
20 

VI. Calculation of the K* -meson parameters. Conclusion 

the quan-

(25) 

From eqs. (13), (20) and (21) it follows that in the problem the parame

ters r / t , < , t d ·s 
O 

, R(s) are free. In reality neither of these . 

quantities can assume arbitrary values. The width r / and the position of the 

resonance t, of the p meson must be taken from experimental data. The 

slope of the Regge trajectory , is chosen in limits ..!_ > < ·> _!.. which are 
10 SO 

quantity R(s) dependdng on reasonable from the physical point of view. The 

o and < lie& in tr.e limlts [ 200 < 350 < ] if it ls assumed that 
lot ' 

40mh < 0 1ot < 80mh • The quantity td on the one hand, ls determined from 

the considerations to eq •. ( 16), and on the other, it ls deflned as a boundary 

12 

from whlchl the inelastic process cbntribution becomes essential. The position 

of the subtraction pol:nt ~ ( or the point of comparison) is determined basing 

on the following arguments 
4

• 
7

/ : on the left its value is bounded by the expan-

sion conditions for the functions A~ ( s, u ) and A Ii ( s, t ) and o~ the 
• t 

right its values cannot lie higher than the physical process threshold. In our 

problem we choose it near the unphysical cut. 

The seli-conslstent calculation of the K* -resonance parameters consists 

in that for the given parameters r• 
I t, , < ·t d , s 

0
· , R(s) some input 

were chosen as close as possible values of the parameters r !¼(In) 
and s, (In) 

1 

to the experimental data. The residues a I and a 
2 

( see eq. ( 21)) were 

determined according to this set of values and then eqs. ( 22) were solved. If 
Ii (In) (In) 

the input values of the parameters ·r 1 and s • coincided with those of 

r ½( out) ( out) 
' and ·s then the problem was assumed to be solved finally. 

• • ½ ( out) 
Since the problem was solved numerically and the obtained values of r 

1 

and ·11, (out) were equal to r 1½( in) and s ,C in) only approximately 

tte n they were recalculated according to the same formulas in order to check 

the convergence of the solution to the definite values. 

In such a way we have found several solutions. We give here the most 

interesting cases. ( See Table I). 

All the above solutions are found taking into account p - me sic forces. 

Within the limits of the considered values of the parameters . we have never sue-

ceeded in finding bootstrap solutions when the contribution from the 

was absent. To improve the agreement between the calculated width 

experimental data we need either to increase the slope of the Regge 

·p meson 
Ii 

r K* and 

trajectory 

( ) 
(lnl 

comp. solutions 1 and 2 or to decrease the s • • There may exist two 

different points of comparison or two different slopes of the Regge trajectories 

and!¼ two different points of comparison giving the same solutions for s; and 

•r x* • The account of the inelasticity is very essential. To improve agree-

ment with experimental data the quantity R(s) must be taken in the interval 

15 ~ R(s) -~ 25 • The solutions strongly depend on the choice of the point 

s 0 -s ( see Fig. 3). comp, 

In the limits - 10 .< s0 < 20 • 25 

unique. 

and s 
0

.< s .< 50 all the obtained solutions are 

So, satisfactory agreement with experimental data can be obtained even in 

the simplest one- channel problem, in determining the width especially. It ls known 

13 



that the account of other channels effectively influences the decrease of the 

resonance width 5 , According to the Balaz method the effect of other channels 

on the solution occurs via the function R( s). 

The disadvantage of the method is the dependence of the solution on a 

large number of parameters. This leads to that slde by side with solutions in

teresting from the physical point of view we can obtain solutions which . are not 

connected with experhnental data. 

In conclusion I express my gratitude to M.Severinsky for useful discussions 

and to V,.Nlkltin for the aid in making numerical calculations on the electronic 

computer. 
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