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1. Introduction

The bootstrap method proposed by Chew and Frautschi about four years

aadl

is at present rather widely known. The essence of this method, its ad-
vantages dnd disadvantages are presented in the report by ShirkO\J 2/ . The boot-
strap method Is used to describe almost all presently avallable meson and baryon

resonances,

In the present paper the bootstrap method is used to find the K*~reso-
mance parameters ( T= % , J=.1 the mass M px Is 888 MeV, the width l":.,
is 50 MeV). This problem was already considered in a number of papers/ 3-5/ ..
Capps! 3 treated a three—channel problem ( 7K , =, , nK ) but he has
not succeeded in finding good agreement with experimental data especially in
estimating the resonance width, It ‘was also noted when the vector particle ex-
change occurs further approximations in the —Pl{J method lead to divergences, In
author's opinion the bootstrap method may be improved by using the Regge rep-
resentation for the asyrnptpﬂc behaviour of the amplitude, In papers by Diu et c[l‘}/‘
both the single-channel and two-channel problems were consldered. In both cas-
es the authors have not succeeded in obtaining convincing arguments of the
existence of bootstrap solutions, The two essential features were noted there:

a) the dependence of the results on the cut-off and, as a consequence, the in-
fluence of the cholce of the asymptotic behaviour on the bootstrap solution,

b) in the two-channel problem there arises the problem of stabillty of the obtained
solutions, Fulco et a.l./ 5/ have consldered the effect of neighboring inelastic
channels on the resonance width, The authors have obtained Interesting results
pointing to the fact that the resonance width becomes narrow by taking into ac-
count nelghboring channels (in particular, the K* -resonance width decreased
from 210 MeV down to 150 MeV in taking into account the second channel). I—IoWever,
their results essentlally depend on the cutoff as well, The authors think that the
model can be improved by considering more carefully the asymptotic behaviour

- of the amplitudes and taking into account inelastlc processes.
/6l

solution in the framework of the SU(3) symmetry. It was found that such solu-

A series of papers by Capps was devoted to the finding of bootstrap
tions may exist if we assumed beforehand the existence of six types of mesons
(7, , ,p , K,K*) and ascribe to them all known quantum numbers

(isospin, strangeness and so on). However the bootstrap equation themselveg do



not lead to the well-known meson octets and are satisfied by smaller sets of
particles. A detailed calculation of the K* —~meson characteristics Is not given

there.

In the present papers the K* _resonance parameters are determined by
the Balaz method according to which the asymptotic behaviour of the amplitudes
Is described by the Regge poles from the crossing channels, and the effect of
inelastic processes is taking into account by introducing a certain function into
the two-particle unitarity condition. As far as In the one channel case the prob-
lem depends on many parameters (the slope of the Regge trajectory, the coupl
ing constants pmr and ‘pKE , the account of inelastic processes), there
is a relative freedom in the cholice of the parameters to obtain the bootstrap so-
lution. The relative freedom implies here the restriction of the above parameters
.in the limits of reasonable values, Thus, in the present paper solutions close to
the experimental data are found as well as the dependence of these solutions on
the choice of the parameters is Investigated, In particular, the obtained solutions
turn out to be essentially dependent on the choice of the point of comparison,
A similar result has been obtained iIn some other papers, e.g. 8/ .

I, Kinematics, Formulation of the Problem

The scattering amplltude '(qx)+ K(pl)-nr(q NES K@ ) is considered as a
function of the varjables s , = , t . In the S ~channel these variables are

of the form

s= (1>l+q,)2 -y ,"+2k: + W&+ p a3 +M?)
2

u=(p,~q,) = 2M%+p?)-s-t (1)
2 2

t=(q ~q, ) =<2k _(1-z),

where M and p are the masses of the K -meson and the 7 -meson

respecitvely, k. and z, are the momentum and the cosine of the scatter-

ing angle in the c.m.s. In the crossing u —~channel (r”+K 22" + K ) s and
u interchange, In the t —channel (the annihilation channel 7+ » K +K )

‘the variables s , u , t in the c,m,s, of the third channel are of the form:
2 .
s=-p?-gq° & 2pqz
u= 2AM?4p?)_g-t " (2)

t= 4(q2+p?) = 4+ M)

where z, is the cosine of the scattering angle in this channel. The connection

between the 7K and 'K scattering amplitudes and the *mr +KK amp-
litudes is given by the nrude:

1 = .0 -
A(s=ZagpA" (u) =X A LA o) . (3).
: 1 1’
where
Gpr= '3( 1 ,2) ; Ay = (-'A \{g ) . (4)
V6

From the Mandelstam representation it follows that the partial wave amplitudes in
the S ~channel have In the S ~plane the following cuts, see Fig. 1.

In the Balaz method these three cuts are approximated by the two cuts
along the real axis:

1. the right cut (physical) - [M+ g, =]

2, the left cut (unpl'.\ysical)- - , M3 p’]

Te=g
The problem is to find the amplitude A.1=x (s) by means of which the K*
-resonance parameters are determined. Forces on the left cut in the low eriergy

range are glven lby the diagrams of Fig., 2 and in the high-energy range are

‘defined by the Regge pole from the S ~channel. The position of the p -

meson and the coupling constants gpm and g-pr

The position and the width of the K* —meson are determined from the boot-
strap rethod equations.

are the given parameters.

.

{I, Derivation of the Bootstrap Method Equations

The amplitude A“x(s) is written in the form

" ! u N(s)
H N = 28)
1 (s) S—(M-}-“)’ 1 (S) D(s) (5)

where N(s) has the left cut only and D(s) has the right cut only. We write
the unitarity condition for the function H :‘('s)':
k!

mlH %) ' = - 2 fe- ( M+ ) 1-Rs) (6)
s

where R(s) is the ratio of the total cross section for the n—K scattering
to the elastic scattering one, The function R(s) implies the contribution of

inelastic processes,
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Fig. 1
Position of the cuts of the partial amplitudes of the #K-rK scattering
at the s -plane. ’ - Fiag. 2

Diagrams which glve the low-energy forces on the left cut,



From eq. (5) we find InN(s) (on the left cut) and InD(s) (on the

right one), after this we wrlte down the equations for N(s) and D(s)
Mz—“’ ¥
D
N(s) = L [ gor DEOIBH, GO
T — s'_ s
()
2
Lo = ' N(s"):R -(M
D(s)= 1 - S=8y fds'- s . (S') (!')[S (! +Il)]
7 oarpd VS (s™~s)(s’~s,)
The dispersion relation for D(s) is written with one subtraction at the point

L P D(so) = 1 ., We suppose that the contribution from the left cut can be

represented as a sum of the two poles;

ay

Ns) = & . ,
i=1,2 '8 -8, . (8)
where a, is the residue of the suitable poles, The position of the poles is
determined by the way indicated in ref./ i . They are located at the points
s ,=-5 and s;=10,5 (if the cut from the t channel is taken Intc account)

1
or at the points s = - 57 and s =45

neglected). The second pair of poles corresponds to the case when the influen-

(if the cut from the t-channel is

ce of the p -meson forces reduces practically to zero,

The parameters &, and a are determined from the comparison of the

1 3 i
IH ¢ (s)
s

amplitude (5) and its first derivative with the calcwlated function

H?(s) and its first derivative respectively at a certain point of comparison

s . To reduce the number of parameters we assume s = 5,
compar, compar,

%
We calculate the function H N (s). For fixed '8 we can write the followilng dis~

persion relation for the partial wave

% 1 ~ oK% [ .
Al(s) = TriT {“f’ Av‘(s,t')Ql(l + Zk’)dt

2 * (9)
® % u - @_ﬁ
~f A u (s,u)- Q, (-1~ __2__._5_ Ydu’}
M4p? 2%,

% %
where A . (s,t) and A (s,n") are the imaginary parts of the amplitudes in the
t+ and u- channels respectively for which the ordinary expansions in the phy-
sical channels hold:

g

o

,

% 1
A (80" ﬂl.f’ a . A!'“ (WIP,(z ) (10a)

’

% L
Ay (5,t) =t§,t\"'A[ (P, (z ) (10b)

One of the restrictions on the choice of the point of comparison s comp.™ S,

. % .
follows from the consideration of the analyticity domain of An and A M .
The point of comparison is taken only In that region of the variable s where

the expansions (10) are allowed.

In eq. (9) each of the Integrals in divided Into two parts, Le. the low-ener-
gy part Aml')(s) and the high energy one A ?(H) (s) . It is supposed that the
main contribution to the low-energy part In the u—channelli:s given by the (2a)
diagram which Is due t.o the K* -meson exchange and therefore in the expan-
sion (10d) there remains only one term with { = I ., The partial wave A:’“(n’)
is approximated by the Breit- Wigner formuwla which, In the zero width approxima-
tion, is expressed as v
B W T TP T YR

(11)

%

where u, is the K*-resonance position and T,

¥ ‘g -
K* —resonance width by the equation T y= Mﬁ I‘l“ . The expresslon
: g
for A!' t9 is found from the diagram (2b) by méans of perturbation theory:
t

is connected with the ‘

,

17
Ag (1) = 30)- Ty - 8(¢=t ) (12)

1 . .
where T = _g_ € mp Exmg t =M?> is the p -meson mass., Using (11) and (12)’

for the low-energy part A“la'ts) of the amplitude (9) we obtain the expression:

%(

1
L) g t
AL (s) = ._ikL’L(s+p: £a700Q (e 5+
Ny | s

u _(Mz"llz):( 13)

’F“ . 2 [2 Hg 2)- )
e, - e 22 M +u ,u'—lel(1+_'___s_._)
%) u, —(M-p) %2 .

- WH)
The high-energy contribution of ‘A, (s) is believed to be defined by the K* '~

meson from the S —~channel, ie,



% n(2a(s) + 1]
Ag(sity = = ————— - - B(s)[P_ (~2) -P_(2) ]
alS 25t 72 (s) a a (14)
. N . %
A similar expression is written for A, (s,u) . The cuts of the functions P,(-z)
and P,(z) in the t and u-channels are known, Using (14) we get the follow-
ing expressions for the Imaginary parts of the amplitude Af in the correspond-
ing channels:
2 ?
oo =4d

A: (su) = 1[2a(s) +10-8(6)-P _ [14 8 1 (152)
a 2 a 2k 3

(15b)

A (st) =~ (2a(s) + 0+6(s)-P. [1+ L ]
‘a 2 @ 2%

% %
Employing the asymptotic values for A w, and A‘a and the functions Q (z)

and Q (z,) substituting them into (9) we get:

Y(H) (2a(s) +11-B(s)- C (a) ta !
1 (-—s?) Ctyes)

A (s)=—.;_. (16)

a-1

where t, is the lower boundary in both integrals (9), determined from the
two considerations: a) first, this boundary must be sufficiently distant in order
that we might speak about the asymptotic behaviour of the amplitude and, second,

it can not start nearer the singularities of the functions Pa(z ') " and P (-z ).

a
The point €, > 130 satisfles these requirements. In our paper t = 130
Supposex/that
G
C,(a)[2a(s)+1]-ﬁ(s)(_,2k ) =~ Const (27)
a

Rea = 1+e(s—s,) (18)

where ¢  is the slope of the Regge trajectory, We determine also the residue
S

B(s):

9
ﬁ(s)=[s—(ﬂ+“)2].l"’“--‘;—a-| (29)
¥:3 .=.'
Egs. (16)-(19) yield
2
Ay ) 2o M) (¢ ) (20)

S'—S

x/ In ref./ 9/ it is shown that the choice of such a condition provides a sa-
USfactow narrowing of the diffraction peak.

. 10

Thus, from eqgs. (5), (8),'(9), (13) and (20) we get the following equations

for the determination of the residues a;, and a,
A?(so)=[s°—(M+#)’][ i L T B
so‘—sl so - Sa
. % 1 3
dA ((s) 1 .S “|§ - Sg=(Mew)
ds ETRy =13 sy (so-s)?
(21)
% ] ,' ’ 2 % o . , 2
s Bilod e Ko (00 ) L AL G gy g Ky oA
T o3 s (85 )¥s-s) s, VS (%5 G0 -s)

In eq. (21) R(s) is put to be constant, An approximate expression for it

will be given below, On the left, Instead of A“, (s,) at the point so'nscomp the
sum of the expressions (13) and (20) is Inserted, and instead of the derivati~
dA 7(s)

—als——lg_ . the derivative of the same sum, Now the function D(s) can be
0
found after substitution of &, and a, from (21) Into eq. (7), then the posi-
tion and the width of the resonance are determined from the conditions

ReD(s, ) =0 (22)

pH_ o NG,
! 9 ReD(s) |
ds a=e,

respectively. The behavlour of ReD(s) near the resonance is rather well ap-

proximated by the expression (see Fig. 3):

ReD(s) ~ 3 =S¢

'S,=8
from where o 7t
%
l"l-('s,—so)-N('s,). (23)
The quantity R(s) is calculated under the assumption that the contrlbution of
inelastic processes to the #K - #K scatterlng Is provided by the Pomeran-
chuk pole: :

‘Ao(t,s) =yp(t) 17{21(5)+1] [1+e ]1-C l(a)(_'_s_z) lz(')(.i‘_n)a“,
2Sinna(t) R 2

Near the resonance the quantity et is rather small and in this approximation

the expression for 'Ao(t,s) takes on the form

11



0 nv.
A(49) =~ HOEL + D) 2a i

+1 o
After simple integration the partial wave A ?(s) = %[dz -z, ‘:/G(tvs) is expressed as
follows -
% . 7(0)
Ay = - Bms 7O ta +ia_}
16V 6 k2 ¢ 1 iﬂ !
where 1
a,=- n + me . a, = 1- 1
22 2k Hem 3 ) 2% e S
u 2 s ° 2 a " 2
Making use of the relations:
s
lmAp(s) = ‘/k LA ()* - R(s)
and s JE
r(0) = - .o
1272 tot

where o,, is the total cross section for the mr » KK annjhilation, it is easy

to obtain an approximate expression for R(s):

64neclns
— ' 2
~ (24)

R(s) =

o (1+ Lis

tot 41n ﬂs

To simplify the calculations this expression is considered everywhere at the

point s=s,; ., For particuar values of o = S0imb and €= —2; the quan-

tot
ity R(s) s

R(s) = 300e¢ = 15. (25)

VI. Calculation of the K* -meson parameters, Conclusion

From eqgs. (13), (20) and (21) it follows that in the problem the parame-
ters l"ll , ‘t T P I R(s)‘ are free, In reality neither of these .
quantiies can assume arbitrary values, The width T " and the position of the
resonance t  of the p meson must be taken from experimental data, The
slope of the Rggge trajectory ¢ is chosen in limits Tl(—). >e€ ,>_;_) which are
reasonable from the physical point of view, The quantity R(s) depending on
o,  and € lles in tre limits [ 200¢ - 350¢1 if it is assumed that

4, <o, <8 . The quantfy ts on the one hand, Is determined from

the considerations to eq.- (16), and on the other, it is defined as a boundary

12

from whichi the inelastic process contribution becomes essential. The position

of the subtraction point s (or the point of comparison) is determined basing

4,7/

on the following arguments’ ™' "' : on the left its value is bounded by the expan-

sion conditions for the functions A’: (s,u) and A”g (s, t ) and on the

right its values cannot lie higher than the physical process threshold. In our

problem we choose It near the unphysical -cut,

The self-consistent calculation of the K* -—resonance parameters consists

1
in that for the given ‘parameters 'I‘l vty € 4 'ty , sy, R(s)some input
'r:i(ln) and & (In)

. were chosen as close as possible

values of the parameters
to the experimental data, The residues a; and a, (sée eq. (21)) were

determined according to this set of values and then eqs. (22) were solved. If

. % (tn
the input values of the parameters ‘I‘l ) and s('m coincided with those of

%
T (out) and '8 (out) then the problem was assumed to be solved finally.

Since the problem was solved numerically and the obtainéa values of r’:(out)
« (out :
and s, )

tken they were recalculated according to the same formuwas In order to check

were equal to r ’%(ln) and s'( ln) only approximately

the convergence of the solution to the definite values.

In such a way we have found several solutions, We give here the most

interesting cases. (See Tzble 1),

All the above solutions are found taking into account p -mesic forces.
Within the limits of the considered values of the parameters we have never suc-
ceeded in finding bootstrap solutions when the contribution from the p meson
was absent, To improve the agreement between the calculated width F:. and
experimental data we need elther to increase the slope of the Regge trajectory
(comp. solutions 1 and 2) or to decrease the S:m ,» There may exist two

different points of comparison or two different slopes of the Regge trajectories

and two different points of comparison giving the same solutions for s, and
% .
'rxa . The account of the inelasticity Is very essentlal. To improve agree-

ment with experimental data the quantity  R(s) must be taken in the interval
15< R(s) < 25 . The solutions strongly depend on the choice of the point

By=8 (see Fig. 3).

comp, )
In the Umits - 10 < § < 20.25 and s;<8<3 all the obtalned solutions are
unique. '
So, satisfactory agreement with experimental data can be obtained even in
the simplest one-channel problem, in determining the width especially. It Is known

13



that the account of other channels effectively influences the decrease of the
resonance widt.hs. According to the Balaz method the effect of other channels

on the solution occurs via the function R(s).

The disadvantage of the method is the dependence of the solution on a
large number of parameters, This leads to that side by side with solutions in-
teresting from the physical point of view we can obtain solutions which are not
connected with experimental data,

In conclusion I express my gratitude to M.Severinsky for useful discusslons
and to VNikitin for the ald in making numerical calculations on the electronic

computer, 4
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Table [

%(n)

Ke

T ¥ (out)
(MeV)

r

MeV)

gvut
b 4
(MeV)

s{in)k y(in)

R(s)

(evy "

sol.

832 82.7 82.5

827
817
817

0.8
0.8
I0
30

30
30
30
30

1.3 310¢

1/20

I

15

52.4 51.4

8I5

300-¢

I1.75
I.62

I/12

N

76.2 75,2

816
803

350¢
310¢

1/20

3

61.0

61.0.

803

I.514

I/12
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