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1. Introduction

The purpose of this paper is to develop a method for calculation of the bind-
ing erergies and the rom.s. radii of some nuclei witih closed shells according to the
Goldstone formula (ref,1.), This problem was solved by Eden et al, for Ole(ref.2.).
They obtiined a good result for th~ binding energy but the rons, radius was found
too small, In order to obtain a more correct value, Kden proposed u«» use instead
of a harmonic oscillator single-particle potential .irother single-particle potential
which wouwld give the wave functions behaving as.mptotically as e ™ ¥, However for
such a potential the separation in the CMS system cannot be practically perfor-
med and thus the problem becomes very complicated, On the other hand the discre-
pancy in the value of the rgm,s, radius can be due to the applied self-consistent
method, which approximates the ground state wave function by a Slater determinant
constructed from the self consistent single-particle functions, It is possible that the
influence of the pair correlations is essential,

Our idea is therefore to retain a harmonic oscillator potential with a free pa-
rameter and to calculate the first three terms of the Goldstone formula for the
ground state energy and weave function imposing no self-consistency requirement,
The free parameler is to be chosen to make the convergence as good as possible,

Such calculation can also indicate whether the Goldstone series actually converges.

In order to perform this program we need a method which would give us the
solution of the BG equation sufficiently exacl to be sure that eventual negative
results are not due to the used approximations, In this paper we develop such a
method and prove numerically its accuracy for a mathematically simplc one-dimen-
sional case, Our starting assumptions are (1) a harmonic oscillator form for the
single-particle potential is used, (2) the exclusion principle (EP) is taken exact
ly into account, (3) the internucleon potential v(r) consists of a hard core ( which
is treated as the limit case of the rectangular repulsive potential with a variable
height v, ) and of an attractive part of tr Yukawa type. The calculations are
performed in relative Cartesian coordinates and the dependence on the variables

y and z is omitted, In this way the problem becomes one-dimensional, The
reason for the use of Cartesian coordinates is the simple form of the transformat-
ion coefficients for the transition form the laboratory system to the CMS (ref. 3,4),
Otherwise our one-dimensional equations are almost the same as the equations in

spherical coordinates for an internucleon potential acting in the s -state only,



r next paper we shall demonstrate that this method is applicable inthe
"ee-dimensional case for different phenomenological internucleon poten-
lerive the formulas for the more compllcated matrix elements of the re-
rix t occuring in the third term of the Goldstone formua for the ground

3y. The necessary matrix elements of t will be then calculated nu~

1, The System of Integral Equations for the Wave
Function of a Pair of Nucleons

BG equation in operator form ( ref,1)

t=v+v _Q ¢t (2.1)
Es~Hg
the reaction matrix t of a pair of nucleons in nuclear medium if the
n potential v is known.
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model single-particle pctential V.E, is the energy of the lowest mo-
ate D ( we consider only such nuclei in which no degeneracy with
H, drises). The projection operator 0 ensures that intermediate
. pair of nucleons in (2,1) are both excited with respect to all occupied
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single- particle potential Vv , hormalized eigenfunctions and correspond—

alues are of the form:
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is the mass of a nucleon, “n(X) is the Hermite polynomial as defined

2ssing (2,1) in the representation (2.2) we obtain
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s expressed by means of the single-particle energies E_ according

nd X’ means that the summation extends over excited states only.



Further we restrict ourselves to the study of the matrix elements of

t cor-
responding to the transitions from occupied initial states, ie,

i, and 1, derote
occupied states and %E = 0 | Mutiplying (2.3) by.F'z_, and denoting t = 2 t
1w iw
Ve_2 v we get
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The solution of this equation retains all important features of the general case
(2.3).

I we denote the square bracket in (2.3’ Jas Y., (F,7) we get
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Further we introduce CMS and relative coordinates
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so that the form of the eigenfunctions remains the same as in (2.2). Denoting
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we have from (2.4)
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This is an infinite system of integral equations equivalent with (2.4),

Now we shall drop the dependence on y and

z « We can further express
the functions Iy a 1 (x) explicitely ( see, ref, 3):

nlnn
I =T (
N “1“2(X) Nynjn,~N B+ m,=N x) (2.8)
Nt nt % LIS 1 n
SEE R —_—— ]2 (-1 (DD
TN a apteg MR [n,! nt 2%t ]l+k=n ! k
Let the occupied states be 0, = 0,1.. a,~-1. Introducing a dimensionless
variable r=ax and
a- -¥ -'Ar2 ) -
" T (x) : () =(2" ntym) e Hy (1); v()=v(Vi
Nomg ya Noro,o,






Ill. Reduction of the Infinitz System of Integral
Equations

In order to reduce the infinite system (2.12) a method suggested in ref, 6

will be applied, Let us define for 0<r<+=  the following functions
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Then the system (2.12) can be written as one equation
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We decompose the kernel K(r ') into two parts
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Substituting (3.2) in (3.1) and denoting
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In the system (3.7) only the functions l/l\, . (N=0;1;... M) are coupled which im-
: 2

1
plies the possibility to solve first this finite system, If N >M+1 the equations
for 4, n, are decoupled since the third term in (3.7) is non-zero for N < M
"3 2
only. Further T !"2 =0 M>n, +n, and hence
M\‘l'll +n 2= M

v (1) =0 N>M> n+a,. (3.8)
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The approximation (3,6) is clearly an approximation of the EF which inclu-
des for M<2n_ the "triangwar approximation" used in ref.2, From (3.7) one
further sees, that the " triangular appreximation” is the only case when no coup-
ling arises. The approximation (3.6) represents a inodified forn: of the EP which

is demonstrated in fig.1,

In this way the reduction of the infinite system (2.12) has been performed
for a finite value of v, , It should be noted that the estimation (3.4) is not
applicable for the limit case Vo= + 00 » but in this case all previous formu-
lation of the problem is meaningless from the mathematical point of view, The
only way how to treat this case exactly is to solve the problem with a finite
value of Vo , then find the limit form of the solution and investigate its deperw

dence on M , This will be performed in the next sections,

v, The Solution of the Reduced System
In this section the solution of the system (3,7) will be found, Denoting
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we obtain from (3,7)
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In the definition of G weak convergence is meant i.e, for any quadratic integra-

ble function { any fixed r it shall hold

+1o L] 4o
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k3(n

while the usual convergence of the series (4.1) is not guaranteed (see ref. 7).

The kernel of the system (4.2) contains a very large (or infinite) quantity
v, for 0<r<a and hence it is impossible to solve it by means of an iterat-
ion method. We shal transform (4.2) to an usual algebraic linear system and
linear system of integral cquations for a < r < R , The kernel of the integral
system contains only the attractive part of the internucleon potential and allows
to find the solution of the system by a wvery rapidly convergemnt iteration method.
This transformation can be applied without any change to the case vo=+0
(see sec. V).

To perform the transformation let us suppose first of all thal the functions

L2 (r) fora<r< R , N=01.. % are ziven we, all quartities « (1: Ly
n

and the functions @, agng (r) for all r and N can e immediately calcu~

lated, Further let all GL“N"") occuring in (4.2) be any tixed real numbers,

Then the system (4.2) is formally decoupled and by means of the properties of
the function G (5r") ( smee appendix A, formua (?) ) we convert ior

0< r < a each equation into a differential one:
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The properly symmetrized ( see (2.11) ) general solution of (4.4) Is:
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is the confiuent hypergeometric function (ref., 5).

{ab,r)
6 .
and restrict our

where | F
3
Further we shall put .= 2 which correspunds w 07

= 0 omitting the indices «©,, n 2 » This restriction re-

selves to the case n,= a,

presents no simplification of the problem and the szolution for other 2

nland o

can be found in the same way,
- i . 3 . . - . do
With this restriction the only norn-zero coefficietds 1 is T, =1. Hence the sys-
3
tem for -,//N(x) with N odd is homogeneous ie, ¢ =0 for N odd, and only ¢ N () with N
even are non-zero, We determine rwow the consiabus Ay comparing at = a

{4.2,)) and (4.5) ( M is even) and u-ii: the explicite form of G ®™ (1,1} gwven
in appendix A:
M
A N +® (4 % - ’ iyl o1 -
éo(a) + c( J 4":§l 1+(-1) “"uo R i _\«;&Z/Jéy (a)

0% g
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0

The quantiies ao,, and B, (N=0,.., M ) can be excluded if we substitute

in their definition formulae from (4,5) and (4.6) and carry out the integrations:

¢ 11"
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( The notation used in (4.7) is explained in appendix B), Excluding a, Bo"' BM
from (4,7) and (4.6) we obtain new expressions for A N
( 82) (N)
A= Gy i & = Cy ZJl (4.8)
Vo+ _N 3. a2 v *
voa‘Fl(_40+7+l,7,a ) o INo
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5 way the functions ¢ (1)(0<r<a) have been found for arbitrary values
N and arbitrary functions L’/N (r) (a<r<R).
Now the quantities a, o can be determined from their original definition
a = £ L;BV-N (r) \A l/lN (r)dr,

b M ik Aa, +a, )i ..N=0 (4.9
R L ST o oot T g -N=0 (4:9)
I N NN YN ¢ 4 24 0" uN  ‘uN -N, v-N 0 .. N>0

No o

udo

equations together with the definitions (4.1) for y N and (4.8) for Cu
v

ent a linear algebraic system of %(_?24_+1)(_n;_+2) equations, The solution

is linearly on a_uN and ¢, (a) i.e. on integrals of the hitherto arbitrary

ns ¢ (1) over the interval a<r<R . These functions can be now

ined iwae substitute the solution of (4.9) and (4.5) in our original system

We get for a<r<R a system of linear integral equations where only
for a <r< R are unknown. This system can be solved by iteration,

functions of the a -th approximation(n)‘l’N(r) are known we obtain l/;N(r)

following way:

12



1) We calculate

. R
a = ¢ _()v(t) ¥ (r)dr
m yno N (> N N=02..M
- {ny ®un 0<v<3 e NyN+2, 00 M
() Yon = § -
o re@on’ v24
N0 VNN “(n)" VN

by (-N) , (-N) , , P ,
)(I)N(r) =I[G (ot} + G (r,—r)]v(rz’.;,//"(r)dr
a<r<R

2) We substitute a and ® (a) into (4.8) and find the solution
(n) VN {n) N

of the algebraic system:
(N) M i
1+(-1
e = ¢ _Z, ] +2 _t(_l v y + ¥
@ VN @ Ny NN LN Vs 2p ) "uN ) pN
No °
uso -
{ [(n)aoo+(n)a00] 2)00 we N=U
o e N0
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3) Putting o % N into (4.5) we get for 0<r<a; N=0,2...M:

Zz . 2
L S (oo N1 ey,
L M I

¢ (r)= .C e
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Yo JNO
M v -
-i -~ 2 v N=0
L Y.t )’N|<15 (r) +{ 7y, éo(r)[(n) aoo+(n)aoo]
v=N v+ 2v (m) VN () v v-N 0 N>O.
v¥o
Then we define for a<r<R; N=0,2... M:
Yo (1) dr’+

D () =B b Ok @ 16 o) + 6 (1)
ey N =4 b G Ty Ol +0{ (1 + (5% Yo (¥ N

M b (r) v -
VN -
PR KN [14(-1) Ty Yo *em ¥ o !
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we find that for each approximation it

.N)» ,
From the properties of G (")

holds:
(4.10)

o , _ o ; . ) Lo o ,
im () = fim i ¥y (05 lim ¥y (0 = tim men ¥y
- r+at ra -~ ~at

Since the system is linear, the convergence of the iteration method does not

depend on the zeroth approximation. We put

¥ (1) =0 a<r<R
(0) N -
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values and the wvalues for v, =~ 10000 is very small, Since the ap—~
plicability of an iteration method for solving such a linear algebraic system depends
only on the matrix of its coefficients we can expect that the solution of (4,10) can
be find by iteration for all values Vo ., This result has been confirmed by nume-

rical calculations. ( sec VI),

In conclusion of this section we want to give reason why we do not use

the generalized perturbation method of ref.2, The main feature of our method is
that we calculate corrections of both QN and ‘;;‘m and obtain therefore in
each approximation continuous functions v, (1) for 0<r< R, In the method
of ref,2 a ,n are taken in the zeroth approximation and only corrections of

EVN are calcuwated . Consequently the functions ¥ (0 are discontinuous
at =a . In order to correct the influence of this discontinuity the model func-
tions ¢ N in the expressions for a are replaced by the first
2

+ N
nl+n LI P

approximation (l)l/fN . (r) which represents the exact solution of
1"3

the problem without the attractive potential and is continuous at r = a . i.e.

lim '3 (r) = lim Y ()
- at (DN na, _ () Nop.

r>a 1" 2

Since the functions Yy (r) are known only for 1, and n, represent-
"2

ing occupied states, in the Goldstone formula only the first term which contains

the matrix elements of t between occupied states can be calculated,

However,if we want to calculate higher terms we need the other matrix
elements of t as well, The general matrix element of t  with the occupied

initial states ( denoted 1©8; ) and arbitrary final states ( denoted mj ) can be

expressed by means of a,  and @, from (237 ),(2.10),(3.8) and (4.1):
_ oo oo
(m‘ﬂlz[t [n,n,) =—~f _L qu:(x‘) éma(xa v (xl—x2)‘1’n1n2(xn"a)dx1d"z =
(4.11)
min(m +m ) ntagim #m a -
=21 7!“ Tmlma [1+(_1) regrm g 214[(1(1\1 2) +a(n1n2) 1.
N=0 N'm1+m2-N m1+m2,N ml*mz'N

Hence we can calculate by means of (4.12) the first and the second term
of the Goldstone formula, For the third term the matrix elements (m o, [t} am )
and also the matrix elements with changed energy denominators &8 E £ 0 are
necessary, They can be calculated similarly, which will be described in detail in

our next paper,

V. The Limit Form of the Solution for a Hard Core
Potential

The reformulation of our problem given in sec, IV is fully convenient for con-

sideration of the limit case v =+ . We can simply find the limit values uf all

15



algebraic system { 4.9) and then its solution gives us direcily

3 of t for vy= e ., provided the existence of the finite
N is guaranteed, It is practically impossible to obtain the ana-
a2,y On Vo for large M | This dependence has been
i.e. for the triangular approximation and the limit values have

rectly, the relation

Y 1
TS Ik L
RS v F (TVD

the asymptotic behaviour of the confluent hypergeometric funct

turns out that there exlist the finite limit values of « and

Ivo) are conitinuous and very slowly increasing for large v,

'4.9) is analogous for all values of ¥ we can assume the
ite limit values of @, for ai M | Using (5.1) and appen-

se limit values:

2™, 0, Inv *%(a).’ Lo
2 ] ¢O(a) ]
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a n Th (a)ah (-a)li
00

f—2)+D_N(-a\/-2) Z(O) . ¢0 {a)

-%
N Y 0" " {fa24+C +h,(ca)+7 K 1= ¢ (a)Z (a).
5 (a) 1025, ¢ 00 0
[

alues of Cy as Cyx we obtain from (4.8):

1
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S8 @ % K (5:2)
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! v - @) (N-D!
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N—1) !

— b 2)+ D (-ay2) | D_ (ayT)
Nra w(aVD)# Dy aVD 1D (e N=24, ..M.

ie algebraic system (4.10) is then

M -

2j (a_+a )...N—_-O(
u . 00" "00 0O 5.3)
HEN Ty o 0 .. N>0,
7o
we find for 0 <r <a

- N 1 2

o v

[Cy | lim 1Fy (gt 50— 8 =)0 (5.4)

2 exp(——2) wiw v F (Sar e ad)

N=24.. M.
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Hence the functions & (1) converge uniformly to zero for 0 <r<a .
dition, differentiating {4.5) and taking the limit velue of the result at r=a we
have
§ -
lim {— ¢ ()] _l=c; — [ tim w_) 1] =0 . N
v+ 4o dr N rT= 8 N dr vo_‘*’m N\ r= a (51:5/
On the other hand one finds easily from (4.2) and (4.7):
. d . d ~
= lim [ ¢ ()] JI1=tim [ S ¥ ()] I=cC (5.6)
ds N r=a : N ema—~ N o
gy
function

v (1) ]_=.i+

_.d_ L lim
dr g teo
Comparing (5.5) and (5.6) we see that the derivaiive of the limit
Ir=a.
(5.6) of the solution for the internuc-

lim g[/N(r) is discontinuous at

+

rerre Using the derived properties (5.4) -

leon potential containing a hard core we can simplify the method descriked in

sec, IV, We can namely avoid the solving of the differential equations (4.4) and
according to (4.7) we get for

finding the limit value of the solution.
Rewriting (4.4) and excluding a0
with the integrable second derivative for 0<r< a

d'J M v
—— ¥ (1) dr +3% (14D y
dy 2 N v=N VN

any function f(r)
& a
lim [ f(r) A Y (1) dr = tim [ f()
v.-»+jm V] N ‘ﬁ-'+m V] =
R véo
ry ) 8 () dr o+ (5.7)
0 ) - " v - "
O —I_:T,_-ol Co bola) +aoo+;‘2=l [1+(-1) I[yyo + Y0l ivol £f(r) qbo (r) dr,
0 TETRrRes N|= 0
0 N>0
where the uniform convergence of l/IN(r) to zero has been used. Since
¢, (0 are symmetrical with respect to t=0 it follows that l/l; 0)=0
and hence:
a d Pl -
lim [ f() Y (1)dte=Cpf(a).
v+t L] dr? N N
Now (5.7) can be rewritten formally as:
- M v -
li =C_ & - % 1 -1 «
im vou ) MRS a)+V=N[ (-1 1y +yuN]¢:’_ (r)+ (5.8)
Vot oo
© 2 —- M V:)I 0 v _
a - j N=10
{ c, d.)o(a) ta tz=21 [1+(-D)" 11 Yo * Vo ]’vo} ¢o(l)
wowcN > 0,

+ § 1"2’.00

0
which is an analogon of the Bethe- Goldstone formula derived in ref, 8 for nuclear

matter,
17



xclude from the system (4.2) the terms containing the
1 investigate this system from the beginning only for

- method of sec, IV is simplified as follows, The first
e second step we use (5.2) instead of (4.8) and
iteration. As soon as its solution is found we can
yproximation for a <r<R :

= ¢, (1) b, (a) € [Z() + _'iﬁ‘lz_"_'ﬂ)h

¢, (1)

2v

b, (D (Z@ + % Koy y) -

M 3

“ayvo

(5.9)
(r) P Koo]‘

D (VTr) EN (D, (aVZ) +D (-av2) |+

$p.nt) _ (N-1)
8 Teos YN | - o d 57 D, (tv2) Oy pon

N=24,.M4.

1 we complete the consideration performed in sec, I

. From (3.1) and (3.3) we got

M) , ;2
K (") V()¢ () de” {] =
[ n_ n
12
o s (5.10)
K1 (e ) V()Y ¥ () de” § dr .
Dlﬂz
(M)
and omit the indices n, .n,. Let ¥ (1) be the

+ o0
SF@) +f KMoy v ¢ ()de.
o 0
d for any M and, in addition, we have obtained

) T (5.8')

- c s (1-a)s y(:)(r)
(M)

ratic integrable, The function v is, of course,
nce the r.h.s, of (5.10) is not zero for ¥ () =¢™Xr).
S (M)

Cy be bounded for all M and N and let

that for amny M>M0,M’>M0

S MY e . (5.11)
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Hence two positive constants B, and B, axist for which

[c™ < B, N e e

N 1S B, Ix . {5.12)

V]

It is practically impossible to verity generally whether { 5.11) is fuifilled since
M)

the function ¢ (1) can be determined orly rumerically, However, rumerical

results given in sec. V1 suggest that this assumption holds.

From (5.11} it follows that there exists a quadratic interrabis iimit function

. M .
w {5) = lim 0 (v} sSince
.
R+ o= a mAX(M, M P v i %) P
. ; ) MY %
89 [ \ (M N (i 2 p ¢ A 4
A ™ X L0 ey v e+ [ 930)¢ ty-¢ (ildak
- N o B N
N={ 8] s A
(M) M )“2
> const. i & - oo

With the help of (5,12) we further get (see copendix G :

+ o0 o e 2

FOr K o v d™Meydar it ar=0( Ly, (5.13)
n 0 ! VM
Conseqguently (e is the solution of (3.,1) for v, + e . in this wav our

method yields for o sufficiently large M an approximate solution of {3,1) with

arhitrary accuracy,

Vi, Numerical Results and Conclusions

In this section we chrck numerically some statements which we have not
bean able to prove generally, and demonstrate tne practical applicability of our
method, The calculaticris have been performed for the hard core radius re= 0,4 €

-1
and the corresponding valus a = 0,1, which gives a=0,35f and  hw= 517 MeV.

First of all we must check the validity of the assumption {5.11) which
proves for the hard core potential that the solutions of the finite systems con-
verge with increasing M to the solution of the infinite system, Since the validity
ol this assumption and the conclusions based upon it do not depend on the at-
tractive part of the potential, we have calculated only the case wher: the poten-
tial contains no attractive part, To prove (5.11) it is now sufficient to show that
ine quantities a, converge with increasing M {o certain finite values,

‘Trie numerical calculations have been carried out for M =2,4.. 22 .In the last

case the algebraic system for N consists of 78 equations. The number
n of iterations which gives the solution with the accuracy
i (n+l)a _(n)u i< 10 -4
' VN N

is about 23, This represents on the average for each value of « Map;:,r'oxin'la.‘.e~—
£ .

ly one minute on a computer having 20000 operations per, sec,
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For all cases the rate of convergence is approsimately the same. The
results for the first potential are given in table 2, and the functions ¥ (r)
are plotted in fig., 2 and 3, Four iterations are sufficient to determine the values
of a,. and ;V" with the error about 1%, For each iteration approximately
20 minutes of computer time are necessary. The figures show that the attractive
part shifts tlfle functions nearer to the core edge and erlarges essentially the
derivative C, . Since the most important part of ¢,y is the term containing
C—N ( <. (5.3)), we can expect that the quantities a4 which represent the
hard core contribution to the matrix elements of t wil be influenced rather
strongly by the attractive part, This is ademonstrated quantitatively in the first and
last columns in table 2, On the other hand the general form of the functions
|/1N (1) is influenced rather weakly., It can be thus expected that small variations
of the aftractive potential will not change these functions at all, We have investi-
gated the effect of addition of two weak long range potential (1) the repulsive
Coulomb potential describing the p-p electrostatic interaction, (2) the harmonic
oscillator potential which is connected with the motion of the centre of mass
of the whole nucleus (ref., 9), The influence of both these potentials upon the
wave functions is negligible, which implies the possibility of solving the problem
without these potentials and taking them into account only in the calculation of the
quantities "_un .
Finally we have calculated for the case (1) in (6.1) the matrix elements of
t with n =n,=0, n,= 2 , which contribute to the first and second terms
of the expression for energy. These contributions are (00 /t / 00 )
in the first term,and I I (00/t/0n)0n/t/00) in the second term, From

‘ n=2 I‘:0_ F‘n
(2,37 ), (2.4) and (4.11) we' find

(00} ¢jD0) = hw {a00+;001.= 6,55 MeV ;

“min {n,10)
1+ (-7 " - =
——— b 222 lagwa JD" (G

N=0

tn=(0n|t|00) =(n0|t)00) =

ty —4,65 MeV 1 ty= 2,83 MeV » te™ = 1,33MeVs ¢t —y,s24 MV ¢+ ¢ 5 0,258 Mev » Since
t is hermitian we get (00/t/0n )=(0n/t/00) and if we resirict ourselves to

21<10  ( the contribution of the term with =10 is less than 0,05 % ) we find

120 (00/(/0n)(0n/(/00) _ 120 l(oo/t/on)!ﬁ -2, 56 MeV
=2 EO— E n=2 how o ’

It should be noted that these quantities do not describe any real physical
situation since we have considered only a one-dimensional case in Cartesian

coordinates,
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wations given in this section we can conclude that the
g the BG equation is practically applicable, It gives the
wracy, the accuracy being determined only by the num-
»ns and by the number of iterations, lIn addition a su%

1 be obtained using a middle- speed computer,

ns are being perfor med in the three-dimensional case

eon potential of Flamada and Johnston and of the Yale

‘bted to the Computing Centre of the Joint Institute for
recially to Li Da~tu who carried out all the numerical
he paper. They also wish to acknowledge the help of
ntre of Charles University and the Mathematical Labora-

niversity in Prague in performing preliminary calgulations,

Kernels for the Integral Equations

xplicite formula for the function G(n)(r,x’) defined by

ction G(r:",z) given in ref. 7 for any complex
@o(s,z)(bo (~t, z) s=§r' <1’

<
t= t’ r; t’ (A-l)
r 2 {04) _"_I’“g I -

- Y [ e t dt

2
400

p(~2riz )]2 2!_' vr I (=z)

integrable function {
% o
-z _5® [, ()G ) d’ (A2)
=0 2(z~j) —o

(=) ,
(r, 1) z 40,1, 2, ... .

he contour integrations in the expression for @0 (r,z)
get
(N -1)

<.,,)=-_2_\/_;_ D (VTs)D (~v2t ) (A3)
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where D P‘(r) are the functions of parabolic cylinder, as defined in ref,5., Now
let n be a non-negative integer and z  any complex number near to a , zvn.

From (A.2) it follows

+ oo é (1) ( > e
[0 G(nt)z) L SO s _d’k_(')__wk(:')fmd.'. (A2")
oo 2(z—-n) k=0 2z-k) —w

k#‘n

On the right-hand side there is a function analytic in some neighbourhood of n .
Hence s (¢ (I
G(n.)(r,r') =dim [ Gt z) e z

2z ~n )

zan . (A4)
= lim aﬁ; (z=a)G (11", 2)]).
Using (A.1) we find s
6 ) =% [fa2+C ~ % _1_.]‘¢> (1) & (1)
’ n i=1 " : ot? .gA.S)
(1) ’—_T— r

lqs,, (=53, (e ?+d (O (-5)87 |

7 VA
where the functions h; are defmed by a reccurence formulc\
H (1)
(r)= + 2r hn.t(')_Zhn.z(')l n=12,..
- Py . r a2
b, (r)= VT (1@ ] (1) = 2 e du (A.6)
1 2 J7

T

s e“a[l + @)y ) du ~%C

0
C = 0,577215..{ Euler constant)
and satisfy
d‘z ol -t
(% _1%74 29 +11. 1\/__‘_ e 2 h, ()= ¢, (1). .
ar? 2V . (A8 )

From (A,2) and (A.2') we have also

400
[_JL— r2+ 20 + 1) f G(n)(l,l") f(+)dr’= f(r) =
¢’ e (A7)
1 ¢, (1) L b, (@ Ydeln. =01,
o . other n

APPENDIX B, Evaluation of Integrals

Let f,(0 and eg (9 satisfy
a d2 2 0 -
(d_dr-h—r2+a) ia(r) =0 (Ti—r_z_r +5) gB(r)—

Then
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Table 1

rR{D(12,10) rR{)(12) R{D(14,12) mp?(14) R{D(16,14) B{D(16)

0,37
2,02
1,25
7,58
22,3
51,6
100

100
26,4
16,37
13,54
6,15
1,69
0,22

(‘!’82
0,87
4,22

6,18
11,7
23,5
47,0

100

100
26,5
17,10
14,41
4 7,02
2,21
0,41
0,03

-,

0,20
I,34
4,49

5,85
9,05
12,31
6,22
663,0
100

100
25,75
17,88
15,28
7,65
2,52
0,43
0,005
0,01

£12,10 = 0,103

€1y, 127 0,070

E16,14 = 0,075

* r{Ps,16) r{?(18) r{M(20,18) r{?(20) r{P(22,20) Rgz)(ZZ) n(gs) r{P(22,10)
¢ 0,19 100 0,15 100 0,05 100 5,089 1,07
2 0,92 25,5 0,47 25,3 0,29 25,2 -1,283 1,87
4 3,65 18,5 2,44 18,9 1,28 19,2 0,978 16,3
6 4,9 16, I 3,68 16,5 2,33 17,0 0,867 27,0
8 8,09 8, 32 6,79 8,91 4,98 9,36 -0,604 49,2
10 10,87 2,82 11,3 3,18 10,3 3,56 0,180 76,9
12 12,08 0,39 1,31 0,39 20,8 0,49  -0,025 100
I4 96,6 0,15 56,7 0,34 29,8 0,49  -0,0%5 I00
16 87,2 0,09 65,0 0,25 45,1 0,45 0,023 100
I8 100 0,01 81,3 0,07 63,0 0,20  =-0,0I0 100
20 _ - 100 0,009 80,5 0,06  0,0023 100
22 - - - - 100 0,005 -0,0002 100
é

< -
20,18 ==01055

28

gz,ao‘ 0,041

2,10 = 0,39



4NN (4NN (RN (3 “nN SIS [ETY (41 NN

N Y NN (m;NN (MHTNN o

¢ 5,035 0 5,399 ~3,695 5,656 -4,29% 5,749 4493 5,766 -4 499

? -1, 307 © -1,097 0,657 -1,083 0,599 -1,016 0,962 -I1,003 0,544
4 -0,819 0 -0,737 0,543 ~0,69T 0,534 ~0,662 0,196  -0,647 0,473

6 0,633 v 0,390 ~0,339 0,520 -u,330 0,506 -0, 306 0,500 -0,099
B - 0,042 v -6,217 0,I26  ~0,209 0,126 0,205 0,121 0,200 0, 10s
00,0414 0 0,0367 -0,0239 0,0577  -0,0236 0,371 -0,0225 0,069 -0,0024



Fig, 1.
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The correct form of the EP for az= 2 excludes the points marked
with a black circle and allows those marked with a light circle,
The modified form used in (3.7) allows all states above the solid
line and excludes only the black circles below it (the case M =8
is demonstrated as an example). The dashed line illustrates the
triangular approximation,
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Fig.2,

The solid curves represent the solution for the first potential in
(6.1). For comparison the " unperturbed"” function b, (D (dotted

line) and the function v, (0 for the potential without attraction
(dashed line) are given., The functions Yy and ¢,

are not
plotted since they are very small if compared with
0
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