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1. zggzggggtibn

It was suggested/{_z//that for a relativistic generalization of SU(6) sym etry one
can use a group (;; which 1s the semi-direct product of the Poilncare group 6?25 and a non-
—~compact internal symmetry group S containing some subgroup SL(2,C). In sush a theory
\elementary particles are classified on the basis of 1nf1n1te-d1mensional unitary repre-
sntations of the internal symme try group .S.

~10,

In a series of paper: the structure of S-matrix in such a symmetry was studied. It

was shown that in suoh a relativistio scheme there exists no contradiction between symmetry

and unitary of S-matrix 110,

. The possibility of formulating symmetry with infipite
multiplets within the framework of quantum field theory was discussed in refs. 10,11 .
Acoording to the method suggested in these papers elemeﬁtary partioles belonging to each
infinite multiplet are described by means of an infinite number of spinor ( or tenéor)quan—
tized fields which are transformed as finite-dihensional non-unitary representations of
hémogeneous Lorentz group. In suoh a scheme there exist the usual commutation relations
with the normal conneotion between spin and statistic. )

JIn the present paper we study the a.nalytic;ity properties of the soattering a.m_plitu—- .
des gnd tﬁe vertex functions in the theory of symmetr, l;}th non-compact group. The similar
problem was also treated in arecent paperby Féonsdal/z . For simplicity we shall consider

the oase § = SL(Z,C). Our conclusions hold also for the general case,

2.Construction of physical basis for irreducible representations
of intermal symmetry group SL(2,C)

Before to study the vertex functions and the scattering amplitudes we must construct
in an explicit form the basis of unitary representations of the group éL(Z,C) according
to which elementary partioles are olassified. The group SL(2,C) contains the group SU(2)
as a maximal oompact subgroup. In our previous paper/ll each irreducible representation
of the SL(2,C) group 1s realized in the form of am infinite set of su(2) spinoré - gene—
ralized spinors. This basis will be called canonical basis. However, particles with given
spins in each multiplet are described by irreduoible representations of the 1ittle group
Su(2),, .rather than by irreduoible representations of the SU(Z) subgroup. Therefore, to
describe the particle states we must. construct each irreducible representation of the
SL(2,C) group ik the from of an infinite set of SU(Z) spinors. We shall show that under
the Lorentz transformation these spinors transform according to spin non-unitary repre-

sentations of the hoﬁogeneous Lorentz group. We remind that each unitary representation of



sL(2, C) group ( from the principal series) 1s characterized by a real number f and an

j.nteger or ha.lf—integer )) . Moreover a representation with given )) contains states
with ——‘)’l—’—?@ ( n=0,1,2, .i. )o As 1llustration we first consider the simple case

with ))——: + This 1rreducib1e representation is realized in the Hilbert space of homo-

geneous functions %9 on two complex variables with degree of homogeneityg_/ ff_)

The  transformation law for these functions is of the form:

f(z) §( =)
ﬂ R /~1 (@,4)=1z

From. the commutation relations between the generators of group S and Lorentz group

it followe that the variables Z_Zd transform according to the spinor representation of

 homogeneous Lorentz group

1 Z Az 2L @) w

where A[‘)\) is the unimodular 2x2 matrix corresponding to the Lorentz transformation L>\
The variables f ( complex conJugate off ) are transformed according to the

conjugate representation and will be denoted by /%'

’%*@;Z*A*A; N o

Let us introduce new variables Z, H
| 7 i )
| Zoe = (GL 5
- y VA
| (64;>¢' = %4 ) (C’;;L = "/’(6/9/% ) 4

where (6')/4 are the elements of Paull matrices 62 . It 1s easy to show that
,Z' T <. Under Lorentz transformation (1) and (2) the new variables c,% transform

as the components of a four—dimensional vector.

The homogeneous funotions f(f//@with degree of homogenelty (_{ )_, ﬂare also

homogeneous functions on «&,, Wwith the same degree of homogeneity. Hence a given

unitary representation of.the SL(2,C) group can be also realized in the Hilbert space of
homogeneous functions 35(7;) on the cone with degree of homogeneity g-_{ « In our

previous paper . the canonical basis oorresponding to the reduction SL(2,¢) > sSU(2)

4

P

has been constructed. The basis veotor corresponding to the étate' with different .
spins are of the form 1 o

WD (P ~ Gﬁ’f*&”— 4
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. In terms of variables _Z° ' we have respeotively: &S/ S f ZZ‘ 5” /
&1
P~z
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hese formulae admit a simple physical interpretation: fg‘ is a gcé.lgr ;%’;:/helﬁglf(z) /5

Cﬁ}gfxvf'e

group ( but not of Lorentz group) .@ 1s the three—dimensional vector, and basis
vectors’
rs(P _are three—dimensional symme trical traceless tensors constructed from the
products [ ,Z;, and .Z:e .
Now in terms of
. 0. % it 18 easy to construct the basis corresponding to the re-
uotion SL(2,¢) =D SU(2 ),, , this basis will be referred to as physical basis. As
is 1 - .
well lmown in non-relativistic theory a2 spin 1 particle 1s desoribed by a vector .Z

£
but in relativistic theory this particle 1s described by a four-vector f -satisfying

the condition
) ={ |
/ﬁ’f/“ ) )

——— e et e et e s e

1) ; ' ‘
_131nce this basis 1s not relativistic invariant there i1s no sense te oonsider 1its .

trensformation properties under the Lorentz transformation and therefore w'e need not

introduce dotted indices.



where is four-momentum of the partiole . Therefore, instead of non-relativistic

division of four-dimensional veotor % into space part '% and time part ,Z'/ we ‘put

=Gt B9 - s =g B

where

L=5t G4

satisfies condition (7) and describes the spin 1 particle, and

W= —zﬁa z( ﬁ) 7t

i1s a soalar under the Lorentz group and describes the spin O particle, The physical basis
oorresponding to the reduotion SL(2,0) = SU(2),, can be construoted by analogy with

fomula (6), where instead of ,Z' we must use W and instead of .Z'—-
the particles with momentum /L and spin /__ 0,1,2 will be described respectively

by the following tensrrs CP W,__
-Z
G Wiy,
CP/’/") Lz (% T~ 3{

/}
Ly= S0t 25

For partiole states with arbitrary sxin/ we have:

- A
Cﬁu-y/ﬁ W

where

Yo Z 5/’)6/)&///% /%4/3%32
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Now let us return to the original Hilbert space of homogeneous functions {@2'2)
of two oomplex variables' 7?/' and ﬁ’é . It follows from (11) that the states with

6

. For -example,

T Do),

5p1ns/'= 0,1,2, and momentum /& are described by the following SU(2)

W%‘O - (<)
CP; (¢4

ct;/ﬂ(f( HefF {f b
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/b spinors:

e —,—z—/( fecke)]
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These spinors of the little group SU(2) are transformed according to corresponding

spinor representations of homogeneous Lorentz group and satisfy the condition:

I

S

@(13)

They differ from the SU(2) spinors by the fact that instead of the relativistic non-
invariant summation ZZA’ we use the invariant one {(%}ﬂf . Otherwise speaking,

the SU(2) spinors are obtained from the SU(2)  spinors defined by formule (6) by the

substitu[/on S/ — ( -Z)/

Consider now the general case of unitary representation with arbitrary )) and /?

In our previous paperﬁ

the canonical basis constructed from SU(2) spinors was found:

SN
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As in the case )) =0 in order to get the physical basis oonstructed from sU(2), spinors
it is sufficient to start from the spinors (14) making the substitution;i?__,f( )ZJ
7Y

and g_ ___9(_Z) . We have:

| ¥ . ) ( -9 5 s(15)
P2 4 577 ;_jf;,gjf,_s),/(/), e
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These SU(2) spinors are ti'a.nsfomed aocording to corresponding spinor representations of

homogeneous Lorentz group and satisfy the condition

7 hehy ) a
( )/ [ /f)(/b) |

which means that they describe states with definite spins.
Now let be any element from Hilbert space realizing a given unitary represen~ -

tation of the SL(2,¢) group. This generalized spinor can be represented in the form:

/Zég) Z/ZZ ZZ)Q’)(P; /) an

G
4 b

7 2
cal in indices of each kind and satisfy the condition:

2 e "4
(”é)d;%;z jﬂ)(/l) ﬂ (18)

/J)

. The components (/Z) can always be chosen in such a way that they are symmetri-

where

/_e .

n “?gw_,;‘_

(“ﬂ (‘0’) =&, y_(”:

Further on we shall express the vertex functions and matrix elements of scattering
d/’@ e

3. Vertex functions and scattering amplitudes

process in terms of these components .

Now we study the structure of the vertex functions and scattering amplitudes in the

theory of symmetry with infinite multiplets. First of all, for simplicity let us comsider

trilinear interaction between some infinite multiplet and a singlet, and in addition for -

the infinite multiplet we put =0 . In this case the invariant vertex is ofthe form

I—OQ//O 3((/%//2//7 %)&Z/Zz}}(z) z ///9 (20)
where 1% / 1s an arbitrary form-factor, is the wave function of the
singletgll(s/}:xééorujula an for}()a.nd /Z éfﬁ(éejhave

(k) =S5 /%)Z 7; % M 94 /%

é S5 %

where the matrices 0/

A )
/V\ /;/:))) G- jﬂ) (/%}/Q

are kinematic factors and fully determined by the following integral

GG 94 "‘“? G, TP
MZ Z/)) ~ G /M)— (/QCP (,2)[/4%

In order to find out the properties of these factors let us consider a speoia.l

(22)

case when 9 =0. Then the first factor contained in the vertex wiih three Lorentz scalar

particles equals:

ot b 8




This means that the part of vertex corresponding to the interactlion of scalar particles

Q> =SEaom ety

.Here we note that the kinematical factors M w//?are fully determined only in the

1s equal to

physical region of corresponding processes, Thus, for example, this factor is equal to:

SLNEBD .,
/V\ Olz//‘;> ’—() W % Py VZ/;_—) (24)
for the scattering channel + — (ﬁ/) <ﬂ

and
_ %5 1 66-#7) '
M(ﬂ/ﬁ} {—() ;/5 @é P —-S—VST)— (25)
for annihilation channel S=-— //%-I;g))/)ﬂ. 4n apalogous result kas beern also obtained

in an earlier paper of Fronsdal/ by another method.

Note that on the basis of formula (23) it is impossible to compute kinematic factor r()
for complex t . Otherwise speaking, there exists'no theoretical basis for its analytical
contlnuation. .

In an analogous way from the formula (21) we get the following expression for the
matrix element corresponding to the tra.nsitionJ.zl__>J.=/ﬂ in the scattering channel:

- BT
%}Z @\/@/;’a )

where \/ /) 1s the relativistic wave function of meson with spin 1 in the initial state:

\/(/,)_ /(/ﬂ)//y (/;) 2n

It is clear that here the Z_—S coupling 1s automatically obtalned.

Consider now the case )= 7// . 411 the well-known spin 1/2 baryons must belong to the
multiplets of this type. The part of the vertex corresponding to the ini:era.ction of spinors
with spin 1/2 equals:

10

< [pplE>=
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For convenience let us introduce the Dirac spinor /{J’l/ instead of two-component spi-

AN
| ya (Z)/%z | oo
I O VA

Then the last multiplier in the right-hand side of (28) can be rewritten in the form:

T -2l Tty o

For the states with other spins we can obtain the expressions for vertex functions

ll\

in an analogous way.

We see that together with arbitrary form-factors depending on the dynamics of the
process the vertices contain also kinematical form—-factors which are fully determined
by the symmetry properties., We shall show below that the dynamical form—factors%‘f/;;ﬁr have
usual analyticity properties and are crossing symmetrical, #s to kinematical factors
they satisfy the usual Low’s substitution law ( passihg from the scattering channel to
the annihilation channel it 1s sufficilent to substitqte s for t), but they cannot be
analytically continued into oomplex plane t.

Finally, consider the elastic scattering of a singlet on a particle from the multiplet
with ))’—‘1/2 . For the process / / /

J + ra —_ 7 +

we have the following matrix element

NGl Yot f@%} Wty o

where A(s,t) 1s some invariant amplitude which 1s determined by the dynamics of the.
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‘ process and has usual analyticity properties, Here it 1s interesting to note that the
physicali amplitudes é.re not analytical on t in the Lehman ellipse 15.

Formula (32) shows thalt 12 JC - meson is a singlet then in the scattering process
pf .Z-.-mesons on nucleons the polarization would be equal to zero in contradiction with
experimental data. Therefore, for the classification on—mesons 1t 1is necessary to

use also an 1nfinite multiplet. .

Local interaction and analyticity of the scattering amplitudes

Now we study the connection between the results obtained above and the possibility of
construoting %ocal interaction Lagrangian, For simi;liqity we consider the trilinear-
interaction between particles frém the multiplet with )) =0 and some singlet,

In th_e <« fZ»-representation the interaction Lagrangian invariant under the sL(2,C)
group 1s obtalned from formul\a (21) 1f vthe dynamical form-factor 1s assumed to be constant.
Tﬁeﬂ pé.ssing to the «I»-representation we get immediately tl;e interaction Iégrangian
invériant under the given group. The part of lagranglan corresponding to the interaction
cf three particles with spin zero 1is:

ogmg @) ——3[ %) /Z()F(D)/Z{z)} )
()= S o

/Lﬂ
0= (Z +’§_ ©
9,Z G

c_ N
9 _Z Z (_{) + (Z)(Zm)zhc z/(«ﬂ W”)’f(ﬂ’ﬁf(ﬁ/.@

_> 7=y 4_0/ =0

c = _
where ?:Z'_ acts on%@and %/) The analogous results can be

also obtafned for othér cases.

where

<lll

The interaction Lagrangian (33) contains an infinite number of derivatives which.
appear namely because of the requirement of symmetry. The reason of thelr appearance 1s
the following. The elementary particles contained in each infinite SL(Z C) multiplet
are classified according to irreducible representations of the little group SUG?)
To describe these particles within the framework of quantum fileld theory we must /b

introduce an infinite number of Bargman-¥igner-spinors

Aeh, eM/M ) s 253
A () % Z{/ Gby-- /ﬁ},"@e S¢)ﬂ}jf

Let >< be some element of internal symmetry group S which does not depend on
momentum . Since particles with definite spins form canonical basis corresponding to
the reduction ( depending on/ ) sL(2,Cc) > su(2) +the matrix eement for transforma—

th

e field operators ( A/Az under X
" 7
depends on/p ()AI A”z _/ t%)gﬁ/ &) C/ﬁ oo
RSPV OSHI U

tion of Fourler-components o

( for detalls see/i%
Then 1t follows that under X the field opera'ror 4/44 (z')are transformed acoordinv

to non-local transformation concerning derivatives of all o{érs.

~—%
- =
=
C
><.
'\
¥ >
:l:.

N
\?‘\&
S W

e

(‘%) /"'Q&)(”)
G

The interaction Lagrangian can ‘be invariant under

transformation of this type only in the case when it contains an infinite number of deri-
vatives., Otherwilse speaking, the appearance of infinite number of derivatives in the
Lagrangian in due to the fact that the non-compact symmetry group sL(2,C) 1is the group

of non-local transformations of quantum fields déscribing infinite multiplets of the given
group. ' ‘

Further, studying the structure of S—matrix many authors _igtroduced also unphysical
basis corresponding to the reduction ( independent of ) SL(2,C) D su(2) tbgether
with a physical ba3is corresponding to the reduction ( depending on/z ) SL(Z ) —> su(2).
Each basic vector of this unphysical ‘basis i1s a linear combination of an infinite number

af particle wave functions:

20 3 Ep W

13



where W and W > y r/ are physical and unphysical states. In the

_physical state 3 a.nd/{ are spin and spin proJection of the particle. UnderX these

states are transformed into:

AW 2'7’/ Z ”?/;/‘/ﬁ" fi* 2»%

(/)can be found by using the method given in refs.

(39)

(40)

The explicit expressions for

510,12 16/ andJ’ v, s foes n({ l{epend on
A @)

From the Fourier-components /} ¢ we first pick out the creation and annihila-

}}’é

tion operators:

/ﬂ(/z) Zf 2\7(/6/)2/ M- Awg (/Z) (41)
}}

) A” s2)
Spp=77" W/”’ 70
whereﬂ //1? (/y)a.udﬁA/Az

(Mare respectively positive frequency and negative
frequency wave funotions of pa{tiecles with spin Jj, spin projection /4 s momentum /L

and then we form the linear combinations of the type (38):

//f(/‘) o 5/”//’”’ P “
$je 00 Z o S P -

Under these new operators are transformed independently of

//”(/Z) Z(ZZ/I//M /71/(/) ' (45)
K= Z f 10 :

Now wvie go from- these operators to "x" representation.

Z}’ ()= 2@% [ //,,@e + f (e ]%m}é’(/z)//a “n

14

Operators /ZI @fom canonical basis. corresponding to the reduction SL(2,C) T su(2) .
From them the polylinear invarjiant combinations can be formed imme-diately, the
Clebsh-Gordan coefficients contained in these combinations being the usual numericadl
coefficiehts ( independent both of /L and .Z ). This means that the symmetry 1s compatibl.
with the locality with respect to unphysical fields . ﬂ) ’
It is easy to show that these unphysical filelds !rze related to the physical filelds .
/Az ('Z‘) describing particles with definite spins by means of the following
inteu’aﬁ? non—local) transformation:
Al A///

(’Z) Jz/{: g//”ﬂ zf;A,Ae A//N ﬁ,ﬂfg %/(48

G-By, /f)
(z' / _ 1/ / //7) G4
%ﬁ’ 9 Ky, 6 ///M)[ ,4,‘.. W e ;,@

/\/By substituting these expressions into he local interaction Lagrangian containing
. (Z') explicitly and satisfying the requirements of symmetry we. obtain a non-local
interaction Lagrangian. Analogously,_ 1f we start“from the intitial and final unphysical
states ,/3///{> {defined by formula (38) then the symmetry does not contradict the
ana.lyticity of c/rresponding unphysical amplitudes. The form—faotor "g ////Z/ )

in formula (28) is an example of amplitude of this type. However, when we return to the’

real states ’/y/?{because of the presence of the kinematical factors /// Sy /. )
A

in formula (38) there appear the kinematical singularities in-the - physical scattering

.

amplitudes,

Therefore, the higher symmetry with infinite multiplets is incompatible with
the ustal local ‘properties of quantum fields and also with the usual analyticity pro-
perties of the scattering amplitudes. The symmetry group represents a group of non—local
transformations and the invariance under this group requires a peouliar non—locality

of interaction.

15
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