E- 2-2932

Dao Vong Duc, Nguyen Van Hieu

ANALYTICITY, LOCALITY AND SYMMETRY WITH INFINITE MULTIPLETS

Dao Vong Duc, Nguyen Van Heu

ANALYTICITY, LOCALITY AND SYMMETRY WITH INFINITE MULTIPLETS

Submitted to Jad.Phys.

1. Introduction

It was suggested $1-7 /$ that for a relativistic generalization of $\operatorname{SU}(6)$ symmetry one. can use a group G which is the semi-direct product of the Poincare group and a non--compact internal symmetry group S containing some subgroup $S L(2, C)$. In such a theory elementary particles are classified on the basis of infinite-dimensional unitary represntations of the internal symmetry group. S.

In a series of paper/ $7-10 /$ the structure of $S-m a t r i x$ in such a symmetry was studied. It was shown that in suoh a relativistio scheme there exists no contradiotion between symuetry and unitary of S-matrix/ $9,10 /$ The possibility of formulating symmetry with infinite multiplets within the framework of quantum field theory was discussed in refs. $10,11 /:$ Acoording to the method suggested in these papers elementary partioles belonging to each infinite multiplet are described by means of an infinite number of spinor (or tensor) quantized fields which are transformed as finite-dimensional non-unitary representations of homogeneous Lorentz group. In suoh a soheme there exist the usual commutation relations Fith the normal conneotion between spin and statistic.

In the present paper we study the analytioity properties of the soattering amplitudes and the vertex functions in the theory of symmetry with non-compaot group. The similar problem was also treated in arecent paperby Fronsdal 11 . For simplicity we shall consider the oase $S=S L(2, C)$. Our conclusions hold also for the general oase.

2. Construction of physioal basis for irreducible representations of internal symetry group $\operatorname{SL}(2, C)$

Before to study the vertex functions and the scattering amplitudes we must construct In an explicit form the basis of unitary representations of the group SL(2,C) according to which elementary partioles are olassified. The group $\operatorname{SL}(2, C)$ contains the group $\operatorname{SU}(2)$ as a maximal oompact subgroup. In our previous paper 12 each irreducible representation of the $\operatorname{SL}(2, C)$ group is realized in the form of an infinite set of $S U(2)$ spinors - generalized spinors. This basis will be called canonical basis. However, particles with given spins in eaoh multiplet are described by irreduoible representations of the little group $S U(2) / 2$ rather than by irreduoible representations of the $S U(2)$ subgroup. Therefore, to describe the particle states we must, construct each irreducible representation of the SL(2,C) group if the from of an infinite set of SU(2) spinors. We shall show that under the Lorentz transformation these spinors transform according to spin non-unitary representations of the homogeneous Lorentz group. We remind that each unitary representation of

SL(2,c) group (from the principal series) is characterized by a real number ρ and an integer or half-integer ν. Moreover a representation with given ν contains states with $j=|\nu|+n(n=0,1,2, \ldots)$. As illustration we first consider the simple case with $\nu=0$. This irreducible representation is realized in the Hilbert space of homogeneous functions $f\left(z_{1}, z_{2}\right)$ on two complex variables with degree of homogeneity $\left(\frac{i \rho}{2}-1, \frac{i \rho}{2}-1\right)$ The transformation law for these functions is of the form:

$$
\begin{aligned}
T_{g} f(z) & =f\left(z^{\prime}\right) \\
z_{a}^{\prime} & =z_{b} g_{b a}, \operatorname{detg}_{0}=1:(a, b)=1,2
\end{aligned}
$$

From the commutation relations between the generators of group S and lorentz group it follows that the variables z_{d} transform according to the spinor representation of homogeneous Lorentz group

$$
\begin{equation*}
z_{a} \xrightarrow{\lambda} z_{b} A b_{a}(\lambda) \tag{1}
\end{equation*}
$$

where $A(d)$ is the unimodular 2×2 matrix corresponding to the Lorentz transformation λ. The variables \mathcal{Z}_{a}^{*} (complex conjugate of \mathcal{Z}_{α}) are transformed according to the conjugate representation and will be denoted by $Z^{*} \dot{a}$:

$$
\begin{equation*}
Z^{* \dot{a} \lambda} \Rightarrow Z^{* \dot{b}} A_{\dot{b} \dot{a}}^{*}(\lambda) \tag{2}
\end{equation*}
$$

Let us introduce new variables

$$
\begin{gather*}
\tilde{J}_{\mathcal{L}}: \tag{3}\\
x_{\mu t} \equiv Z_{b}\left(\sigma_{\mathcal{L}}\right)_{\dot{a}}^{b} \mathcal{Z}^{* i}, \tag{4}\\
\left(\sigma_{4}\right)_{\dot{a}}^{b}=\delta_{b a}, \quad\left(\sigma_{k}\right)_{\dot{a}}^{b}=-i\left(\sigma_{K}\right)_{b a},
\end{gather*}
$$

where $\left(\sigma_{R}\right)_{b a}$ are the elements of Pauli matrices $\sigma_{/ G}$. It is easy to show that $x^{2} \equiv x_{\mu r} J_{\beta}=0$. Under I_{0} rents transformation (1) and (2) the now variables x_{μ} transform as the components of a four-dimensional vector.

The homogeneous functions $f\left(z_{1}, x_{2}\right)$ with degree of homogeneity $\left(\frac{i \rho}{2}-1 \frac{i \rho}{2}-1\right)$ are also homogeneous functions on x_{μ} with the same degree of homogeneity. Hence a given unitary representation of the $\mathrm{SL}(2, \mathrm{c})$ group can be also realized in the Hilbert space of homogeneous functions $f(x)$ on the cone with degree of homogeneity $\frac{i \rho}{2}-1$. In our previous paper $/ 2 /$, the canonical basis corresponding to the reduction $\operatorname{SI}(2,0) \Longrightarrow \operatorname{su}(2)$
has been constructed. The basis vector corresponding to the state with different spins are of the form 1):

$$
\operatorname{spin} j: \phi_{a_{1} a_{2} \cdots a j}^{b_{1} k_{2} \cdots b_{j}} \sim\left(z_{c} z^{* c}\right)^{\frac{c}{x}-1-j} \sum_{s=0}^{d}(-1)^{s} \frac{(j))^{i}(z-s)!}{s![(j-s)!]^{2}(z j)!}\left(z_{c} z^{* c}\right)^{s}
$$

In terms of variable

$$
\begin{equation*}
\int_{a_{1}}^{b_{1}} \cdots \delta_{a_{s}}^{b_{s}} z_{a_{s+1}} \cdots Z_{a} \not z^{*} b_{s+1} \mathcal{Z}^{*} b_{j} \tag{7}
\end{equation*}
$$ These formulae admit a simple physical interpretation: \mathscr{I}_{0} is a scalar of the $\operatorname{sv(2)}$

group (but not of Lorentz group), \mathcal{X} is the three -dimensional vector, and basis vectors ϕ_{1} \qquad are three-dimensional sym

Is the products of x_{0} and x_{k}

Now in terms of $\mathcal{X}_{\text {Re }}$ it is easy to construct the basis corresponding to the reduction $\operatorname{SL}(2,0) \Longrightarrow \operatorname{SU}(2)_{R}$, this basis will be referred to as physical basis: As
 ut in relativistic theory this particle is described bs a four-vector \mathbb{Z} ace satisfying the condition

$$
\begin{equation*}
p_{\mu} Y_{\mu}=0 \tag{7}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
& \mathcal{T}_{M} \text { we have respectively: } \\
& \begin{array}{l}
\phi \sim x_{0}^{\frac{\dot{p}}{2}-1} \\
\phi_{k} \sim x_{0}^{\frac{L p}{2}-2} \cdot x_{k}
\end{array} \tag{6}\\
& \phi_{k} \sim x_{0}^{\frac{2 p}{2}-z} x_{k}
\end{align*}
$$
\]

$$
\begin{align*}
& \operatorname{spin} 0: \phi \sim\left(\pi_{c} z^{*} c\right)^{\frac{i p}{2}-1} \\
& \operatorname{spin} 1: \phi_{a}^{b} \sim\left(Z_{c} Z^{* c}\right)^{\frac{i g}{2}-2}\left\{Z_{a} Z^{b b}-\frac{1}{2} \delta_{a}^{b} Z_{c} Z^{* c}\right\}
\end{align*}
$$

where $\int_{\mu l}$ is four-momentum of the particle. Therefore; instead of non-relatiristic division of four-dimensional vector $\mathcal{X}_{\mu c}$ into space part $\mathcal{F}_{/ /}$and time part x_{0} we put

$$
\begin{equation*}
\left.x_{\mu}=\left(x_{\mu}+\frac{h_{\mu}}{m^{2}} \beta_{2} \cdot x_{p}\right)-\frac{\hbar_{k}}{m^{2}} p_{\nu} x_{p}=y_{\mathcal{L}}-\frac{i_{\mu}}{m^{2}} W\right) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{\mu} \equiv x_{\mu}+\frac{\beta_{p}}{m^{x}} \beta_{j} x_{j} \tag{9}
\end{equation*}
$$

satisfies condition (7) and describes the spin I particle, and

$$
\begin{equation*}
W=-i \frac{i B_{m}-x_{\alpha}}{m}=z_{a}\left(-\frac{i \hat{m}}{m}\right)_{b}^{a} z^{* b} \tag{10}
\end{equation*}
$$

is a solar under the Lorentz group and describes the spin 0 particle. The physical basis , corresponding to the reduction $\mathrm{SL}(2,0) \Longrightarrow \mathrm{SU}(2) \mathrm{p}$ can be constructed by analogy with formula (6), where instead of X_{b} we must use W^{\prime} and instead of $x_{H}-Y_{/}$. For example, the particles with momentum $\cdot / 2$ and $\operatorname{spin} j=0,1,2$ will be described respectively by the following tensors:

$$
\begin{aligned}
& \phi \sim W^{\frac{i s}{2}-1} \\
& \phi_{\mu} \sim W^{\frac{i n}{2}}-2 \mathcal{H}_{\mu}
\end{aligned}
$$

Where

$$
\Delta_{\mu l}=\delta_{\mu \nu}+\frac{\rho_{\mu} \beta_{\nu}}{m^{2}}
$$

For partiole states with arbitrary $91 n$, we have:

$$
\begin{aligned}
& \left.\Phi_{\mu_{1} \mu_{2} \cdots \mu_{j}} \sim W^{\frac{i \rho}{2}-1-j} Y_{\mu_{1} \mu_{2} \cdots \mu_{j}}\right) \\
& Y_{\mu_{1} \mu_{2} \cdots \mu_{j}}=\sum_{s=02 \cdots(j,-1)} \propto(j, s)\left(\mathcal{U}_{\mu} \mathcal{Y}_{\mu}\right)^{\frac{s}{2}} \underbrace{}_{\mu_{1} \mu_{R}} \Delta_{\mu_{s-1} \mu_{s}} f_{\mu_{s+1}} \cdots f_{\mu_{j}} \\
& \alpha(j, s)=(-1)^{-\frac{s}{2}} \frac{(2 j-1-s)!j!}{s!!(2 j-1)!!(j-s)!}
\end{aligned}
$$

Now let us return to the original Hilbert space of homogeneous functions $f\left(z, z_{2}\right)$ of two complex variables \mathcal{Z}_{f} and \mathcal{Z}_{2}. It follows from (11) that the states with
spins $f=0,1,2$, and momentum μ are described by the following $\operatorname{sU}(2) \rho$ spinors:

$$
\begin{aligned}
& \phi \sim\left(\tilde{z}_{c}\left(-\frac{i \dot{p}}{m}\right)_{d}^{c} z^{* d}\right)^{\frac{i \rho}{2}-1} \equiv\left(z\left(-\frac{i \hat{p}}{m}\right) z^{*}\right)^{\frac{i \rho}{2}-1} \\
& \phi_{a}^{b} \sim\left(z\left(-\frac{\hat{b}}{m}\right) z^{*}\right)^{\frac{i g}{2}-2} \cdot\left\{z_{a} z^{* i b}-\frac{1}{2}\left(-\frac{i \dot{p}}{m}\right)_{a}^{b}\left(z\left(-\frac{\dot{b}}{m}\right) z^{*}\right)\right\} \\
& \phi_{a_{1} a_{2}}^{b_{1} \dot{b}_{2}} \sim\left(z\left(-\frac{\dot{b}_{m}^{m}}{m}\right) z^{*}\right)^{\frac{i \rho}{2}-3} \cdot\left\{\begin{array}{l}
z_{a_{1}} z_{a_{2}} z^{* b_{z}} * b_{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { and for arbitrary spin we have: }
\end{aligned}
$$

$$
\phi_{a_{1} a_{2} \cdots a j}^{b_{1} b_{2} \cdots b_{j}} \sim\left(z\left(-\frac{\hat{b}}{m}\right) z^{*}\right)^{\frac{i p}{2}-i} \sum_{s=0}^{j}(-1)^{s} \frac{(j!)^{2}(z j-s)!}{s![(j-s)!]^{2}(g j)!}\left(z\left(-\frac{i \hat{b}}{m}\right) z^{*}\right)^{s}
$$

$$
\int\left(-\frac{i \vec{b}}{m}\right)^{b_{1}} \cdots\left(-\frac{i}{m}\right)_{a_{s}}^{b_{s}} z_{s+1} \ldots z_{a} z^{*+b_{s+1}} \cdot z^{* b_{j}}
$$

These spinors of the little group $S U(2) / \sim$ are transformed according to corresponding spinor representations of homogeneous Lorentz group and satisfy the condition:

$$
\begin{equation*}
\left(\frac{i \hat{p}}{m}\right)^{a_{p}} \dot{b}_{k} \oint_{a_{1} \ldots a_{p} \ldots a_{j}}^{b_{1} \cdots b_{k} \cdots b_{j}}=0 \tag{13}
\end{equation*}
$$

They differ from the $S U(2)$ spinous by the fact that instead of the relativistic noninvariant summation $\mathcal{Z}_{c} Z^{* \dot{C}}$ we use the invariant one $\mathcal{Z}_{c}\left(-\frac{\dot{\phi}}{m}\right)_{d} \mathcal{Z}^{*} \dot{d}$: otherwise speaking, the $\operatorname{SU}(2)_{p}$ spinors are obtained from the SU(2) spinors defined by formula (6) by the substitution $\delta_{b}^{a} \longrightarrow\left(-\frac{i \ddot{p}}{m}\right)_{b}^{a}$.

Consider now the general case of unitary representation with arbitrary $\mathcal{\nu}$ and ρ In our previous paper $/ 12 /$ the canonical basis constructed from $S U(2)$ spinors was found:

$$
\begin{align*}
& \int \delta_{a_{1}}^{b_{1}} \cdots \delta_{a_{s}}^{k_{s}} z_{a_{s+1}} \cdots \mathcal{Z}_{a_{j+1}} z^{* k_{s+1}} \cdot z^{* b_{-2}} \tag{14}
\end{align*}
$$

As in the case $\mathcal{\nu}=0$ in order to get the physical basis constructed from $\operatorname{SU}(2)_{2}$ spinors
 and $\delta_{a}^{b} \longrightarrow\left(-\frac{i \hat{p}}{m}\right)_{a}^{b}$. We have:

These $\mathrm{SU}(2) / 2$ spinors are transformed according to corresponding spinor representations of homogeneous Lorentz group and satisfy the condition:

$$
\begin{equation*}
\left(\frac{i p}{m}\right)_{i}^{b_{k}} \oint^{\left.b_{1} \cdots b_{k} \cdots b_{j-}\right)}(k)=0 \tag{16}
\end{equation*}
$$

which means that they describe states with definite spins.
Now let be any element from Hilbert space realizing a given unitary representtation of the $\operatorname{SL}(2,0)$ group. This generalized spinor can be represented in the form:

The components χ, $\alpha_{2} . . .(\beta)$ can always be chosen in such a way that they are symmetrical in indices of each kind and satisfy the condition:
where

$$
\begin{equation*}
\left.(\xi)_{a}\right)_{a}^{b}=\delta_{h a},(\xi)_{a}^{\prime}=u(\xi)_{k a} \tag{19}
\end{equation*}
$$

Further on we shall express the vertex functions and matrix elements of scattering process in terms of these components $a, a_{2} \cdots$
3. Vertex functions and scattering amplitudes

Now we study the structure of the vertex functions and scattering amplitudes in the theory of symmetry with infinite multiplets. First of all, for simplicity let us consider trilinear interaction between some infinite multiple and a singlet, and in addition for the infinite multiplet we put $\rho=0$. In this case the invariant vertex is of the form

$$
\begin{equation*}
\Gamma\left(p_{2} \beta_{1}\right)=f\left(\beta_{1}^{2} \beta_{2}^{2} k^{2}\right) \varphi(k) \mathcal{V}_{p_{2}}^{*}(z) \mathcal{N}_{1}(z) d u_{z}, k=\beta_{2}-p_{1} \tag{20}
\end{equation*}
$$

where $\int\left(k^{2} / p^{2}, k^{2}\right)$ is an arbitrary form-factor, $\rho(k)$ is the wave function of the singlet. Using formula (17) for $V_{1}(z)$ and (z) we have:
where the matrices
are kinematic factors and fully determined by the following integral:

In order to find out the properties of these factors let us consider a special case when $)=0$. Then the first factor contained in the vertex with three Lorentz scalar particles equals:

$$
M\left(\beta, R_{2}\right)=\frac{1}{\pi} \int\left(z\left(-\frac{i \hat{b}}{m}\right) z^{*}\right)^{-1}\left(z\left(-\frac{\hat{b}_{n}}{m}\right) z^{*}\right)^{-1} d \omega_{z}=\frac{1}{z \sqrt{\alpha^{2}-1}} \ln \frac{\alpha+\sqrt{\alpha^{2}-1}}{\alpha-\sqrt{\alpha^{2}-1}}, \alpha \equiv-\frac{(\eta}{m}
$$

This means that the part of vertex corresponding to the interaction of scalar particles is equal to

$$
\left.\langle 0| \Gamma|0\rangle=f\left(p_{p}^{2}, p_{2}^{2}, k^{2}\right) M\left(p, p_{1}\right) \varphi(k)\right)^{*}\left(p_{n}\right) \gamma\left(k_{1}\right)
$$

Here we note that the kinematical factors $M(/ \xi / / / 2)$ are fully determined only in the physical region of corresponding processes. Thus, for example, this factor is equal to:
for the scattering channel $t=-(p,-1 / 2)^{2}<0$
and

$$
\begin{equation*}
\left.A(-(n))^{2}\right)=\sqrt{(s)=\frac{m^{2}}{\sqrt{s\left(S-4 m^{2}\right)}} \operatorname{m} \frac{2 m^{2}-s+\sqrt{s\left(s-4 n^{2}\right)}}{2 m^{2}-s-\sqrt{s\left(s-A n^{2}\right)}}} \tag{25}
\end{equation*}
$$

 In an earlier paper of Fronsdal/11/ by another method.

Note that on the basis of formula (23) it is impossible to compute kinematic factor $\Gamma(t)$ for complex t. Otherwise speaking, there exists no theoretical basis for its analytical continuation.

In an analogous way from the formula (21) we get the following expression for the matrix element corresponding to the transition $j=1 \rightarrow j=0$ in the scattering channel:
where $V_{\mu}(\not / 4)$ is the relativistic wave function of meson with spin i in the initial state:

$$
\begin{equation*}
V_{a}\left(n_{1}\right)=\frac{1}{2}\left(\sigma_{x}\right)^{\dot{a}} \tag{27}
\end{equation*}
$$

It is clear that here the $L-S$ coupling is automatically obtained.
Consider now the case $\nu=\frac{1}{2}$. All the well-known $\operatorname{spin} 1 / 2$ baryons must belong to the multiplets of this type. The part of the vertex corresponding to the interaction of spinors with spin $1 / 2$ equals:

$$
\begin{aligned}
& \left\langle\frac{1}{2}\right| \Gamma(p, r, k)\left|\frac{1}{x}\right\rangle= \\
& \left.=f\left(p^{2}, p^{2}\right)^{2} k^{2}\right) \cdot \frac{1}{2(1+\alpha) \sqrt{\alpha^{2}-1}}\left[\sqrt{\alpha+\sqrt{\alpha^{2}-1}}-\sqrt{\alpha-\sqrt{\alpha^{2}-1}}\right] \cdot\left(\frac{1}{\dot{a}}\left(\beta_{2}\right)\left[\frac{\left.i(\hat{b}+\hat{k})^{2}\right)}{m}\right] \sqrt{m}(k)(28)\right.
\end{aligned}
$$

For convenience let us introduce the Dirac spinor /13,14/ instead of two-component spanor $2 / 2$

$$
\begin{gather*}
\psi=\left(\psi^{4}\right)-\left(x^{2} x^{2}\right) \tag{29}\\
\left.x^{2}=\left(-x^{2}\right)^{2}\right)^{2} x^{\prime}, \tag{30}
\end{gather*}
$$

and put

$$
\bar{\psi}=\psi^{+} V_{4} \quad V_{4}=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

For the states with other spins we can obtain the expressions for vertex functions In an analogous way.

We see that together with arbitrary form-factors depending on the dynamics of the process the vertices contain also kinematical form-factors which are fully determined by the symmetry properties. We shall show below that the dynamical form-factors $\left.f\left(\frac{p}{2}\right)_{2}^{2}, k\right)$ have usual analyticity properties and are crossing symmetrical. As to kinematical factors they satisfy the usual Low's substitution law (passing from the scattering channel to the annihilation channel it is sufficient to substitute s for t), but they cannot be analytically continued into complex plane t.

Finally, consider the elastic scattering of a singlet on a particle from the multiplet with $\nu=1 / 2$. For the process

$$
0+\frac{1}{2} \cdots \frac{1}{2}+0
$$

we have the following matrix element
where $\Lambda(s, t)$ is some invariant amplitude which is determined by the dynamics of the.
process and has usual analyticity properties. Here it is interesting to note that the physical amplitudes are not analytical on t in the Lehman ellipse 15 /.

Formula (32) shows that if π-meson is a singlet then in the scattering process of \mathbb{C}-mesons on nucleons the polarization would be equal to zero in contradiction with experimental data. Therefore, for the classification of \mathscr{T}-mesons it is necessary to use also an infinite multiple.

4. Local interaction and analifticity of the scattering amplitudes

Now we study the connection between the results obtained above and the possibility of constructing local interaction Lagrangian. For simplicity we consider the trilinear interaction between particles from the multiple with $\nu=0$ and some singlet.

In the $\lll>$-representation the interaction Lagrangian invariant under the $\operatorname{SL}(2, c)$ group is obtained from formula (21) if the dynamical form-factor is assumed to be constant. Then passing to the $<X_{\geqslant}$-representation we get immediately the interaction Lagrangian invariant under the given group. The part of Lagrangian corresponding to the interaction cf three particles with spin zero is:

$$
\begin{equation*}
\mathcal{L}_{\text {int }}(x)=f \cdot \varphi(x)\left\{\chi^{*}(x) \Gamma(\square) \chi(x)\right\} \tag{33}
\end{equation*}
$$

where

$$
\Gamma(\square)=\sum_{K=0}^{\infty} C_{K} \square^{k}
$$

$$
\square \equiv\left(\frac{\vec{\partial}}{\partial x_{p l}}+\frac{\vec{\partial}}{\partial x_{u}}\right)^{2}
$$

$$
C_{k}=\sum_{n=0}^{k} \sum_{\substack{a=0, b}}^{\infty}(-1)^{b+k}\binom{2 c}{n} \frac{(2 c-1)!\mid}{(2 a+1) \cdot 2^{k+c} m^{2 k} b!c!(k-n)!} \cdot \frac{\Gamma\left(a+\frac{3}{2}\right) \Gamma(1-2 b)}{\Gamma\left(a+\frac{3}{2}-b\right) \Gamma(1-2 b-k+1)}
$$

The interaction Lagrangian (33) contains an infinite number of derivatives which appear namely because of the requirement of symmetry. The reason of their appearance is the following. The elementary particles contained in each infinite SL($2, \mathrm{C}$) multiple are classified according to irreducible representations of the little group $S U(\Omega)_{2}$ To describe these particles within the framework of quantum field theory we must introduce an infinite number of Bargman-Wigner-spinors

Let X be some element of internal symmetry group S which does not depend on momentum \sim. Since particles with definite spins form canonical basis corresponding to the reduction (depending on \sim) $\mathrm{SL}(2, C) \Longrightarrow \mathrm{SU}(2) / 2$ the matrix element for transforma-
 depends on Ω
(for details seefio).
the field operator $\psi A_{1} A_{2} \cdots$

The interaction Lagrangian can be invariant under
transformation of this type only in the case when it contains an infinite number of devivatives. Otherwise speaking, the appearance of infinite number of derivatives in the Lagrangian in due to the fact that the non-compact symmetry group $\operatorname{SL}(2, C)$ is the group of non-local transformations of quantum fields describing infinite multiplets of the given group.

Further, studying the structure of s-matrix many authors introduced also unphysical basis corresponding to the reduction (independent of ℓ) $\mathrm{SL}(2, \mathrm{c}) \longrightarrow \mathrm{SU}(2)$ together with a physical baSis corresponding to the reduction (depending on $/ 2$) $\operatorname{SL}(2, \mathrm{c}) \longrightarrow \mathrm{SU}(2)$. Each basic vector of this unphysical basis is a linear combination of an infinite number of particle wave functions:
where $\mid \angle j \beta / p h$. and $|\eta j \dot{\mathcal{A}}\rangle_{\text {wigh. }}{ }^{\text {are physioal and unphysical states. In the }}$
physical state j and μc are spin and spin projection of the particle. Under X these states are transformed into:

$$
\begin{equation*}
X\left|म j \rho^{\mu}\right\rangle_{p h}=\sum_{j^{\prime \prime} \mu^{\prime}} X_{j \mu ; j^{\prime} \mu^{\prime}}(n) \mid \rho_{j} j^{\prime} \mu_{p h} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
X|\beta j \mu\rangle_{\text {unph. }}=\sum_{j^{\prime} \mathcal{\mu}^{\prime}} \bigcup_{j j \mu_{j} j^{\prime} \mu^{\prime}}\left|\rho_{j} j^{\prime} \mu^{\lambda}\right\rangle_{\text {umph }} \tag{40}
\end{equation*}
$$

The explicit expressions for X ifujf $\mathrm{q}^{(p)}$ can be found by using the method given in refs.

From the Fourier-components $\psi(\pm) A_{1} A_{2} \ldots(\beta)^{\text {we first }}$ piok out the creation and annibilation operators:
where $U^{A_{1}} A_{2} \cdots(p j \mu)$ and $V A_{1} A_{2} \cdots(p j \notin)$ are respectively positive frequency and negative frequency wave funotions of particies with spin j, spin projection μc, momentum μ,
and then we form the linear combinations of the type (38): and then we form the linear combinations of the type (38):

$$
\begin{align*}
& \widetilde{\alpha}_{j \mu}(p)=\sum_{d^{\prime} \mu^{\prime}} F_{j \mu, j \mu^{\prime}}^{*} \alpha_{j^{\prime} \mu^{\prime}}(\rho) \tag{43}\\
& \widetilde{\beta}_{j \mu}^{+}(p)=\sum_{j^{\prime} \mu^{\prime}} F_{j \mu, j \mu^{\prime}}^{*} \beta_{j^{\prime} \mu^{\prime}}^{+}(\beta) \tag{44}
\end{align*}
$$

Now we go fron these operators to "x" representation:

$$
\begin{equation*}
\tilde{\psi}_{j \mu^{\prime}}(x)=\frac{1}{(2 \pi)^{3 / 2}} \int\left[\tilde{\alpha}_{j \mu}(p) e^{i \mu x}+\tilde{\beta}_{j \mu}^{+}(p) e^{-i k x}\right] \delta\left(p^{2}+n^{2}\right) \theta\left(p^{0}\right) d^{4} p \tag{47}
\end{equation*}
$$

$$
\begin{align*}
& X \tilde{\beta}_{j \mu^{\prime}}^{+}(\beta)=\sum_{j^{\prime} \mu^{\prime}}{U_{j \mu_{j} j^{\prime} \mu^{\prime}}^{*}}_{\tilde{\beta}_{j^{\prime} \mu^{\prime}}^{+}}(p) \tag{45}
\end{align*}
$$

$$
\begin{align*}
& \alpha_{j \mu(}(p)=\bar{U}_{A_{1} \ldots A_{n j} \ldots B_{n j}}(n j \mu) \psi^{(+) A_{1} \ldots A_{n j}} \begin{array}{c}
B_{1} \ldots B_{n j}
\end{array}(p) \tag{41}
\end{align*}
$$

$\widetilde{W}^{0}(x)$ fora canonical basis corresponding to the reduction SL(2, C$) \sqsupseteq \mathrm{SU}(2)$ From them the polylinear invariant combinations oan be formed immediately, the Clebsh-Gordan coefficients contained in these combinations being the usual numerical coefficietts (independent both of $\boldsymbol{\sim}$ and x). This means that the symmetry is compatibl with the locality with respect to unphysical fields $\widetilde{Y}_{j \text { fe }}(x)$.

It is easy to show that these unphysical fieldsare related to the physical fields. $\psi \mathcal{A}_{1} A_{2} \cdots(x)$ describing particles with definite spins by means of the following 1ntegral (ion-1ocal) transformation:
$\sim^{\text {By substituting these expressions into the local interaction Lagrangian containing }}$ $\mathcal{U}^{(x)}$ explicitly and satisfying the requirements of symmetry we obtain a non-local interaction lagrangian. dinalogously, If we start from the intitial and final unphysical states $\left|/ / \rho^{\prime} \mu\right\rangle_{\text {unfl. }}$ defined by formula (38) then the symetry does not contradict the analyticity of corresponding unphysical amplitudes. The form-faotor f $\left.f\left(/_{4}^{2} /_{2}^{2}\right)^{2}\right)$ in formula (28) is an example of amplitude of this type. However, when te return to the real states $\mid / 2 j / \beta \beta^{\prime}$. because of the presence of the kinematical factors F $/ \mathcal{L}^{\prime} j_{j} / \mathcal{H}^{\prime}(\beta)$ in formula (38) there appear the kinematical singularities in the physical scattering amplitudes.

Therefore, the higher symmetry with infinite multiplets is incompatible with the usual local properties of quantum fields and also with the usual analyticity properties of the scattering amplitudes. The symmetry group represents a group of non-local transformations and the invariance under this group requires a peovitar non-locality of interaction.

We are indetted to N.N. Bogoliubov, Ya.A.Smorodinsky and A.N.Tavkhelidze for their interest in this work. Our thanks are due also to C.Fronsdal for sending us his preprint on the same problem.

REFERENCES:

1. Barut A.O., Budini P.and Fronsdal C., Preprint Trieste 1965.
2.Dothan Y., Gell-Mann M. and $\mathrm{Ne}^{\prime} \mathrm{e}$ man Y., Phys.Lett 17, 148 (1965).
3.M1ohel L., Phys.Rev. 137, B405 (1965).
4.Fronsdal C., Preprint Trieste IC-68, 1965.
5.Delbourgo R., Salam A. and Strathdee I., Proo. Rog. Soc. 289A, 177 (1965).
6.Ruhl W., Preprints CERN 1965-1966.
7.Salam. A. and Strathdee I., Preprint Trieste IC-5, 1966.
2. Bisiacchi G. and Fronsdal C., Preprint Mrieste , 1965.
9.Nguyen van Hieu, Yalta Lectures, 1966.
10.Nguyen van Hieu, Preprint IFA Bucharest, 1966; Prooeedings of the

International Symposium on Weak interaotion, Balaton villagos, 1966.
11. Fronsdal C., Preprint Trieste IC-10, 1966.
12. Dao vong Luo, Nguzen van Hieu, Preprint JINR P- 2886 (1966).
13. H. Umezawa, Quantum field theory, Ansterdam, 1956.
14.Nguyen van Hieu, Soviet Journal Yad.Fyzika, 2, 517 (1965).
15. H. Lehmann, Nuovo C1m. 10, 594 (1958).
16. Dao vong Duo, Ngujen van Hieu, Preprint JINR P-2777 (1966).

[^0]: 1) Since this basis is not relativistic invariant there is no sense to consider its transformation properties under the Lorentz transformation and therefore we need not introduce dotted indices.
