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‘Inti‘,_oduc'tio‘n
_In meson theory without account of the ‘electromagnetic  interaction the .Green
function kG(p") of a particle qf(mtays‘_t-, m  in the infrared region p? » m3 has the
form (x = pPm?-1)
‘ G(p’) ~ !+ const. s
(1.1)

2/ and .is .va~

Thls formu.la follows from the Kallen-Lel'unann representatlon/'
lid m alt orders m the coupling constant If the electromagnetic interaction is taken
into account and the particle is ‘charged then' the  infrared -asymptotics of .its Green
ﬁxnction be\c:émes much more complicated, A large number of papers has been de-
voted to investigation of this asymptotics, Various methods, namely, method of re -
normalization group/ 3/ . approxunate solution of the Schwinger functional equatxong 4
solutior; of the Dyson integral equations in the ladder. approximation 5/, y ‘method -
of functional integration 6 were used to show that. the first term in the asymptotic
exﬁansion of the Green function in the infrared region is’ )

14y ’ ) . .
G(p?) =(~x) , ~(1.2)

where. y s, generally spea.kmg, a senes in the fine structure constant a , in
which the first term of order o was obtamed W1th the aJd of the method of

renormalization group 1t has been shown that in y there 1s no term of the order
2 / 7/ )
a .

The problem is to obtain the exponent y In all orders in a and to find .
next terms in the expansion of the Green functlon in x , This problem was
recently considered by Muekhm/ 8/ with the a1d of the method of functional inte-
gratién/ of » but next terms in the expansion were estimated by means of perturbat-
" ion. theory. Finally, in ref.{ E_lo/ .it was shown -that the infrared fasymptotics of .the

" Green function in all orders - in the .coupling constants is of the form.
14y y
G(pH = (~x) +0(x")e +:const o (17-3)

where for the Feynman' gauge in all orders in e

;,;., : . : S :(1.4)

In the present paper we find an explicit form of the function O’(‘xy)tilvithout‘

any recourse to perturbation theory, We obtaifi the formula which like (‘1.'1) explicitly



following ' equality

contains all terms singular in the infrared region and thereby completely genera-

ltzes (1.1) to the case when the electromagnetic’ interaction is taken into account,

‘‘We consider “the Green function for a’particle of spin 0.and % and employ

S oy 142,10

the “Kallen- Lehmann representation’” e

of field operators in the soft photon momenta 7bta;.ned by t/hjez/low method
12

which for our purpose was generalized in' ref, » In"re it was indicated

‘that the ‘Low method generally speaking is not valid in higher orders in{e tor

the " matrix ' elements of Feal processes. The diagrams of such processes contéun’

at ‘least ‘two external lines corresponding to real charged parﬁcles.‘ The e:schange -

of soft photons between these'pa}ticles‘leads‘ to infrared divergences and makee -

the Low method irrelevant, Here we shall ceneider the matrix elements of fietd o
operators the diagrams of which contain 'only'che line correspendihg ‘t‘o""a char\-\
éed real” particle, These matrix elements ‘contain no irtfrare'd ‘divergehce\’an’(’i' the
Low ‘method .for them' is' valid in'all orders in ‘e .

p

2, Particle of Spin ‘Zero
Let us consider the Green function of a charged spinless particle which,

for deﬁmteness, we shall call meson. We ﬁrst consider the matrix element™

T, =<0|® |1,k l,..k >, __— . (24a)
where " @ is the Helsehberg Operator of the meson field at the orxgm, 1 and
m are the momentum and the mass of the meson, k! is the momentum of a
photon w1th polanzat.lon i‘ '. This matrix element cerresponds to the diagram

of Fig., 1. In ref./ 10/

mentum k= k

it  has been shown that the expansion of T, in the mo-
is”of the form ’ ' :

Tkt o) I o (22)

In a similar - way -it can be shown that ‘the next term in this expansion ls O0(k lak)

We shall find an explicit form of  0(1)  in (2.,2). For this' purpose we uee the
T (e-»k)—~eTn_l, N . (2_3)

.which is a generalization of the Ward identity, This equallly can be derived from

the relations obtained in ref./ 13/ It is not difficult to prove it directly . We notice

» ‘ L o ’ " ‘ "V’ 3 ’o »‘_.’0_.
x) Ags in x‘ef/1 / ‘E=c=1; ab=g"a b =a%b° ~3 b <k|k'>=Q2n). 2k°8(k -k )i,

it -di /(20) 20 (F ), =l F ().

§{=-1

and expansions of the matrix elements "’

that if a.photon line with momentum =k and pclarization ¢ is inserted into a line
correspondmg to a charged part.lcle or into a simple meson—photon vertex and ¢
is replaced by k , then the result is obtamed from the initial diagram by the
substitution .
‘ F(q)~e[F(q);-F(q+:k )

. (2 4)
for the internal charged line a.nd the vertex and. Ffq) +eF(q) for the external.
charged line, where .F(q). Is.the factor corresponding to the charged line or to
the vertex and q stands for the . momenta of the charged particle upon :which
the factor depends. Now we consxder an_arbitrary diagram.of T_, corresponding
to renormahzable mteractxons wlth all the counter— terms, insert tnto it a photon
with momentum & and polarization ¢ in all possible ways and replace € by
k . .:Then we get the:equality (2.3) for thxs diagram of T,.; and for the con- .
respondmg class of diagrams bf T, _», Summing over au the dxagra.ms of T -1
we get this equahty for’ the renormah.zed matmx elements (2.1), Note that the

equality (2.3) is wvalid for any charged partxcle mteractmg in a renormahzable way,

n

Next1 following Lou/ 11/ , we consuier the class of diagrams T of T in
n

which the photon with momentum k and the incoming meson can be separated ’

from the remaining part of the diagram 'if we cut one meson line (Flg.2 ) The

contribution of this class is"

T“)-An (i) 2k Y cl(x+k, £).

(255) .
Let us. consxder arblt.rary du'ect.lons of- € ., in . particular: such for which
ek £.0 . The vertex function I has the following general structure
I(r+k, 1 ) =(20+k) £ +kg . (e s)

where f and g are invariant funct.lons of (x+k) . F‘rom the equality (2 3)
(for n= 1 ) it follows that ‘

(2ek Y'kI(r+k,f)=e<0|@[r>=eZ, (2.7)

where Z corresponds to the external meson line with all corrections, For the

usual renormahzatlon procedure these corrections vanish, and Z2=1 , From edq.
(2.7) we get ; A
f=eZ..
' (2.8)

It is sufficient to take the function 3 into account: only at k=0 , ie, for

the case of real meson external lines. of the vertex 1 |, But in thxs case g=0.

Thus, within the accuracy we are interested in



A ) ez L (29)

In’ An;l‘(:;k) it is sufficient to take into account two terms in the expémsidh ink

ZA,_, (r+Xk)=(1 +5 ck VT, 2k Ao A (02, - (2.10)

I1c
where c=~lti T i=12%un-1.

Let ue consider the conftribution of the remaining diagrams Tf) . It is sufficient”
to take it into account. for t{=v0 . To find this contribution’ we use eq,:(2.3).

Inserting - the expansion oij:'/) (2.9, 10) and 'l( (k=-0)into eq. (2.3) we’ get

LS 4 d k d: B 3 =0) = T .
etavg ol w2k 2y A M(x) Z 1 1‘ ' (k=0)=e - "‘(2;11)
from VV‘thh 1t follows that . . e C .
T(a) e[E ceé_a_T ‘+2r(.‘_3.a‘_h l(x)Z Ie Lo (2, 12)

Addmg eqs. (2 9 ‘10) and (4.12) and remembermg the order “of the next term in

the expansxon we get the desu'able expan51on of 'l}l: in 'k

T=(A+EB )'r +o(klnk), (2.13)
‘where e . B I
S A = (-—%':(k—( B, --e( "' ck -—cc)_a_. (2.14)

Notlce that in thls proof it was ll’nplled that a mass A was:introduced into
the photon propagator, Otherwise the derivative (3/é r’) A, . () would not exist.
However, this derlvatlve does not enter the fmal result -which remains wvalid for

“/\ =0 . ‘The next term in the -expansion denoted”in eq, (2.13) by 0, for A0
would be of the order k- ..-, For A=0. it is of the order 'k fa'k »

‘- When deriving eq. (2.13) it was assumed that k= k, was much less than
all the remainihg momenta . Let now k n-1 be much smaller than all the other mo-

menta but k; and asrbefdre k,<<k__y . Then we can expand T__, " in eci.
(2.13) in k.,.; « We take into account two terms of this expansion, in_the terms

of the order - k;' ‘and only one-in the terms of the order k'; . Then we get

- an expahsion in k, and k _; all terms of which are symmetrical with respect

to - their pehnutation, except for the term

B e, e R OA. (29)
Hot/vever, this term is easily symmetrlzed/ 1 / . Using the condltlon k <k,
we ' replace the factor tk _, in the denominator of eq. (2.15) by r(k + ko 4.
’I‘hen we get the symmetrlca.l expressxon \
. (2.16)

2 .
B, =% (kyLf = Y-k LY,
1 r(k‘+'kl) rk, tk’

( Feynman gauge) and

. k°=(k 2+‘_:/\2) %

and the expansion in k_, k‘;__, becomes wvalid for anyk ,k, 4 much smaller than all

the‘rerﬁaining momenta, Continuing the expansion in the remaining photon momenta
we finally get

T, =(A) [1+% 3 (s, /A A ) +3 O(k” ta k)12 (2.17)
- I,4=1 f=-1

Now we can find the infrared asymptotics of the meson Green function G{p 3

employing its spectral representation/ 1.2/ which we. write in the form/ 10/

2y og(r®) de? . L
G(P ) =mr2;2—:—r_——10 + v (pz)l ‘ (2 18)

where a is rarbitrary close to m? and the function v(p? ) is continuous In the
neighbeurhood of n? , The spectral function g is a‘tempered distribution belong-
ing to the class §* . It is given by the sum
. +.
g(p®).=(27 V2= . 8(p. -0 )<0| @ [N><N @ [0 > . (2.19)
Lo N . :
and for p? sufficiently close to p? reduces to the sum over the states

[N>I= g ky ek >..-contalning a' meson and an arbitrary‘ number of soft photons, In

this case

(217) a(p -p, y=(27) Jdt = 1 (Sp[d¥) 3(p—r—E k, )=2(En) (2,20)
. . n=0 n! n. . = l' n .
where R means the summatlon over all four polarizations of a photonx)

g = e, ) T, - = *
S =(2m)Pfd 7 S L(fAK) S(p-r=S k)=l Jdx [d47 VTS L(fakd*y (2.21)
al S i 1 2t n pl n
In the ldst equality we have replaced the delta function of four- momentum - conser-
vation by its ‘Fourier mtegra.l.tnorder to factorize the contrlbutlon of each pho-

ton and to sum over n .

To avoid divergences in (2,19) in integrating over small momenta of inter- ‘
medlate photons . we ascribe to them a fictitious small mass A s e, we put
“,"We' shall tend X to zero earlier than p? to np? . '
. Inserting eq, (2.17) into eq. (2.19) we have

g(p? —z"" () (A)[1+s‘ (n /A A)+zo (k tak ) le: (2.22)
lj , N

Noting that )
(A% —(a? [1+3 (d'l/a‘)i-:E o(k k)1, (2.23)
RTINS | L g ) . . o
“where B ’ b
Ca u“;' Lidee ke T o
Tt e : o (2.24)

¥

we rewrite eq. {2.22) in the form

x)

n =~1 for time and 1 for space polarizations , X nE € == .



g=Z(g+ g  (2.25)
.=E( 7); (39) [l+E(B /aa)+20(k lnk)]» (2,26)‘
(2:27) .

grZ( 2y )n(az :Z(d,/a,)-
Let us cohslder the function g, . Sﬁmrﬂlng over. polarizations and chénglng the
notations of the photon momenta we represent eq.(2,26) in the fox'm

=E[(h)+(h) n(n—l)H t(h)n_,nO(Zn k)1, , .___(2.28)
where .
% 3 . 2 . . Ik, k
how—(eD_); H eh (2K k1),
Tk ut rk, r(k,+k )k : otk (2.29)
Inserting expression (2,21). into:. . - eq, (2.28)» and summing’ over .n we get-

’

: ’ .4", =, - ‘--) 4-1- N z ~* 1k +k) ey fkx L
g, = 4k L7 T r‘ dig e * By fdko@we" 1. (2,30)
whore ! ; I . .
. Vs BT o 1kx S '
F = fdk he“"‘ fdkh +fd Kh.(e'™ Te1)4:f dK he . - (2.31)
v .

' Here ‘the mtegral with upper (lower) lumt y' means the integral over the region
pk&yVe? (Pk>)'\/ ) A o
y =Vp7=n ‘(»2':?2)
At AsO
Y o= . . 1 2, 5. ryo
[dkh:yln_2L+:B; B=yl[l- faz[1-2"(1=(RD) 3]!(2.33)
P )te . ° ) - . pr . J .
(y is glven by the formula (1.4) ) . In the remaining terms in egs, (2.31, 30)

we may put A=0 . We denote

F=yth_2 + 3 +D, o (2.34)
Ae - : . : S

) y
S - =
D=yfny +fdkh (e =1) +f dihe'*™,
: oy

( 2,35)

‘ It is convenient to make further calculations in the coordinate system where 3 =0.
From the conservatlon of four-momentum in eq. (2. 21) it follows that in this sys-

‘tem, -in " fact, P&3 p - m?. Therefore a].l the terms in eq. (2.30) ( except for

-

exp (——lrx) ) can be expanded in 'f . After.this the integartion over : leads

nd . .. . d
to 8(x) and its derivatives, Integrating over x we can easily estimate each term

. x) 3 )
of this expanslon by replacing the variables . x°s x°/y.;: k »ky . It is not
difficult to see that expressions le (2 29) and B (2 33) give no contribution -
we are mterested in, We have

2 ] -syx +D ( . R
gx 2_1_(5 2_1..[d ‘[1 2 VB(x)+iV3(x)a A - (2.36)
+5(x)fdk0(2nk)e 1., »

-

where ‘all the quantities are taken at 7 =0 o Integrating over x we get

1,2 Y e s Co ey ; P
s (= ) [Rw (4R, -2R) +O(y ~flay) 1y (2.37)

where RE ;
R, -=-_.}.,.‘ [dx: exp {-—ziiy: +iy-8 bof (x5 : : (2.38)
LY . ©. L kx )
S =t y fi RO I PR O SRS (2.39)
F(x)=1; f(x)=ix [dkre“‘?‘ ; vfa(x)=,fdke“‘x Lo o (2,80),
0 . o » .
It not dxfflcult to show that
§=~:C +IT”— ta(x +i0), (2.41)

where €’ is the Euler constant/ 14/ and
-1

(x)—f (x)=1(x+10) . ) : (242)

We have therefore the mtegrals . R, which as it is shown by Grelfand and
Shuovj 15/ unambiguously determine in the class s* the Riesz d1stnbut10ns '

-cy+l>'— 1 Y v .
) dx =@ A._._-L H .
R =e 2”_£ =Ty b - (2.43)
-R, =R . (2.44)

In the last expression the subscript “+ 'may be omitted since itis intégrable'_
near y=0 in the usual sense for y  given by eq. (1 4) Thus !
Y -C
s Y. y-:.u__s_Lm(yzrny) I (2.45)
2m  Ae . (y) 2. B

x) Note that the integra.l over ¢ in eq. (2.30)¢ determines a function . of y which'’
is generally speakino a distribution near y=0 , Therefore this replacement is pos.
sible only: for.. y#0 . ’I‘he integrals after- this replacement: are defmed as the.
values of this dlstrlbut.lon at the regular point y=1 , This concerns the tenns
written down in eq. (2. 36)., The other te!‘ms are continuous at y=0" : b



Introducing - » : : o /11,16/

x=pimiol (2 46\) ~ _As It Is shown In refs, up to terms in eq. (3 1) lndependent of k.- the
B . s S vertex function (k) is equal to ™ - . ; .
and noting that y--_21_mx(1-‘h)+0(x ) we finally get C(k) =e? + [k,,]., o (33)
' k 247
2, 1 ( ) c—(x>i*[’~“ “—L" +o(x’tx)l. ( ) ‘ " where .’ ls the anomalous magnetlc moment’ of the proton. ‘Instead of the expres-
Let us consider the functlon g, (2.27). Summlng over: pola.rlzatxons we have.. -~ slon (3 2) we consider o ) i P o o ; i,
' +
7 =‘A“.'l (p) _z_l‘(k) o B (;.4) .
g2=~2(h)n_ln(-e /lk“). ) . . ,(2.48) where ARG T - =
- : e , ; o
Further calculations are performed in a similar way, We finally get : RN : L Pe=rak; M= P M =merk/m 40 (K ©(3.5)
ga= ( ) e-CY [1+0(x)]1. (2.49) ‘ : The dxfference between eqs. (3 2) and (3 4) does not contain k' . and we in-
“ i clude it into 5' ? | Since P (P +M )=M(P +M)  then . A,, 1 (P) In eq. (3. 4)ha.s
Thus the spectral functxon of the meson Green function (2.25) is ) f the . o' matrix stxuc as T Va.nd doés ot . contain P - Therefore. the ex
. 2 same. . ture <o tnet ) . 3 B * =
) ge(p?) = ( o ) 'CY-ﬂtr[l—(%+ Yy)x +0(x?fax )] (2.50) . . . ' pansion of 'A;., (P} In 'k _is given by eq. (2.10) with the replacement. T by ¥
: - . - n 2) .
Insertmg it into eq. (2 18) and integrating as the Rxecz distribution for . E“’_‘d ) ,z by 1), Inserlmgfnow:’ 15: and;:l( (k='0) ‘Into; eq.(2.3) we have
P fn? [15, 12/ we get the fQ].lowmg:asymptotxc expansxon of the meson . ez [(1+2 &k )5- 1+2"k i: . (‘)] P+Mku +’I(2)(s-k) eT | (36)
ne L)
Green function _ ) | 6 6" rk ' !
- : : Notl_ng that . : ,
G(p? =Z, 1 Cx 7 l1= (% +%y )x 1+ const . (2.51) . v PR - o G P :
) m - . ; : ) , 2k (P M) Tu = (LR 2m Y e e (3.2)
z, =2°(n /Ae) & T(1-y). (252) - we get . o o : |
» ) : ) - ’ ] S o Tf‘z),,-e'z (@) _‘—:'_+i'2t€_ 9 An.t (}t)+:2ce‘ai‘". P T R ‘ (3.8)'
‘Note. that at the point x=0 this function.should be considered as the Gel- . T R . ““‘Zm g1 ° re T hE
fand-Shilov  distribution (=2+10)"" /2%, 1 the lowest order perturbation . X ST co

. D »
Adding this expressions to = T, we obtam the fo].lowlng expanslon for . T, -

theory constant in (2.51) is equa.l to 1/2
T, =(a+ S B)T_, +Z T, Sur0(kfak), (3. 9)
3, Particle of Spin One Half e ’ ’ ‘ ‘

. : . B ’ where  a and B, are given by the formulas (2.24, 14) and
In just the same way we shall find now the infrared asymptotics of the I R S :

a [ - ~ v . .
Green function of a charged particle of spin 1/2 (Proton). ‘We consider the * 5 = '2_:11'(— {(r+m ) i‘—.[k releek el ‘ (3-10)
matrix element (2:1) where @ now . ‘stands. for the proton field and r and R . T, . . T
) : Continuing the expanslon in the remainmg photon momenta we " get
m  are the momentum and the mass of the proton; - ‘ ) 5 n
. : . = 1 ! [s} N
We write It in the form . . : i o . : : - - (a) [Sl+,_§‘f a /”z_; a a’:)z‘,l +|=21 (k ink )]" . (?.11)
5' Zu , - . ) . ’ (3.1) . We ‘consider now the proton Green function -

where u is the proton‘spinor and the constant Z as e&ller‘coﬁesponds to the ' 0 T e d('p)'= G NEh) +m Gg‘(pz) ; (3.12)

external proton lme xt.h all.
: p w. correctxons. The spectral representatxon for G (P) has the form of eq.(2 18)/1 2/

Eq. (2.3) is \m.hd in this case too. The contribution of the dxagrams of

c(p)-f _5&54_'_+v(p) T (314
Fig.2 now 1s g, ‘;+A+m vy e (32) o » Cat pz_tﬂ_lo i . ‘ )
. no el TR ( * . where T v ’ i
» x) d=ya; ly™,y2i=2g™. < » P s (%) +ms, (p?) =s(p) =;(217.)-E 8 (p~py)<0|®IN><N[P|0>. (3,14)

10 . : . . ' 11



Inserhng the expansion.(3,11) into eq. (3.14) and swnmmg over. the spin- states

of the intermediate proton with the aid of the formula ' = u § —itm we. obtaln ) 4

s(p) =2" £ (29), (a), l[1+z By s 0(k’lnk)](x+m)+ '
;g aia, 1 - (345)

+:F [8,(F+m )+ r‘+:xp )y° &, ,y']/al_‘l L

The‘fenns with p’ In this expression are éancelled and  we have

- Py - . ~ Noa A N an
- s(p) =Z¥{(p+m) g +E(Zn). (a?)n? ‘[_’kx +(k ‘i'(”'?‘ ye(r+m gk, )/2"‘“ (3.16)
where . g, - is given by the formula (2.26). Sl.m_u'ning\”over the photon polarizations
we. get : ' ' ST e R : ;
s(p) =»Z"[(i;'+’:mi)g'1 +‘:n;'g,].,s g o
S o (3.27)
’where" g, is given by the formula :(2.48). Thus, the considered case reduces to
the previous one: L L
3y =-Zzg, ; 5= Zn( g, + 8,)

F‘rom (2 47, 49) we get the. spectral functions of the proion Green function

Y -c r? e .
s, (o) = ¢ Xeflal;x +0(x%0 x) 14 (3.19)
, Ty s o
Li=—1-Y%y ; Ly=-%-%y. (3.20)
The inf’rared'a”s.ymptotié.s of this functiori is of the form
G, (p’)v=~2l%2(—x )y-!(1+le }+ const (3.21)

where . Z, is given by the férmula (2.52;). Instead 6f'>eqs;'3.12v, 21) we can

also. write

- = 1 2? o + p+m )(In —p )y+:cunst .
\ : Q(p) Z’(m—-p S me . Y ,4m m2 R i

(3.22)

The first two terms in this formula coincide with the result obtained by Milekhin -
by functional integration/ 8 o 8 :

.In conciusion we note that using method developed here we can find the

(3#8)’ J .’

infrared asymptot_ics of the vertex functions and the soattering matrix elements in
10,12/ . In particular, it turns out that the
elastlc scatter[ng of charged parucles at small’ angles is described ( if we neg-

all orders in the couphng constants/
lect a phase fac—tor) by the simplest one-photon- exchange diagram in all orders {

in" e . This means that the scattering of charged particles at small angles obeys

the Coulomb' law at ‘arbitrary high' energies,

12

.Re'ferences

+ GuKallen, - Helv. Phys. "Acta, 25 417 (1952)
H.Lehmann, Nuovo Cim.,, 11, 342 (1954).
C. lllpe6ep. Brenenne B penm‘msuc-rcxyxo EBAHTOBYIO0 TEOPHIO IO, HII, 1963, rn.17,8 2,

2. H,H. Boronw6os,-1.B, llupkos.- Beenenze B . Teopnio xaem'oaaam:!x nonef, I‘ocrexnauar. ‘
1957, § 48, 49, -

3. H.H.Boronw6os,- 1.B. lllnpxon. IAH CCCP 103, 208,391 (1935).
Momxorpadus 2, § 43,44,

4. B.3,Bnanx. [IAH CCCP, 104, 708 (1955).
5. A.A.A6puxocos, X3T®, 30, 98 (1856).
6. A.B.Counsmucxu, X3T®, 31, 324 (1958).
N.0.Conoswes. IAH CCCP, 110, 203 (1856).
8. T.A, Munexan, X3T®, 43, 1012 (1862).
9, E.C, dpanxun, [ucceprauns HT3¢ (1880).
10, JL.AA.Conosrer. X3T¢ (8, neqa'm)
1. RELow, Phys, Rev, 110, 974 (1958) o
12, J1.A. Conoewes,. [Ipenpuur OHHH,P51692. Nuc.l. Phys.. (in prir;t).
13. E.Kazes, Nuovo Cim, 13, 1226 (1959), ‘

14, H.C. Tpanwreiin, U.M, PbI)KHK. Ta6nunsl - HHTErpaloB,. CYMM,  PSAOB H nponaaeueaﬂﬂ.
duamarrua,, 1963, formulae 8.230 (2) and 3.721 (1),

15, H.M,Tenndann, I'.E, UWlunos, O6o6menne- d;ymumn : 2 ueﬂcrﬂuﬂ Hag - HEMH, ¢namarrua.,
1958 in particular, page 208,

16. C.M. Brnenwxuit, P.M,Prrnaun, X3To, 40, 818 (18861),

‘Received by Publishing Department -
: on January 26, 1965,

13






