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I. Introduction 

The spontaneous breakdown of symmetries of strong interactions has recei

ved some attention in recent time, Guided by the analogy with the theory of su

perconductivity and superfluidity, one assumes that the Lagrangean of strong inte-

ractions is exactly symmetric under some group (e.g. SU (3) ) however, the 

physical solution does r'Jot share the complete symmetry of the Lagrangean (and 

commutation relations). In this way the mass differences of hadrons could be ex

plained -one hopes- without introducing explicit symmetry breaking terms into the 

Lagrangean ( See e,g/ l/ ) . Another interesting proposition of the theory of sponta.-

neous symmetry breaking is the Goldstone theorem/ 2 / which - in analogy with the 

Hughenholz--Pines-theorem/ 
3

/ in the many- body-problem- predicts a singularity 

of the Green function at q ~ •· 0 (The latter is usually interpreted as a zero 

-mass particle arising in consequence of the breakdown of the original symmetry). 

In a local relativistic quantum field theory, however, the situation is much 

more complicated because of ultraviolet divergences. All the existing proofs of the 

Goldstone theorem (e.g/ 
2

•
4
/) implicitly assume that the quantities involved are 

finite - which is certainly not true without renormalization or the introduction of 

an artificial cut.- ofrf. The same criticism applies to the investigations of the 

breakdown of SU (3). 

The aim of the present note is a formal investigation of the questions raised 

above, without assuming any spec.ific dynamical model. We define certain functio

nais, which are essentially the generators of the Green functions and irreducible 

vertices respectively. By expanding the symmetry breaking solution around the sym

metric ("normal" ) one, we show that the irreducible vertices are renormalization 

invariant, provided the normal solution is ( Sect. 2). The next sections (Sect. 3- 5) 

are devoted to the study of the orthogonal symmetry group and su (3) , res-

pectively. Assuming the renormalizability of the theory in the sense defined above, 
we give a simple proof of the Goldstone theoremxxf. 

x Prof, N, Bogolubov even raised the following question: is it not possible 
that what we claim as a singularity of the Green function at q 2 •·0 , (when 
the external sources tend to zero) comes from the infinity of the wave function 
renormalization constant ? Thus the Green function possibly is not singular at 

q 
2 

• 0 but identically infinite, 

xx/ It appears that recently no paper can be written about degenerate va
cuum without giving an alternative proof of the Goldstone theorem. We just follow 
this habit, 
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What concerns SU (3) the usual self- consistency condition gives that the pre--

ferred direction in unitary spin space can be the third axis only. The renonnaU-
4 

zation procedure developed in sect. 2 is illustrated on the example of a A.¢ 

interaction. The generator of the irreducible vertices is calculated approximately 

by means of a generalized diagram technique. ( The same technique can be eas .. 

ly generalized to any other field theory). The approximate expressions we find 

satisfy Goldstone's theorem (sect. 6). We conclude the paper by discussing se

veral problems of the anomalous solutions in quantum field theory ( sect. 7). 

2. Definition of the Generating F'unctionals and Renorma!ization 

We define 

w e 1 
Z = · < T exp i fj

1 
(x) <I> 

1 
( X) d X > 0 

( 2.1) 

the generator of time ordered products for a Heisenberg field <1> 1 (x) (i •-1,2. •• ;:; n) 

with external source i 1 (x) • The index stands for some internal symmetry 

index to be specified in each special case. Then, of course, Z is the gene--

rater of the connected parts of the Green's functions. A further functional which 

will prove useful, is obtained by means of a contact transformation from Z : 

F = Z _, f. d-.: j
1 

(x) </>
1 

(x) , 

considered as the functional of 

rP I (X) e < T <I> I (X) exp i { j k (y) <11 k ( Y) d Y > O 

We can proceed further by defining: 

tz'. 
W'·• e •·< T expi[(j

1 
(x)<l1

1
(x)dx +: 

.sz 
.Sjl ( x) 

+:{1111 (x,y)(<l1 1 (x)-,</>
1

(x))(<l1
1

(:y)-,</>
1

(y))dxdy].>
0 

and 
S • Z'--· {j 1 (x) </J 1 (x)d X _, 

4 

( 2.2) 

( 2.3) 

( 2.4) 

,, 

-· {,hli (x,y)G11 (x,y)dzdy, · 
( 2.4) 

considered as a functional of </o
1 

and G
11 where G 11 is the connec-

ted part of the one-- particle Green function, and hlk is some other extel'-

nal source (the functionals we just defined, are analoga of well- known thermody-

namic functions, e.g. F the free energy~ S the entropy etc./ 51. Their 

usefulness in field theory has been pointed out by Jona- Lasinio/ 4 / ) • 

For the sake of completeness we list some relations (they are partly given 
in/ 4/ ) : 

.sz 
.S II (x) 

2 .s z 

.S J 1 (x) .S l k ( Y ) 

dF 

.S <PI ( x) 

2 
8 F 

aq,l (x)8<fo.(y) 

llS 

/l </J I (X) 

llS 

• </JI (X) 

= G11 (x,y) 

i I ( x) 

-I 

•-- Gli (x,y) 

j ( x) 
I 

ll G 
11 

( x, Y) 
- -·h lk ( x, y ) 

(2.5) 

The useful property of F and s is that in the physical limit 

( j 1 -+ 0 1 ' hlk -+ 

and/ or G11 

understood. 

0 ) they are stationary with respect to variations of .P
1 

• In what follows this limit (unless otherwise stated) is always 

We shall speak of a spontaneous breakdown of the symmetry of the first 
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and second kind, if in the limit j 1 + 0 h lk + 0 , ¢ 
1 

.(. 0 and if; 1 ~ 0 

but G
1

k (x,y) l 81• G(x,y) 

respectively. 

After this preparation, we can solve the renormalization problem as follows. 

In the case of a breakdown of the first kind, we expand F ( ¢ 1 ) around ¢ 1 •· 0 

(the "normal" solution) in a formal Volterra series: 

8F 
F(¢

1
). F(O) +: fdx¢ (x) [ l;p = 0 8 ¢

1 
(x) 1 

( 2.6) 
2 

+: 
8 F ] + •• ; 

ff' d X d y rp I (X) rp k ( y ) ( 8 rp l (X) 8 rp k ( y ) 41 ~a 
2! 

(summation over dummy indices understood). 

The coefficients of ¢
1 

(x) , • ¢
1 

(x) ¢" (y), • •;: 

are the irreducible n- point functions ( p -· functions) of the normal solution, 

which by assumption are renormalizable. 

The stationarity condition or self- consistency condition for F (serving 

to determine ¢ 1 ( x) ) then can be written as: 

8F ( l) 

P I (x) 

(2) 

+: f.dy ¢t(y)p
1
" (x,y) +: ·i-'1• 0, 

8¢ 1 (x) 

where 

(D) 

Pn .. o:S (x,y • ••• ;·, ~~:) " 
[ 8 F I' 0 

8¢
1 

(x) 8¢k(y) ••• 8<Py_ (z) '¢1 = 

If we perform a renormalization transformation transformation for the normal solu-
(D) •\iD \i ----

tion, p will be multiplied by a factor Z 2 where Z 2 is the 

wave function renormalization constant. 

Writing then 
(D) 

p z 
•\iD (D) 

PR 
K 

rp •· Z 2 </> R (cf>R,•pR 

are the renormalized 
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"1'\ 
1 

< 

' 

quantities), we obtain the self-consistent equations between renormalized quanti

ties. By the same taken, if the infinities of the p function can be removed by 

renormalization, we obtain an equation for ¢ in terms of finite quantities only. 

Similarly, the expression for 
·l 

G lk etc. will contain finite ( renorma-

lized) quantities even if we choose the symmetry breaking solution ( ¢ 
1 

.j.. 0 ) • 

The case of a breakdown of the second kind can be treated exactly in 

the same way. S should be expanded in powers of 
(0) 

of G lk ( x , •y ) - 8 lk G ( x , •y ) , where 8 lk 
(0) 

G (x,y ) 

is the complete Green's function corresponding to the normal solution. In what 

follows we shall work exclusively with these renormalized functionals, so the 

suffix R will be omitted. 

3·. Orthogonal Group, Goldstone Theorem 

We consider a self- interacting spinless field of n components. F is 

a functional of the only orthogonal invarlant, we can form of ¢
4 

(x) 

f (x,y) • ¢ 1 .(x) ¢ 1 (y) • ( 3.1) 

Assuming a symmetry breaking of the first kind, 

from 

¢, can be determined 

8F 
__u_ - 2f,-- ¢, (y)d y - 0. 
8¢

1 
(x) 8f(x,y) 

Because of translation invarlance 

cp I •· 0 

or f. 
8F 

dy 0 
8 f(x ,y ) 

The inverse Green's function is: 

.1 

G (x,y) •· 
lk 

¢ 1 •· const , so either 

(normal solution) 

( symmetry breaking solution). 

7 

( 3.2) 

( 3.3a) 

( 3.3b) 



2 ( _8_F___ 8 It 
8 f ( "• y) 

2 
8 F +2r/>1 ¢k.f, dudv). 

8f(x,u)8f(y,v) 

-I 

Defining the transversal and lo_1')gitudinal parts of G lk 

We find: 

·I ¢1 ¢k G -I ( x, y ) + 
Gilt (x-y) • ---;pr L 

<{>I c/Jt 
+: (81k -- -p-

·I 
G T ( x -• y ) 

2 

(¢ • <PI"'~'· 

SF 
.I -- 2 [ 

G (X - y ) 8 f ( x, y ) 

2 8 
2

F 
+: 2¢ r ----

a f (X ,u )l)f(y,v) L 

-I 

G T ( x - y ) •- 2 (n -1) 8 F 
8£(x,y) 

By observing that SF /IJf(x,y) depends on x- y 

left- hand side of ( 3.3b) is just the Fourier transform of 
-I 

by writing: 

( 3,4) 

du dv I•, 
( 3.5a) 

( 3.5b) 

only and hence the 

8 F I ·8 f at p .. 0 , 

theorem, ( The reader we obtain G T (p)!~-o •- 0 , which is Goldstone•·s 

will immediately recognise that our ,por>oof of~e Goldstone theorem is very si

milar to that given in ref/ 
4

/ ) • 

4, Unitary Symmetry Breakdown of the First Kind 

Consider an octet of spinless particles (e.g, the octet of pseudoscalar me

sons) interacting with a hypothetical octet of scalar particles, Assume that the 

vacuum expectation value of the scalar and pseudoscalar fields; 

S I (x) -> S I .f.· 0 , P 
1 

(x ) + 0 in the physical limit; F is a func-

tiona! of the following basic unitary invariants 

f, (x,y) -- sl (x) Sl(y). 

8 

li:,' 

1
-.:~J. __ !.."'' 
}. 

' 

t 
~:;:1 

f 2 (x, y , z ) • D lk f S 1 (x) S k (y) Sf (z), 

f
8 

(x,y) •- ~ (x) P 1 (y), 

f4 (x ,y,z) •- Dlkf PI (x) P k (y)Pr (z)' 
( 4,1) 

f 5 (X, y) • S I (X) pI ( y) 1 

f 6 (x,y,z) • D11tf S 1 (x)Sk(y)Pf (z), 

Jl £
1 

(x,y,z) •- D
1
kf p

1 
(x)Pk(y)Sf (z), 

f 8 (z,y,z,u )•· S1 (x)Sk (y) Dlk f Dfmn P., (u)P n (v). 

Here the external sources are different from zero (otherwise P 
1 

... 0 by as-

sumption), the indices k , ... run from 1 to 8, D1kt is the usual 

symmetric matrix. The first self- consistency condition reads: 

8F 

8 S 
1 

(z) 

8F 
•2[, S

1
(y)dy+ 

lif 1 (x,y) 
( 4.2) 

+: 3 f, IJ F D It f SIt (y) S t (:r) d y d z • 0 • 
lJ£2(:r,y,z) 

in order to write down the second self-consistency condition: 8F/lJP 1 (z) •0,-

one has to notice that because of parity conservation, F depends on f 4 , 

f I f 
6 

quadratically. Therefore if P1 (x) -+ 0 , the second self 

consistency condition reduces to a trivial identity 0 •- 0 • 

Construct again the inverse Green functions: 

2 
-I 

G lk (z - y) •-
8 F 

H-l(x-y) •- ~p (z)IJP (y) 
lk <J 1 k 

8
2

F , , 
8s 1 (x)Bsk (y) 

( the mixed derivatives vanish by parity conservation) • 

1,\ We find: 

lJF -1 2 
G (x -y ) • 8£ ( X. 'i lit I 

lJIIt + 

8 F 
0 11tf S t (z)dz +: 
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2 

+. 4 r 8 F 

8 ft(x ,x---------
S I (X 1 ) Sk (y1) d X 1 d y I + 

1)8fl(y, yl) 

2 
8 F 

+ 9 r x 
8 f 2 ( X , X I , X 2 ) 8 f 2 (Yo Y 

1 
o Y 

2 

xDtfm Se(x 1 )Sm(x 2 )Dknp s.(y1) S•(y 2 )dx 1 •• ,:dy2 + 

2 

+ 6 f 
8 F 

8f
1
(x,x

1
)8f

2 
(y,y

1
,y 

2
) 

x Sf (y 1 )Sm(y:)dx 1dy
1 

dy
2 

+:6 

2 
8 F 

f---------
8f2(x ,x 

1 
,x

2
) 8 f

1
(y,y 

1
) 

X S m ( X 
2

) Sk ( y I ) d X I d X 2 d y I • 

S 1 (xi)Dkfm 

Drfm Sf (x,) 

8F 
-1 ) - 2 --. 

H (x-y 8fa(x,y lk 8 tk + 

8F 
+ 2 (, D 11,f Sf (z)dz 

8f7 (x,y,z) 

X 

2 
8 F 

+:2(, Dtkr D""" Sm (x?Sn (y 1 )dx 1 dy 1 + 
8 f • .(x, X I ' Y • Y 1 ) 

2 
+ r. ___ 8_F ___ _ 

Sl (x 1 )Sk(yt)dxldyl 
8f 6 (x,x 1 )8f

6
(y,y

1
) 

2 

( 4.3) 

( 4.4) 

+ r 8 F ' S ( )D 8f (x x )8f (y ) I lll kfm Sf (yi)S (y.) xdxdy dy +· 
5 ' t 6 'y t'Y2 m • l 1 2 . 

2 

+ f 8 F 
8f. (y,y1 )8f

8
(x, X 1, ll 2 ) 

S k (y I ) D If m S f (x I) • S m (X Jdx 1 dx 2 dy I +. 

2 

+: (, 8 F Dtfm DkDq x 
8 f & (x, x

1 0 X 
2 

) /) f 
8 

(y 0 J I 0 y 
2 

) 

X S f (x I ) S m (X 2 ) S P (y 1 ) S q (y 2 ) d X I dx 2 dy I dy 2 • 

10 
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So far all our equations are covariant under unitary transformations, How-

ever, if G1k and H tk are to represent physical particles, they must be 

diagonal matrices in unitary space. If S 1 .;. 0 , eq. ( 4,2) can be satisfied 

together with the diagonality condition (with an appropriate choice of axes), only 

if S 1 ~ ... ~ s7 a. o, s8 - s " o . 

Then ( 4,2) goes over to 

r 8F 
sf ( x, y 

1 

~ 
d y ~ 3 Sf SF dydz 

Sf 2 (x,y,z) 

and ( 4,3) and ( 4.4) are simplified correspondingly, 

Now in eq. ( 4,3) all terms but the first two differ from zero only for 

i -· k a 8 Comparing with ( 4,2) , one finds 

-1 ·1 -1 -1 
Gu(paO)• G

55
(p•O). G

66
(p•·O)-G

77
(paO) •. O. 

which means that the mass of the " scalar K -meson" is zero, so we again 

find a kind of Goldstone theorem, 

What concerns the PS octet, the masses of the particles belonging to the 

same isotopic multiplet are equal, This, of course, does not necessarily mean 

that the mass splitting is described by a Gell- Mann- Okubo formula, If 

S F IS f 6 • SF /IJ f
6 

• 0 which excludes representations other than 
.1 

8 then 

the Fourier transform of H tk can be written in the form: 

-I 2 2 2 8 2 
Htk ( P ) " Slk ( P +:A (p )) +: S Dtk B (p ) • 

2 
The functions A. (p ) and B (p 2 ) can be written in the form of a 

dispersion integral, e.g, 

2 
A (p ) a 

( K ~) 2 a 
f.dK ~ 

1T 0 

An approximate Gell-l\IJann- Okubo formula for the masses results if we assume 

that 1°> A (p 
2

) , • B ( p 
2 

) are slowly varying functions of the masses involved 

in the intermediate states, and 2°) are slowly Vfirying functions of p 2 

-1 
in the neighbourhood of the root of H

1
k 
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5. Unitary Symmetry. Breakdown of the Second Kind 

As an example for a spontaneous breakdown of the second kind of syn>

metry, we consider a unitary triplet of fields, 

We proceed as before, assuming now that the vacuum expectation value 

of the fild vanishes, 
{3 

The Green function Ga can be decomposed into singulet and octet 

parts: {3 {3 (0) I (3 I 

G a •· a a G + . .\a G 

(a,{3 • 1.2.3). 
( 5J) 

The generating functional s depends on the invariants: 

(0) 

G (x,y) • 

I I 
g 

1 
(x,y,u, v) • G (:r,y) G (u, v ), , 

( 5,3) 

g
2
(x,y,a,v,w,z) • 

I k t 
•·D

1
kf G (x,y) G (u,v)G (w,z). 

The self- consistency condition now reads: 

as 
a G{Ol (x,y 

- 0 • 

( 5,3a) 

as 
~;> 

as 1 
2 r a < u, v > d u d v 

c5g
1
(x,y,.,v) 

k e 
G (u,v)G (w,z) x [, as 

a g:f(x,y,u ,v, w, •z) 
+ 3 Did ( 5,3b) 

xdudvdwdz • 0. 

Considerations, completely analogous to those of the previous section show 

that only I • 3,8 are allowed in eq. ( 5J). In order to extract further in-

formation from eq, ( 5,3b) we have to consider the externf\1 octet source 
(3 1 (3 y 

h a -· -y a a h y .!lf.witched on, ( The presence of the external source 

1.2 

furnishes the symmetry breaking term necessary for the calculation of symmetry 

breaking solution, cf, ref/ 
3

/ ~ 

The physically reasonable choice for the source is a function with constant 

"direction" in unitary space, i.e, 

(3 (3 y (3 1 (3 y 
h (x) -·..!.. aa h (x) • (a -·......-a a ay )h(x),• 

a 3 y a " 

where 8 ~ is a constant matrix and h (x) a scalar function, ( This choice, 

in a certain sense, corresponds to a minimal violation of the symmetry). Then, 

there certainly exist a solution for G ~ of the form: 

where 
I 

8 

(3 (3 (OJ I f3 I (I) 
Ga ·(x) •. a a G (x) +:.\a a G (x) ,. 

is a constant vector, Then eq, ( 5.3b) takes on the form 

(§.) 

2a 1 f,~ 
fj g I 

G dud v + 

k t as <8
-' <&., 

+:3D 1kf a a [,-- G G dudvdwdz 
a,2 

( 5.4) 

Therefore, again as in the previous section, the "vectors" a 
1 

and D lk e a k a e 
should be parallel in order to eq, ( 5,4) have a solution, This can be satisfied 

only if 

a
1 

-=· •• ~ ;•· a
7 

•. o, a 8 .j.. 0 • 

We obtain again the result that the spontaneous breaking of symmetry 

splits off the isodublet from the isosingulet in the representation 3. 

6, Example: SeJi... Coupled Scalar Field with Orthogonal 

Symmetry 

In order to illustrate, how the general procedure outlined in the previous 

sections works in concrete cases, we consider the well- known guinea- pig of 

field theory: a self- coupled scalar field with orthogonal symmetry. We write 

down the unrenormalized Lagrangian formally as follows: 

13 



:;1-+... ... ... :;1 ... 

L = *4>•1' <I>,,. -·*~to<l><l> -·\0.(<1><1>) -·i~, ( 6,1) 

with A >. 0 is the external source, <I> is a vector in the n dimen-

sional "isotopic" space, 

Our aim is the approximate calculation of the generating functional F and 

finding the possible values of < 4> 1 > • 

· 'I'o this end, let us observe that our formal expansion ( 2,6) in the limit 

j
1 

.. 0 admits a simple graphical interpretation. A glance at eq, ( 2,6) shows 

namely that F is the sum of the following diagrams ( fig. 1). 

.+ ''' r, 

Fig. 1, Diagrams contributing to F • 

where the "black boxes" mean irreducible · p -functions of the normal solution 

(in particular the first box the sum of vacuum diagrams), a "grounded" external 

line stands for the vacuum expectation value of the field operator, ( NB that no 

propagator is to be inserted between the " black box" and the " grounding" ) • 

Similarly, the functional derivatives of F can be obtained from the diag-

rams of fig, 1 by removing a corresponding number of "groundings" in all pos

sible ways. 

'I'herefore, lf we have any approximation technique to calculate the p -· 

functions of the normal solution; we can cal culate those of the symmetry breaking 

one as well. For the sake of simplicity, we chose a very primitive approximation 

in our model: 

1 We approximate the normal p -· functions by some simple terms of 

their perturbation series, and 

2° , We b-reak off the Volterra series of F after the first few terms. 

( For the Lagrangian ( 6,1) the p -functions with an odd number of extel'-

14 

nal lines, of course, vanish). We break off the Volterra series after the fourth 

order term, and choose the simplest nontrivial approximation for the self- energy 

.::md vertex parts. 'I'hen denoting < <1> 1 > = ¢ 1 the approximation we have chosen 

for oF/8¢ 1 
is shown on fig, 2, 

+ 

Fig, 2, 

+ + 
y T 

oF 
Approximate expression of --

8 x, 

In fig. 2 the two- point vertex corresponds to the inverse free propagator: 
2 2 (~t 0 -· k ) 8

1
k however, because of translation invariance only the k ~·O 

component contributes, in order to calculate the contribution of the self- energy 

diagram (the second diagram on fig, 2) we define the four- point vertex as the 

limit of a nonlocal one, by inserting the propagator of a fictious particle of mass 

" M and coupling constant i M A 

'The procedure is illustrated in fig. 3. 

0 ~ 
~ E.· 
,~-c-, 

Mr::x (Mt-k2.t1 Mt=1\' 

Fig. 3, Regularization of the four- point vertex. 

After having performed the calculation, we let M 
2 tend to infinity. ('!'his pro-

cedure is chosen just because it is convenient, the final, renormalized expres
sion should not depend on the regularization procedure chosen). 
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The calculation of the contribution of the diagr'l'l.m 3b is straightforward, We 
2 

find ( s ~ p ) 

ds'· 1 ~ 
s r . rr" 

lllk ( s) • (ITO +: -;;-M+f')2s'·2 ( s'-,s) 
X 

x [(s'-
2 

(M+Jl) 
2 K 

)(s'-,(&1-·~t) )1,)81k 

no is a subtraction constant), which for &1
2

/11-
2 >>: 1 gives 

( 1 As 
ntk (s) " no -· -- -- ) 8tk 16 !T 

We introduce renormalized quantities: 

•I 
1 A 

2 < 2 + n H 1 +: -16 ·-v Jl. •· JL 0 · o rr 

8 z 2 8tk 
GR (s)• ~ 

fk lL :~_18 u~ -~ s _, fl(s) 

Z 2 •(1+~~,-' 16 !T 

'' 

Leu us remark the following. We have chosen A > 0 because in the classi-

cal theory this gives a positive definite energy. We see now that in the quan

tized theory at least in our approximation, A > 0 is necessary, if we want 

to satisfy the condition 0 <;.. z 2 s:, 1. 

·Similarly, the foUl'- point function, apart from its tensor structure will be gi

ven by the expression: 

1 As .. ds'· c•'-,4,. 2 )K 
A +:a +:- -:v J , -r--

16 u 4u 2 ( s' -· s) 8 · s · 

Again, as usual, thE> subtraction constant a can be included into a multi-

plicative renormalization of the coupling constant, A .. Z 1 A • 

Hence, by introducing the renormalized vacuum expectatic"'' value: 

" X at •· z 2 X 1 and by noting that all the diagrams contribute to the 

equation symbolized by fig. 2, at the point 8 •. o we obtain the equation de-

termining X Rl 

8 F 2 

~ = X Rl (IJ. +:A R X X ) •· 0 
Rl Rk Rk 

.( 6,3) 

with -2 

,).R •· z 2 z I ,). 

Let us notice the remarkable fact that the equation we obtained in terms 

of the renormalized quantities is exactly the same as that obtained in the Her

tree- Fock approximation/ 2/ , Similarly, we obtain the same expressions for the 

propagators as well. Thus the higher order terms do not affect Goldstone's 

conclusion, in conforming with our general proof, 

We have, of course, to admit that our exposition of the calculation proce

dure was rather sketchy. The reader, familiar with renormalization theory will 
2 

notice immediately that we should introduce >. R II- into the self- ener-

gy part as well, we defined >. R in an unconventional way by subtracting at 

s •· 0 , etc, However, the same reader will immediately check that it is just 

the consequent remormalization procedure which leads to eq, ( 6.3) and the choi

ce of the normalization point can affect but the numerical value of >. R 

Let us add a final remark to the calculations of this section about the Gold

stone theorem. There exist several general proofs of j 2
•
4

/ at different levels, 

There were, however, two "votes" against i/ 
6

•
7

/; both based on concrete calcu

lations. This situation Is rather discomforting as neither of the general proofs 

presented so far can claim at complete rigorousity. We believe that our calcula

tion sheds some light on the problem, Both the work of Kamefuchi and Unezawh 
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and IV!arx and Kut/ 7 / get rid of the ultraviolet infinities by means of a cut- off, 

while we applied the familiar renormalization procedure, The latter does not vio

late nay of the principles of locfu quantum field theory, while a cut- qff procedu

re necessarily violates at least one of them, thereby in vii:>lating some premises 

of the Goldstone theorem, 

7. D scusslon 

Let us summarise what we have achieved, 

We outlined a formalism which seems to be flexible enough to treat both 

"normal" and "anomalous" solutions of field theory. We have shown further that 

the infinities of the symmetry breaking solution cause essentially no more ( but 

probably, no less) problem, than those of the normal one. 

Nevertheless, our proof of the symmetry breaking solution was based on a 

formal Volterra expansion around the normal one. It is quite possible that such 

an expansion diverges and then our "proof", of course, does not work, At pre-

sent, however, we have no other tool at hand to treat the problem, 
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Assuming that our steps are justified, Goldstone's results follow essential

ly from the stationarity condition of certain functionals and simple invariance 

arguments. Concerning the SU ( 3) symmetry, now - a - days - believed to 

govern strong interactions, we reach a nontrivial and beautiful conclusion, sell. 

that if the breakdown of SU ( 3) is spontaneous, the•n the prefer red direc

tion in unitary space is uniquely determined and astronishingly enough - the 

preferred direction is exactly what Nature seems to choose, 

What we cannot obtain in this way is the electromagnetic mass splitting. 

The breakdown of the first kind of SU (3) , discussed in sect, 4 

leads to the existence of massless, strongly interacting particles. Such objects, 

unless they are very weakly coupled to other particles, would lead e.g. to an 

apparent strong violation of strangeness conservation. On the other hand, if 

they were very weakly coupled, it seems rather difficult to understand the large 

mass splitting they· cause. Therefore we are inclined to believe that is broken 

spontaneously, it is a breakdown of the second kind, If we think in terms of a 

triplet model, a breakdown of the second kind together with a unitary invariant 

"bind.;.ng force" between the triplets leads naturally to the approximate- Gell-. 

Mann- Okubo mass formula, 

Convergent or not, our expansion ( 2,6) leads to a reasonable calculation 

procedure for anomalous solutions in field theory, as illustrated in sect, 6. The 

procedure can be easily generalized for more realistic models and symmetry 

breaking of the second kind as well, 

Last but not least, there are difficult questions: does Nature really choose 

the "anomalous" solution of field equations? If so, what is the physical meaning 

of the quantities entering the expressions? As to the first question, no answer 

can be given at present, Even if we supposed that the world could be described 

by a field theory, and supposed we can find several solutions of the field equa

tions - which is the "physical" one of the latter? Guided again by the analogy 

with the nonrelativistic many- body problem, one suspects that there must exist 

some sort of stability condition which selects the right solution. So far no such 

satisfactory condition is known to us, Concerning the second question, the ana

logy with the many- body problem seems to break down. If one considers an in

teracting Bose- gas, the vacuum expectation value of the field operator has a 

very simple meaning - it is the square root of the density of the condensate, 

However, in a relativistic field theory there is, in fact, no way to measure 

< <I> >. • (It does not enter explicitly in either of Green's functions), Further, 

taking the example of sect, 6 we see that the renormalized mass is connected 
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with the physical mass of the anomalous solution, but not identical with it. ( ln 

the Hartree- Fock approximation one can even show that the anomalous sofution 

is unstable unless ,.~ < 0 ), 

It is a pleasure for us to thank Profs. N.N, Bogolubov and G, Jone- Lasindo 

for many interesting discussions on the subject. 
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