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l , Introduction 

Vilenkin and Smorodinsk} 
1

/ have considered the problem of expanding 

functions ( scattering amplitudes) into sums and integrals over the eigenfunctions 

of the Laplace operator on a hyperboloid, These eigenfunctions form a basis for 

a representation of the proper homogeneous Lorentz group ( further just Lorentz 

group) • Four coordinate systems were choesn among these allowing the separation 

of variables in the 'f-aplace equation; the explicit form of the basis functions and 

formulas for direct and inverse expansions were found in these coordinates, 

Geometrically the considered coordinate systems are characterized by the fact, 

that they are axially symmetrical and have one centre ( i.e. all the coordinate SUl'

faces can be obtained by motions of direct lines, circles, horocycles and equidi&

tants), It has been shown ~ 2 / that these systems can be obtained group-theore

tically, considering certain subgroups of the Lorentz group and demanding that the 

basis functions of the representation should be eigenfunctions not only of the Lap

lacian in the Lobachevsky space, but also of the invariants of the corresponding 
subgroup~. 

In this paper we develop the group theoretical approach from a more general 

point of view. We find all (mutually not conjugated) continuous subgroups of the 

Lorentz group and their invariants. We prove the following statement: a coordinate 

syste{Il1allowing variable separation, corresponds to every nonequivalent mode of 

picking out subgroups of the Lorentz group, containing invariants. These exhaust 

just all coordinate systems having one geometrical centrex). The subgroup inva

riants together with the Laplace operator form a complete system of commuting ob

servables and their common eigenfunctions form the basis of a representation, If 

there is a group of one- dimensional space rotations among the picked out sub

groups, then we obtain the systems considered previous!) 1•2/. 

Further we consider a simpler example- the group of motions of a Euclidean 

plane- and show how coordinate systems with two centres ( elliptical type coordina

tes) can be approached, considering expressions quadratical in the infinitesimal 

operators, 'l'o throw some light on the physical meaning of these expressions, we 

show the connection of one of them with the Laplace- Lenz vector ( the additional 

integral of motion, conserved only in a Coulomb fiEJ.d/ 4 / ). 

x) 
Ali orthogonal coordinate systems, for which the variables separate in thf 

Laplace equation in spaces with constant curvature, were found by Olevs;:}3 • 
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II. Subgroups of the proper Lorentz group 

Further we denote the proper homogeneous Lorentz group L and the cor-

responding Lie algebra (infinitesimal algebra) - ~ , We shall also make use of th? 

infinitesimal group ring of L (the universal envelopping algebra). The generators 

of ~ corresponding to space and hyperbolic rotations, will be denoted by A1 and 

3 1 ( i • 1,2,3). We shall call elements of the centre of the infinitesimal group 

ring invariants/ 5 /. 

First of all we must enumerate all (mutually non- conjugated) continuous 

subgroups of the Lorentz group. To our knowledge this question has so far 

not been considered in the literature, so we shall look at it in some detl'li!, 

Two (continuous) subgroups and their algebras are conjugated it an inner 

automorphism exists transforming one into the other. A convenient method of 

investigating conjugation questions makPs use of the so- called adjoint representlt

ion. Dropping the details we put a six- dimensional vector 

c = ( ~ ) \vhere a = ( :~ ) , 
•a 

b n~) 
ba 

( 1) 

into correspondence with the element C = a
1 

A
1 

+ b
1 

B
1 

3). On the other hanC:: a 6 x 6 matrix 

( summation from 1 to 

( R-S) 1""= adj T = S R 

'

0 -s3 s 2 ) 
S = sa 0 -s 1 

-s
2 

s
1 

0 
(2) 

(

U -ra r 2 ) 
r3 0 -r 1 , 

-r
2 

r 
1 

0 
where R 

corresponds to every element T = r
1 

A, + s
1 

B
1 

• It is easy to prove that the relat-

ion l T, C 1] = C2 is equivalent to the relation C 
2 

= adj T C
1 

in the 

adjoint representation, 

It follows from the general theory ( e.g,l 6
/ ) that two elements C, C' 

1 
are 

conjugated, it and only it such an element 

the type ( 2) exists that 

C'=(exp~f)c 

T E \:' , i.e. such a matrix 5"" of 

(3) 

To obtain a more convenient criterion of conjugation, we form a three- dimen-

sional vector C = a:': i b corresponding to each six- dimensional vector c 

and a 3x3 matrix ~ = R +iS corresponding to T' of ( 2). It is easy to see that 

this correspondence is an isomorphism and that exp 1' 
3 x 3 matrix ( and any complex 3 x 3 matrix can be 

Thus we have two elements of ~ , C = a1 J\ + b
1 

B 
1 

4 

.. 

is a complex orthogonal 

written in this forfn ?/ ). 
and C'=a~·A1 +b~B 1 

·~· ., ___ _ 

~ 
l1n 

::.11. 

are conjugated if and only if a complex orthogonal matrix C:J exi~ 

(
a1 + ib1

) ('a;-+ ib;l 
a +ib =(') a'·+ib'· 

2 2 2 2 

a3 +ib 3 a;·+ib:
1
-

It is proved in Appendix I tha this s · tement implies the f 
criterion: 

:t 
The necessary and sufficient condition for two elements C 

to be conjugated is that 

s, a1

2 
- b~ = a;-2 --b~-2 s.=2a,b, =2a;-b;· 

t?xcept for the case o, = /)2 = f) when we obtain two classes: 

with a1 = b1 = 0 (i= 1,2,3) and a nontrivial one in which at least one 

h, is non- zero, 

l.Sing this criterion , we shall now enumerate an classes of 

subgroups of the Lorentz group. Each of these subgroups is conjo 

group , determined by one of the following algebras: 

1) One- parametrical subgroups 

a) Ca = cos a A
1 

+ sin a 3 
1 

0<a<1T 

b) C = A
1 

+ B 
2 

The first is a continuwn of classes, depending on one paran 

class ca is characterized by the value a ' where s, =cos2a 

The second is one class of conjugated algebras, for which we ha 

Of course, every one- parameter group has an invariant (equal to 

2) Two- parametrical subgroups. 
,1. 

It is well known that only two types of two- dimensional Lie c 

u.n nbelian one l K, L ] = 0 and a non-abelian l K, L J = K • Bot! 

contained in the Lorentz group. It can be simply verified, that eve1 

sional Lie algebra in :t is conjugated to one of the following: 

a) A
1 

, B
1 

b) A, + B2 • A 2 - 8 I 

c) A
1 

+ B
21

- B
3 

The first two nre abelian and isomorphous, but not conjugate< 

01 = 82 = IJ only for unity in a) but for every element of b). 

corresponding groups are isomorphous only locally: the first is the 

tt~<-lnslations on a cylinder, the seconJ on <::t Euclideun planE.~. 
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proper Lorcnlz group 

proper homogf:neous Lorentz group L and the cor

algebra) - ~ , We shall also make use of th? 

(the universal envelopping algebra). The generators 

and hyperbolic rotations, will be denoted by A1 and 

call elements of the centre of the infinitesimdl group 

all (mutually non- conjugated) continuous 

our knowledge this question has so far 

so we shall look at it in some detail. 

>S dnd their algebras are conjugated if an inner 

ing one into the other. A convenient method of 

rnakPs use of the so- called adjoint representat

six- dirnensional vector 

a= ( :~ ) , 
a a 

n~ ) 
ba 

( 1) b 

C·,aA+bB 
i t I f 

( summation from 1 to 

R = r 3 0 -r 1 , c -ra r 2
) S = sa 0 

3 c -s s
2

) -Q I (2) 
-r2 r 1 0 s2 st 

A
1 

+ s
1 

n, • It is easy to prove that the relat-

to the relation C 2 = adj T C 1 in the 

e.g/
6

/ ) that two elements C, C' 

un elcrnent T E \:' 1 i.e. such a tnatrix 

(3) 

are 

5" of 

criterion of conjugation, we form a three- dim en

to each six- dimensional vector c 

to T of ( 2). It is easy to see that 

that exp 1' is a complex orthogonal 

3 x 3 nK'ltrix can be written in this for/n 
7 f ) • 

elements of r, C = a
1 

J\ + b
1 

B 
1 t'ind C'~ a;·A1 + b; B

1 

4 

... 
r.:~~ 

ctre conjugated if and only if a complex orthogonal matrix tJ exists, satisfying 

(

a 1 + ib1 ) 

a
2 

+ I b
2 tJ 

a 3 + 'i b 3 

It is proved in Appendix 

criterion: 

a'· +ib"'-
2 2 

a'-+ ib' · a a 
( 4) (

'a;-+ ib;l 
I tha this s tement implies the following 

The necessary and sufficient condition for two elements C and c'. of 
!e to be conjugated is that 

2 2 ,2 ,2 
81 "' a1 - b 1 = a 1- - b 1· 8 

2 
= 2 a 

1 
b 

1 
~ 2 a;. b;. 

(5) 
•?Xcept for the case 8,=82=0 when we obtain two classes: a trivial one 

with a1 = b1 = 0 (i= 1,2,3) and a nontrivial one in which at least one 

b1 is non- zero. 
a 

I or (and) 

LSing this criterion , we shall now enumerate a]] classes of continuous 

subgroups of the Lorentz group. Each of these subgroups is conjugated to a sub

group , determined by one of the following c<lgebras: 

1) One- parametrical subgroups 

a) Ca = cos a A
1 
+ sin a B 

1 
O<a<rr 

b) C = A
1 

+ B 
2 

The first is a continuum Of classes, depending on one parameter a • Each 
class ca is characterized by the value a • where 8, =eos2a , 

The second is one class of conjugated algebras, for which we have 
a. = sin 2a 

li = 8 = () 
I 2 

Of course, every one- parameter group has an invariant (equal to its generatm·), 

2) Two- parametrical subgroups. 

It is well known that only two types of two- dimensioac>l Lie dh,ebras exist: 

u.n abelian one l K , L ] = 0 and a non- abelian l K , L J = K • Both types are 

contained in the Lorentz group. It can be simply verified, that every two- dim en-

sional Lie algebra in !e is conjugated to one of the following: 

a) A
1 

, B
1 

b) A1 + B
2 

, A 
2 

- B 
1 

c) A
1 

+ a
2
,- a

3 

·The first hvo nre abeJian and isornorphous, but not conjugated, since 

i\ = i'i2 = () only for unity in a) but for ev''ry element of b). l\1oreover, the 

corresponding groups are isomorphous only loci.llly: the first is the proup of 

b·c1nslations on a cylinder, the secon·J on a Euclidean plane. 
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The third algebra is non- abelian and we shall prove in Appendix II, that 

it has no invariant (naturally every element of an abelian algebra is an invariant). 

3) Three- parametrical subgroups. 

An infinite number of non- isomorphous three- dimensional real Lie algebras 

exists, but they can all be reduced to eight types/ 
8

/ • All of them, that are 

contained in 

a) 
b) 
q 

r , are conjugated to one of the following 

l A
1 

, '\] = •,,1 Ae 

[B
11

3
2

l=-11
8

, [11
31

B
1

1= B
2

, [B 2 ,A 31~ B 1 

D= /\
2
-3

1 
• Ca =cos a A

8
t sin a B

3 
OS a< rr 

A
1 

, 11
2 

A 
8 

Bt , 82 , A a 

A=A 1 +B
2

, 

l A, B I = 0 l B, Ca ] = cos a A - sin a B , l C a, II ] = cos a B + sin a II 

The first algebra corresponds to the three- dimensionul rotation group. Its 

only independent invariant is 

L2 2 2 2 
A +II + A 

1 2 3 ( 6) 

The algebra b) defines the three- dimensional Lorentz group with the invariant 

2 2 2 2 
II = B

1 
+ I3 

2 
- II 

3 ( 7) 

In c) we have a continuum of classes of a!gebrc~1s, It is proved in Appendix II 

that such an algebra has an invnriant only if a = 0 • In this case we obtain the 

group of motions of an Euclidean plane ( a horosphere) with the invariant 

2 2 2 
0 = ( A 

1
+ B

2 
) + ( 11 2 - 8 1 ) ( 8) 

4) Four- parametrical subgroups. 

All four- dimensional Lie alee bras ure classified in/ 
8

/ • Only one of them is 

contained in ~ 

II = II 
I 

lAB]=0 

[CD I= 0 

B = 3 
I 

[AC]=-D 

I AD I= C 

Such an algebra has no invariants 

c A + 3 
8 2 

D 

[SCI~-c 

[BD]=-D 

cf. Appendix II). 

A - I3 
2 3 

The Lorentz group, similarly as any Lie group of higher dimension than three, 

has no subgroup of index one/ 6/, i.e. no five- parametrical subgroup. 

We have exhausted all the subcllgebras of ~ and hence ull the continuous 

subgroups of the Lorentz group. We completely ignore the existence of discrete 

subgroups of L • the existence of which does not influence the Lie algebra. 
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III Subgroups of the Lorentz group and variat 

separation in the Laplace equation on a hype 

In this chapter we shall prove the statement formulated in 

In our case the group invariantx) is a differential operator (on < 

We construct complete sets of commuting operators out of the in 

Lorentz group and its subgroups, We find the common eigenfunct 

of operators (we shall say that these operators are diagonal in 

resentation) and show that just one coordinate system, in which 

eigenfunctions are separated ( i,e, can be written in the form .p • 

each 1/11 depends on just one variable), can be put into corre 

each set of commuting operators ( i,e, with each mode of pickin~ 

of the Lorentz group), By comparison with/ 3 / we see that we e; 

nate systems with no elliptical- type coordinate surfaces, 

Further we shall consider only subgroups having invariants 

the following graphsxx), A semicircle (hyperbola) corresponds t< 

groups ( the four- and three- dimensional Lorentz group and any 

group conjugated to B1 ) ; a square to a Euclidean group ( E, 
meter subgroup, conjugated to A

1 
+ 3

2 
) ; a circle to compact sui 

triangle to the group of motions of a cylinder ( A 
1 

, B
1 

). The gr. 

ing to the breaking up of L into subgroups 1 are shown on fif 

first (lowest) part of each figure illustrates the whole group L 

of its maximal subgroups ( taking only groups with invariants into 

third, one- dimensional subgroups. li3ing these graphs we can dire 

the eigenfunctions in the corresponding coordinate system and gh 

description of it, 

Let us prove our assertion by listing all pooc.sible sets of st 

1, The rotation ,c,/t-oup R 
3 

( fig,1). The set of operators A' 

and A 1 leads to the sphet'ical system S / 1 •2 / and the eigenf• 

x) In this paper we consider only r<•presenkltions in which the se• 

the Lorentz group L\ '""" A1 B1 equals zero iUentically, i.e. we restr 

spin zero particles. 

xx) A similar graphicul method illustrating the introduction of vari· 

orthogond.l coordinates for tlte n - dirn(·l1~5iotlLll rotation group, v 

N.Yu,Vilenkin, 
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rd is non- abelian <lnd ·we shall prove in Appendix II, that 

( naturctlly <'very element of an abelian algebra is an invariant). 

ic<J..l subgroups. 

be 

non- ison1orphous three- Uimensional real Lie algebras 

reduced to eight types/ 
8

/ • All of them, that are 

conjugated to one of the following 

L A, • \ l ~ 'tk¥ Ac 

[ s 1 ,B 2 l~- A
3

, [A 31 B 1 1~ 8
2

, [B 2 ,A 31~ 8 1 

I3 ..,.. A 
2

- 3 
1 

, C a :co cos a A 
3 

t- sin a B
3 

0 :::; a < 11 

B I ca l :::= cos a A - sin a B , I c a' A 1 :::= cos (L B + sin a A 

to the tht·ee- dimensional rotation group. Its 

is 

2 2 2 2 
L"A+A+A 

l 2 3 ( 6) 

three- dimensional Lorentz group with the invariant 

11 2~ !32+ 3 2_ A2 
I 2 3 ( 7) 

of cla.sses of algebras. It is proved in Appendix II 

only if a ~ 0 • In this case we obtain the 

Euclidean plane ( a horosphere) with the invariant 

,, 2 
0 "~ ( A 

1 
+ !3

2 
) + ( A

2
- 8

1 ( 8) 

subgroups. 

Lie algebras are classified in/ 
8

/ . Only one of them is 

B ~ 3 
I 

C ~A + B 
8 2 

D A - B 
2 3 

[ACI~-D lncl~-c 

I AD I~ C [BD!~-D 

invariants ( ct. Appendix II). 

group, similarly as any Lie group of higher dimension than three, 

index one/ 
6
/, i.e. no five- parametrical subgroup. 

all the subc1lgebras of ~ and hence all the continuous 

group. We completely ignore the existence of discrete 

the existence of which does not influ<3nce the Lie algebra. 

6 
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III Subgroups of the Lorentz group and variable 

separation in the Laplace equation on a hyperboloid 

In this chapter we shall prove the statement formulated in the introduction, 

In our case the group invariantx) is a differential operator (on a hyrerboloid). 

We construct complete sets of commuting operators out of the invariants of the 

Lorentz group and its subgroups. We find the common eigenfunctions of each set 

of operators (we shall say that these operators are diagonal in the given rep

resentation) and show that just one coordinate system, in which all the (common) 

eigenfunctions are separated (i.e. can be written in the form </1 ~ 1/1
1 

</1 

2 

1/J 
3 

where 

each !/11 depends on just one variable), can be put into correspondence with 

each set of commuting operators ( i.e, with each mode of picking out subgroups 

of the Lorentz group), By comparison with/ 3 / we see that we exhaust all coordi

nate systems with no elliptical- type coordinate surfaces, 

Further we shall consider only subgroups having invariants. We introduce 

the following graphsxx). A semicircle (hyperbola) corresponds to hyperbolic type 

groups ( the four- and three- dimensional Lorentz group and any one- dimensional 
group conjugated to 

8 1 ) ; a square to a Euclidean group ( E2 or a one- para-
meter subgroup, conjugated to A1 + B

2 
) ; a circle to compact subgroups and a 

triangle to the group of motions of a cylinder ( A 
1 

, 8
1 

), The graphs
1 
correspond-

ing to the breaking up of L into subgroups,are shown on figures 1-4, The 

first (lowest) part of each figure illustrates the whole group L , the second, one 

of its maximal subgroups (taking only groups with invariants into account), the 

third, one- dimensional subgroups. lSing these graphs we can directly write down 

the eigenfunctions in the corresponding coordinate system and give a geometrical 
description of it, 

Let us prove our assertion by listing .~11 possible sets of subgroups: 

( • 2 2 2 1. The rotation .croup R 3 fig,l), The set of operators A~ A
1

+ A
2

+ 

. /1,2/ ' . A 1 leads to the sphet'Ical system S and the eigenfunction 
and 

2 
A 

3 

x) In this paper we consider only rt'J)rescntutions in which th<:' second invariant of 

the Lorentz group ,\ '~ A1 8 1 equctls zero iuentically, i.e. we restrict ourselves to, 
spin zero pu.rticles. 

X:><) A similar graphical method illustrating the introduction of various types of 

ortho~~oncd coordinates for· tl H:' 
n - dirnl'nsion.::ll rot·1tivn group, V\ras used by 

N.Ya.Vilenkin, 
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1 
-(1HIJ 

V' 
0 

( a, 0 ,¢ ) ~ -- P ( ch a ) ~ 
prm V sha -li+lp 

1m¢ 
(cos e) e (9) 

2, 'The three- dimensional Lorentz group L 
3 

ally non- conjugated one- parametrical subgroups in 

( fig.2), 'There are three mutu

L 8 and their genEr::ttors are 

A , B 
1 

, B 2 - A • Diago'nalizing the invariant B
2 

+ B 
2 

- A 2 and one of 
8 3 I 2 8 

the mentioned generators, we obtain three coordinate systems, 'The first two have 

been considered in/ 1 •
2
/, the third is new and could be called "hyperbolic- trans

lational" - HT'. 'The eigenfunctions are: 

a) Hyperbolical system H As diagonal) 

0 (~~~) 
pqm cha 

lp m lmrp 
P (tha)P (chb)e 
-HI +lq -¥.! + Jq 

( 10) 

b) Lobachevsky system L B, diagonal) 

( a,b,c) = _1_ P
10 ( tha) _ 1_ P 

lq 

t/J ( thb) e1 ~ 0 ( 11) 
pq~ cha -Y.t +iq y'chb -IHifl 

c) HT'- system ( B2 -As diagonal) 

1 ip b/ 2 b lflx 
1/1 ( a,b,x) ~-- P (tha) e K1 (lte ) e 

PQIL cha ·Y.!+iq q 
(12) 

where K
11 

( z) is a MacDonald Function, 

3) 'The Euclidean group E2 ( fig.3), 

'The only two non- conjugated subgroups of E
2 

are determined by A 
8 

(rotations) or by A
1 

+ 3
2 

and A
2 

- 3
1 

(translations), Diagonalizing the 

invariant (:)
2 

= (A + B )
2 + (A - 3 )

2 
and the corresponding subgroup gene-

t 2 2 1 

rators, we obtain two coordinate systems (one of them is new). 

a) Horospherical systems 0 A 
3 

-diagonal) 

t/J ( a,r,¢) ~ e-•K. 
p K m IP 

•a imf/.> 
(K e ) J (K r) e 

m i 
( 13) 

where J m (x) is a Bessel function, 

.b) tbrospherical- translational system OT' ( A
1 

+ 3
2 

and A
2

- B
1 

diagonal) 

t/JPflll ( a,x,y) ~ e" Kip (J"fl2+ •·2 e•) elfLx +Wy ( 14) 

4) 'The cylinder subgroup ( fig,4,), The diagonality of 

C / 1 / in which 

n, A
1 

and gives 

the cylindrical system 

8 

' 

• 
' 

I ~-

where 

~ '"' ( a, b, ¢) ~ ei(Ta+m¢) 
m -m- l·l~t 

(shb) (ebb) • 

F(a,,B,y,z) 

m + l+ip -ir , m + 1, t h2 b 
2 

is the hypergeometrical series. 'The secon 

abelian subgroup ( A
1 

+ B
2

, A
2

- B
1 

) 

E and gives the OT' systems again. 
2 

is not maximal, since it 

We can abstract the following rules for the eigenfunctions fr 

considerations: 

Each end of the chain on fig, 1- 4 corresponds to an expon 

for a circle, otherwise continuous, 

Roughly speaking, a Legendre polynomial corresponds to ea 

circle to circle, various spherical functions to arrows from sem.r.

or semi- circles, MacDonald functions to arrows from semicircles t' 

Bessel functions to arrows from squares to circles and hypergeon 

arrows from semicircles to triangles. 

T'he rules for the coordinate systems are: 

A family of planes corresponds to each end of the chain: a 

common axis to a circle, a family of planes perpendicular to a gh 

semicircle and a family of planes, parallel to a given one corresr: 

A set of spheres, corresponds to a circle on the second pl 

hyperspheres to a semicircle, a set of horospheres to a square. 

A set of circular cylinders corresponds to an arrow from a 

the middle to a circle, a set of equidistant cylinders to an arrow 

to semicircle and a set of horospherical cylinders to an arrow frc 
~ 

square. T'he generalization of the graphical method to the n -dimE 

group is straight- forward, but further symbols will be necessary, 

'The group theoretical origin of the elliptical type coordinates 

ration,has not been considered, However, they can doubtlessly be 

more detailed study of the infinitesimal group ring of the proper I 

e.g. by investigating all mutually non conjugated p,:1irs of expressi< 

in the group generators. 'This question will be considered in a se1 

Here we shall discuss the analogous but considerably simpler ca: 

of motions of a Euclidean plane. 
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1/~Pm 
1 

( a, 0,¢ ) ~ V sh--;--
-d+l>J 
~\Hlp ( ch a ) ~ 

lm¢ 
(cos 0) e 

( 9) 

thre~~ dimensional Lorentz group L 
3 

one-- parametrical subgroups in 

( fig,2). There are three mutu

L3 and their gene-::ttors are 
, Diagonalizing the invariant B2 + B2 - A 2 

I 2 3 and one of 

coordinate systems, The first two have 

is new and could be called "hyperbolic- trans-

are: 

H A3 diagonal) 

1 
ch a 

lp m lmc/J 
P (tha) P (chb) e 
·Hi +lq ·IJ.I + 1 q 

system L B 1 diagonal) 

( a,b,c) = _1_ p 1
P 

cha -"'+lq 

lq 

( tha) _ 1_ P ( thb) e1 ~' 0 
v'chb -\Hill 

3 2 -A 
3 diagonal) 

lp b/ 2 b l(lx 
= _1_ p ( tha) e 1(

1 
(r< e ) e 

cha -~+tq q 

is a MacDonald Function, 

E2 ( fig,3 ). 

( 10) 

( 11) 

(12) 

non- conjugated subgroups of 
E2 are determined by A 

3 A + 3 and A - 3 
(translations), Diagonalizing the I 2 

B )
2 

+ ( A - 3 )
2 

2 2 I 

2 I 

and the corresponding subgroup gene-
coordinate systPms (one of them is new), 

A 3 -diagonal) 

-a lmrp 
(K e ) J m (K r ) e 

Bessel function, 

l,herical- translational system OT ( 
A

1 
+ 3

2 

=- e a Kip ( [/1~-::J ea) e lfJ.x + i!Jy 

subgroup ( fig,4,), The diagonality of 

C / 
1

/ in which 

il 

• 

( 13) 

and A2 - B
1 

diagonal) 

( 14) 

A1 and n, gives 

1/J ( a, b, ¢) = ei(Tatm¢) 
PT~ 

m •m- 1-1,. 
(shb) (chb) 

F ( Jll t1±jp+ir • m + 1tip -ir • m + 1 • t h2 b 

( 15) 

where F(a,f3,y,z) 
is the hypergeometrical series, The second two- dimensional 

abelian subgroup ( A
1 

± B
2

, 1\
2

-3
1

) 

E2 and gives the OT systems again, 
is not maximal, since it is contained in 

We can abstract the following rules for the eigenfunctions from the above 
considerations; 

Each end of the chain on fig, 1- 4 corresponds to an exponential, discrete 
for a circle, otherwise continuous, 

Roughly speaking, a Legendre polynomial corresponds to each arrow from 

circle to circle, various spherical functions to arrows from sem1- circles to circles 

or semi- circles, MacDonald functions to arrows from semicircles to squares, 

Bessel functions to arrows from squares to circles and hypergeometrical series to 
arrows from semicircles to triangles, 

The rules for the coordinate systems are: 

A family of planes corresponds to each end of the chain: a pencil with a 

common axis to a circle, a family of planes perpendicular to a given axis - to a 

semicircle and a family of planes, parallel to a given one corresponds to a square, 

A set of spheres, corresponds to a circle on the second place, a set of 

hyperspheres to a semicircle, a set of horospheres to a square, 

A set of circular cylinders corresponds to an arrow from a semi-- circle in 

the middle to a circle, a set of equidistant cylinders to an arrow from semicircle 

to semicircle and a set of horosphericaJ cylinders to an arrow from semicircle to 

• square, The generalization of the graphical method to the n -dimensional Lorentz 

group is straight- forward, but further symbols will be necessary, 

The group theoretical origin of the elliptical type coordinates, allowing sepa

ration, has not been consid<?red, However, they can doubtlessly be obtained by a 

more detailed study of the infinitesimal group ring of the proper Lorentz group, 

e,g, by investigating all mutually non conjugated pairs of expressions, quadratic 

in the group generators, This question will be considered in a separate paper, 

Here we shall discuss the analogous but considerably simpler case of the group 
of motions of a Euclidean plane, 
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N. Group of motions of a Euclidean plane and 

elliptical coordinate systems 

It is well- known/ 9 / , that the coordinates in the equation 

!\ .j; , = A .j; ( 16) 

where :\ is the two- dimensional laplace operator, can be separated in four types 

of coordinate systems - cartesian, polar, parabolic and <>lliptical, The group E
2 

of motions of a Euclidean plane is just the group of plane transformations, leav

ing equation ( 16) invarianr), Its Lie algebra is determined by 

l ~ , P
2 

I= o [P A I= p 
2 I 

2 
and the invariant of E

2 
is just ;\ = P 

1 
+ p2 

2 

[A P J = P 
I 2 ( 17) 

Let us prove the statement: A one - to- one correspondence can be estal::>-

lished between the set of all linear self- adjoint operators L, ) being homogeneous 

quadratica.l polynomials in the infinitesimetl operators of E 2 , and coordinRte sys-

terns K , in which the variables separate, The condition that the operator Lk 

should be diagonal on a system of functions sepa.rated in K , determines LK 

uniquely ( except for a linear combination with .'\ ) , Similarly as for the Lorentz 

group, operators which are invariants of subgroups of E
2 

(translations or rota.t-

ions) correspond to coordinate systems with one geometrical centre, As !: runs 

through all coordinate systems allowing separation, LK runs through all linear 

self- adjoint second order differential operators, commuting with .\ 

Note that: · 

1, A linear differential operator commutes with !\ if and only if it is a polyno-

rnial in A, P
1 p2 and is self- adjoint, if it is symmetrical in its (non- commut-

ing) variables, 

2, The coordinate systems K and K' are equivalent from the point of view 

of variable separating, if they are connected by 
1
a transformation belong~ng to E

2
• 

In such a case LK and LK • are conjugated, 1:-Ence we can restrict ourselves 

to mutually non- conjuga.ted operators, The proof of our statement will be given in 

two steps, Firstly let us enumerate all coordinates systems and the corresponding 

operators LK , 

~) Cartesian coordinates, The operator 
2 

P, is diagonal ( together with 

x) ln general E2 also contains inversions, but we shall not consider them hcere, 

However, they are important, since they are necessary to eliminate the remaining 

degeneracy in the parabolic and elliptical systems, 

;10 
I 

.. 
~. 

1 .. ·I ·' 
,· 

;'~ ,':' ', 

':;~~·. ~ ~ 
Sk1 
··~·( 
·;~~ lj 

!.' ,'. I. 

II 

',' .1' • "' ";! 
~,,!' 

t 
, 

I ~-

2 2 
p = !i -· p 

2 ' 
), where p p2 and are invariants of the tran 

group). 
2 

b) Polar coordinu.tes, The operator A is diagonal (where 

inv&riant of the one- dimensional rotation subgroup), 

c) Parabolic coordinates, 

x=Y,(.;2-l)2) 

The operator 

p AP2 +~A 

is diagonal, 

d) Elliptical cuordinates 

1 
.;2+ r? 

y 

2 
2 rJ 

l) -2 
(!,~ 

.; l) 

2 
"2 a ) 
'R 

X= t.; l) y = r J(Zf1)(1~ 

(where > n is the focus distance). 

The diagonal operator is 

~ 
2 

A 
3 

_c ( p2 
2 ' 2 

n2, 
I J 

1 I ( c2 1) • a2 "2 "'a 2 2 2 . ~ ·,- l) -+ •, (1-l)J~/'l).E_ -,;71--~ ·, ,, a.; 2 a 1 , a.; -a 

Thus a definite linear opet'D.torx) corresponds to each "separating 

system, We shall prove in Appendix III that these operators exhau 

rica! second order polynomials in the ge,nerators of 
2 . 

E2 , i.e. tt 
2 

polynomial is conjugated to one of ~ ( or equivalently P 1 P 2 A 

(or a combination of one of them with :\ ) , 

V. On the physical meaning of the diagonal 

• operators 

In chapter III we have constructed various complete sets of • 

operators from the invariants of the Lorentz group and its subgrou 

speaking, certt1in physical quantities, qucmturn numbers etc. should 

these sets, The connection between such invariants and relativisti 

momentum theory was considered in j 2 / , Cltlssical integrals of mo 

ing to the subgroup invariants were constructed and electromagneti 

discussed in which these integrals are conserved, We shall not gc 

questions here, 

x)Writing P and Ef explicitly in cartesian coordinates, it is easy 

they, similarly as P
1

2 
and A, are self-adjoint, 
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Group of motions of a Euclidecm plane and 

elliptical coordinate systems 

that the coordinates in the equation 

,\ ~~, = A lj1 ( 16) 

dimensional Lc~pluce operator, co.n be separated in four types 

- cartesian, polar, parabolic and QlJiptical, The group E 
2 

plane is just the group of plane transformations, leav

invariantx), Its Lie algebra is determined by 

I= o [P A I~ p 
2 t 

[A P I~ P 
t 2 ( 17) 

2 2 
of E

2 
is just ,\ ~ P 

1 
+ P

2 

the statement: A one - to- one correspondence can be estab-

set of all linca.r self- udjoint operators L, ) being homogeneous 

in tho infinitesim<~l operators of E
2 1 and coordinate sys

variables separate, The condition that the operator L, 

system of functi(nls sepd.rated in K , deh=_:.-rrnines LK 

Ll linear cornbincttion with :\ ) . Si1nilarly as for the Lorentz 

are invariants of subgroups of E
2 

(translations or rotat-

coordinate systems with one geometrical centre, As I: runs 

systc:-ms allo1.ving separation, LK runs through all linear 

operators, commuting with \ 

operator commutes with 1\ if and only if it is a polyno

and is self- udjoint1 if it is symmetrical in its (non- commut-

K and K' are equivalent from the point of view 

if they are connected by a transformation belong~ng to ; E 
2 

• 

and LK, ctre conjugated. I-Ence we can restrict ourselves 

·ugated operators, The proof of our statement will be given in 

let us enumerate all coordinates systems and the corresponding 

coordinates, The operator 
2 

P 1 is diagonal ( together with 

also contains inversions, but we shall not consider them here, 

important, since they are necessary to eliminate the remaining 

pu.rubolic dnd C?lliptical systems, 

10 

• 

l<.·r_ .•. , 

·, ' 
'l! 

,1,:/:·. •It 
,. li 
i~! 
!i ~· 

r 

I, 

l 
,i 

2 2 
p ~ i\ -· p 

2 t 
), where p p2 E.:tncl are invariants of the translation sub-

group). 
2 

b) Polar coordin<.1tes, The operator A is diagonal (where A is the 

invariant of the one- dimensional rotation subgroup), 

c) Parabolic coordinates, 

X ~ Y, ( ,;2 _ 7J2) 

The operator 

p 1 
.;2 + T/2 

AP
2 

+';,A 

is diagonal, 

d) Elliptical coordinates 

y 

2 
2 rJ 

7J i!!; 2 

c 7J 

2 
"2 a l 
'o a 7J 2 

x ~ v.; YJ y ~ r T<T~(1-_:_~ 

(where > n is the focus distance), 

The diagonal operutor is 

( 18) 

"1' 
A2 -~I !'2 n2\ 

I; 
• a• • a • •a • a 1 J(,c -1)ry•-+·"O-YJ'J~,;"'- -~'1-l 

~ , a.;2 , aYJ a.; -aYJ (19) 3 2 ' 

Thus a definite linear opet·atorx) corresponds to each "separating" coordinate 

system. We shall prove in, Appendix III that these operators exhaustt all symmet-

rica! second order polynomials in the 
2 

ge.:>erators of E 
2 

, i.e, 

polynomial is conjugated to one of ~ (or equivalently P 
1 

P 
2 

(or a combination of one of them with ,\ ) , 

V, On the physical meuning of the diagonal 
operators 

II> 

that any such 
2 

A , p , fy 

In chapter III we have constructed various complete sets of commuting 

operators from the invariants of the Lorentz group and its subgroups. Loosely 

speaking, certain physical quantities, qucmtum numbers etc. should correspond to 

these sets, The connection between such invariants and relativistic angular 

momentum theory was considered in / 
2

/ , Classical integrals of motion correspond

ing to the subgroup invariants were constructed and electromagnetic fields were 

discussed in which these integrals are conserved, We shall not go into these 

questions here, 

x)Writing P and Ef explicitly in cartesian coordinates, it is easy to see that 

they, similarly as P1

2 
and A, are self-adjoint, 
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I 

To clarify the physical meaning of the quadratic polynomials introduced in 

N, let us consider the parabolic coordinates ( it is of course evident that ~ ,P, and 

A correspond to linear and angular momentum respectively), Besides 

P=AP+PA"L 
2 2 I 

we introduce L=AP+PA 
2 I I 

, It is easy to see that 

lL
1
,L

2
]=4l\A [ L.. A I=- L I [A,L

1
1=-L

2 (20) 

Considering a definite representation of the E 2 group, we can put ,".= E = const 

(energy of two-dimensional free motion), Putting R = ~-'- i = 1,2 ; R 3 =-A 

we see that Rk realize the algebra of the thre.;_ d~~~Lonal rotation group for 

E < 0 and of the three- dimensional Lorentz group for E > 0 , Thus wE· obtain a 

new "higher" symmetry, not contained in E 2 , It is well known that the Coulomb 

interaction conserves this symmetry, 1n the Coulomb field this leads , in classical 

mechanics, to the conservation of a typical integral of motion ( the Laplace- Lenz 

vector) and to closed (elliptical) orbits, in quantum mechanics-to the additional 

degeneracy of the (two- dimensional) "hydrogen atom". 

Note that the situation is quite analogous in the three- dimensional case, The 

components of the Laplace- Lenz vector 

~ =~(pxM-~Ixp)+m 
.. 

a__!_ 

' 

(where p and M are the linear and angular momenta, m 

the constant in the Coulomb potential) together with those of M 

(21) 

the mass and a 

form the gene-

raters of the four- dimensional rotation group ( or Lorentz group). The consequenc-

. . d" . ( /10/ ) es of th1s symmetry are analogous to those 1n the ~o- 1menswnal case cf, , 

The diagonality of one of the components of L ( a = 0 ) leads to the sepa-

ration of variables in the equation i\ </! = A </! 

dean Laplace operator) in parabolic coordinates, 

i\- three- dimensional EucH-

The authors thank Ja..A,Smorodinsky, who initiated this investigation, for his 

constant interest, encouragement and helpful disdussions, 

APPENDIX I. Proof of the conjugation criterion, 

Let C
1 

= a
1
,k Ak + h

1
,kBk , i = 1,2 ( here and further we sum from 1 to 

3 over repeated indices) be two elements of ~ , We introduce the functions 

ll, ( c ) = ·~ - b: 0 2 ( c ) = 2 •• b k (22) 

We consider three possibilities: 

1, At least one of the expressions o, ( c l ) ' a. ( c l ) differs from zero, 

Then C 
2 

is conjugated to C 1 if and only if 

12 

.. 
,:.. 

ll
1 

(C,l= o 1 ( c 2 ) a.< c, l a.< c 2 l 

2,a
1
(C

1
)=a

2
(C 1)=0 but C1,iO, Then C,is conjugated to C2 if it satisfie: 

c. ,i 0 

3, C 1 " 0 -conjugated only to itself, 

Proof: a) Necessity, We have shown that two elements C1 and c 2 are 

complex orthogonal matrix tl exists, for which 

B 'C, = 'C2 

where 

c y2 - •• + b2 

(

Yt ') _ (" t + btl 
Y

3 
a 8 + b 3 

T 
It fallows from tJ tJ = E that the transformation ( 2 4) conserves tl 

2 2 2 >; +y
2

+y
3

=1i
1
(C)+i8

2
(C)=Il(C) 

i.e. both its real and imaginary part, 

b) Sufficiency, Let c be given by ( 25) and li ( c ) ,i (' • 

c = 0 ~~ where 
_ (va) 
c l = \ ~ 

is then satisfied for any orthogonal matrix of the type 

(~ :J 
tJ = _l'a.. vo 

Ys 

=78 
Thus any vector c with a( c ),10 is conjugated to the vee 

must chose the half-plane in which we take the square root), 

N::>w let 8( c)= 0 , but ~ ,b 0 , i.e. at least one Y, ,I 

r,f o y, 
']he matrix 

c·:·". ,,,._, ) i 1 1 I 0 

2 yf 2 ~~ 

~ = 
Yz ( y~- I ) i 

y 2 (y, + l,l _ 1~ 
-------y-- , 

2 Yt 2 Y1 Y 1 

y 3 ( y~- 1 ) i Ys ( Y ~+ ~ l i ...22._ 
--Tr-~·--, 2 y

1 
Yt 

13 



physical meaning of the quadratic polynomials introdu<.::ed in 

the parabolic coordinates ( it is of course evident that ~ •": and 

to linear and angular momentum respectively), Besides 

we introduce L=AP+PA 
2 I I 

, It is easy to see that 

[ L2, A I c- L I [A,L 1 1~-L 2 ( 20) 

representation of the E 2 group, we can put <'\= E = const 

free motion), Putting R = ~-'- i = 1,2 ; R 3 =-A 

th th 
I d'NE1 . . 

the algebra of e ree- unens10nal rotation group for 

for E > 0 , Thus we· obtain a 

E 2 , It is well known that the Coulomb 

Coulomb field this leads, in classical 

a typical integral of motion (the Laplace- Lenz 

(elliptical) orbits, in quantum mechanics-to the additional 

( two- dimensional) "hydrogen atom" , 

situation is quite analogous in the three- dimensional case, The 

vector 

L Y,(pxM-Mxp)+m 
-+ 

a...!-

' ( 21) 

are the linear and angular momenta, m .. the mass and a 

potential) together with those of M form the gene-

group (or Lorentz group), 'The consequenc

analogous to those in the n::;o- dimensional case ( ct) 10f ) • 
one of the components of L ( a = 0 ) leads to the sepa-

,A, !/; =A!/; i\- three- dimensional Eucli-

) in parabolic coordinates, 

thank Ja,A,Smorodinsky, who initiated this investigation, for: his 

encouragement and helpful discussions, 

I. Proof of the conjugation criterion, 

+ b1,kBk , i = 1,2 ( here and further we sum from 1 to 

ices) be two elements of f , We introduce the functions 

)=a"-b2 
k k li 

2 
( C ) = 2 ak b k (22) 

possibilities: 

the expressions li1 ( C I ) , ll 2 ( C 1 ) differs from zero, 

to C 1 if and only if 

12 

• 

ll, ( c ,) = o, ( c 2) /) 2 ( C I) 32(C2) (23) 

2, 3
1
(C1)=32(C 1 )='0 but C1,10 • Then S,is conjugated to C2 if it satisfies ( 23) and also 

c. ,I 0 

3, C 1 = 0 - conjugated only to itself, 

Proof: a) Necessity, We have shown that two elements C1 and C 
2 
are conjugated if a 

complex orthogonal matrix tl exists, for which 

(j c 1 = c2 (24) 

where 

c 

(

Y
1 

')- (a 1 
+ i bt) y2- a2+tb2 

Y
8 

a
8

+ib 3 

(25) 

T 
It fallows from tl tJ = E that the transformation ( 24) conserves the "length" 

2 2 2 
Y, + y 2 + Y 

3 
= /) t ( C ) + i 0

2 
( C ) = 0 ( C ) 

i.e. both its real and imaginary part, 

b) Sufficiency. Let c be given by ( 25) and 3 ( C ) ,I fl , The 

c " 0 c, c,=(~a) where 

is then satisfied for any orthogonal matrix of the type 

tl 

Thus any vector 

( 

Yt 

v; 
vo 
Ya 

=JS 
c with 

~J. 
3( c ),10 is conjugated to the vector 

must chose the half-plane in which we take the square root), 

NJw let o( c l= o , but 

Y
1
f f! )". 

']he matrix 

0 

(

y,(y,
2
+1) 

2 2 • 
Yt 

y2 ( y~- 1 ) --2-y;-r-. 
y. ( y~- 1 ) -Tr,-.--. 

~ ,k () 

Y
1 

( y: -· 1 ) 

~· 
Y2 ( Y~ + 1 ) 

2 • 
Y, 

Ya ( Y f+ 
27( 
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, i.e. at least one Y1 ,I 0 

-1 O Ys) 
Y, 

Y2 
Yt 

(26) 

relation 

(27) 

(28) 

Ct ( we 

(say 

(29) 



is orthogonal and satisfies the relation 

; 2 =(- ~ t (30) c = tJ c2 with 

Thus all 0 ( c ) = 0 c "(l with are conjugated to c. 

APPEN)!X II, Subgroups of the Lorentz group with no invariants, 

a) A real Lie algebra A has an invariant if and only if its complex extari-

sion II* has one, This condition is evidenly necessary, since A C A* and 

the condition [ f, e, J = 0 implies [ f, i e, I · = 0 , Let us prove that it is sufficient, 

Let f be an invariant of A* i.e. l f, ek I~ 0 for e, E. A* , lt follows that 

[ f, e,] = [ f, ~I~ 0 Hence f + f if an invariant and f + f E A • 

b) Let us prove the following lemma: 

Let A be a Lie algebra (possibly complex) with the generators eo ' .•. ' en 

satisfying 

l ek ' er l. = 0 for k,iQ,1=IO 

ek , e o I ~ ,.\ k e k for I< ,1 0 (31) 

The algebra 

mt , ••• , m n 

A has an invariant, if and only if non negative integer numbers 

not all equal to zero, exist such that 

~ ,\k m k = 
( 32) 

We shall need the lemma only for n = 1, 2, Let us prove it for n = 2 

( the proof for gE neral is analogous), We exclude the trivial case A1 = ... ·=A.= 0. 

Any element of the universal algebra over A can be uniquely written as 

where P, 
1 

ko ( x 

We have 

l f, 

f = I Pkt k 2 ( eo) 
kl • k 2 

is a polynomial, 

:I·=~ < P <ul 
! kl k 2 - p kt k 2 

kt 
e t 

k 2 
e 2 

( eo -f. t s ) ) 

and an analogous formula for f, e; l . 

[ f ' eo I 
,, 

=- p k k ( eo) ( A 1 k t + A2 k 2) 
1 2 

k I e, 

k 1 +·s k 2 
e t e2 

k 2 
e2 

(33) 

(34) 

(35) 

Let us prove relations (34), ( 35). It follows from the linearity of the commutators, 
ko kl k2 

f = e0 e 1 e2 • lt is easy to verify that we can limit ourselves to the case 

by induction that 

e, e
0 

= ( e
0 

+ r Ak ) ek 
(36) 
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Really ek e0 = e0 ek + •\ ek 

e~ e
0 

=ek(e: 1 e
0

J.=e, (e
0

+·(r-1)\l\
1 =(e0ek+\ek+(r-1)\e~)i~

1=(e0+r\) 
Thus. we obtain e

0
0 e~ 1 e~2 e

0
=e:;' e~t(e0 +k2 A~e;2=(e0 +k 1 \+k 2 A 2 J";,o • 

which proves ( 35). The relation e~ e ~ = ( e 0 + s A 1 )' e 0" p 

ajs;o be verified by induction. 

Now Jet f = ~ Pk k (e0 ) e~ 1 e:• be an invariant, We I 
1 2 

=IP (e )(Ak +Ak )l 1 e• 2and hence Pk k = 0 if k 1 A 1 + k 2 
kt k 2 0 1 1 2 2 1 2 1 2 k + 1 k 

Furtl')er we nave 0 =[f ,e 1 I~:£(Pk ,!e.) -Pk k (e 0-A1 )e/ e 2 2) 
1 2 1 2 

A
1 

,1 (1 ( and similarly for A2 ,1 0 ) all the polynomials Pk 
1 

constants, Since A
1 

and A2 cannot be zero simultaneously, 

depend on 

k I 'k2 

e
0 

• Thus .!'
1
t e~2 is an invariant if A1 k 1 + A2k2= 0 

exist, the algebra has no invariants. This proves 

c) Let us consider those algebras of chapter II, for which v 

that they have no invariants. Algebra 2b) satisfies the conditions 

with n= l,A=l , Since kA = U cannot be satisfied by any k > 

has no invariants. 

Algebras 3c) can be complexly extended, written as 

[11'.-n'i~o, LA',-C'-J=(cosa+i sin a) A'; LB'C'-1~(-coso 

and they satisfy the conditions of the lemma, We have 0 = k1 A 1+ k, 

+ ( k 
1 

- k2 ) cos a • This can be satisfied only for a= 0 and he. 

of the type 3c) only E2 has an invariant. Algebra 4 ~ The cond 

and [ D B I ~ D imply [ c" , l3 I ~ n C" , l D" , B I ~ n D" Let us w 

invariant as 

We obtain 

P .e "n 
nomial in 

[B,E]=-E 

since m
1 

i 

= ")' 0 

•J \r 
( A, B ) Ck Dr 

• e 
0 = [ f, B ] = ~ Pk C ( A, l3 ) ( k + C ) C D and we 

d 
implies I< = C = fl • lt follows that the invariant 

A and 3~ • Put E = C + i D • We have [A l3 ] =f) 

• It follows from the lemma that the algebra A,E\E I 

m = 0 
2 

cannot be satisfied by real m1 , m2 Sti 

function of only A and B be an invariant of the whole group. 

APPEI\DlX lll, Symmetrical quo.dratic polynomials in the gen 

the group E2 

We shall consider non commutative polynomials of the type 

2 2 
f = a II + b 

1 
( II P

1 
+ P

1 
II ) + b2 ( A P2 + P2 A ) + c 

1 
P1 + 2 c2 P1 P2 + 
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the relation 

;
2 =r-n ~ (30) 

with tJ c2 

15 ( C ) = 0 are conjugated to c
2 

Subgroups of the Lorentz group with no ·invariants. 

algebra A has an invariant if and only if its complex extan-

This condition is evidenly necessary, since A c A* and 

= 0 implies [ f, i ek I · = 0 , Let us prove that it is sufficient, 

A* i,e, l f ~ ek I= 0 for ekE: A* , It foll~ws that 

Hence f + f if an invariant and f + f E A • 

following lemma: 

(possibly complex) with the generators eo , ··- , en 

•r 1. = o for k;oiQ,C=/0 

ek for lc ;oi 0 ( 31) 

an invariant, if and only if non negative integer numbers 

equal to zero, exist such that 

~Akmk=O 
(32) 

lemma only for n = 1,2, Let us prove it for n = 2 

i'' analogous). We exclude the trivial case A 
1 

= ... = An= 0 • 

•~, .. ~~~~• algebra over A can be uniquely written as 

f = l: pk k ( eo) 
kt • k 2 t 2 

polynomial, 

kt 
e t 

k 2 
e 2 

' ( p ('/,) 
- kl k2 - P k

1 
k 

2 
( •o -A 1 s ) ) 

for l f, e 2 J • 

, e
0 

l o ~ p k k ( eo) ( At k t + A2 k 2) 
t 2 

k' e, 

kt+ !"' k2 
e t e2 

k 2 
e 2 

(33) 

(34) 

( 35) 

It follows from the linearity of the commutators, 
ko kt k2 

to the cuse f = e0 e 1 e2 • It is easy to verify 

ck eo e + r A ) e 
0 k k 

(36) 
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Really ek eo = eo ek + \ ek 

) = e ( e + (r-l)A) e 1 = ( e0 ek+Akek+(r-1)Ake") e'' 1=(e + rA) e' k = 1,2 e~ e0 = e k ( e: 
1 

e 0 

'lhus. we obtain 
kro kk ·~k o kk 

e
0
° .e~ 1 e~2 e

0 
= e:;o e~t ( e0 + k2 A~ e;2= ( e

0 
+k

1 
A,+k

2
A

2 
) .J;,o d<

1
t e~2 

which proves (35). The relation e; e~ =(e
0

+s A
1
)' e

0
" proving (34) can 

also be verified by induction. 

Now let f = ~ P k k ( e 0 ) e ~ 1 e: 2 

' 2 
be an invariant. We have 0 = l f, e

0 
I = 

= l: P (e )(A k +A k ) e" 1 ek 2 and hence 
kt k 2 0 l 1 2 2 t 2 pk 1 k 2 = 0 if k' A '+ k 2 A 2 ,; 0 

Further we have 0 = [ f , e 
1 

I = ~ ( Pk 
1 

k + 1 k 
k (eo) - Pk k ( • 0-A,) et' e 2

2 ) and hence for 
2 1 2 

A1 ;oi 0 ( and similarly for A
2

;oi 0 ) all the polynomials Pk k must be 
' 2 constants, Since A, and A2 cannot be zero simultaneously, f does not 

depef1d on 

k t • k2 

•o Thus .!'
1
t e~2 is an invariant if A1 k 1 + A2 k 2 = 0 • If no such 

exist, the algebra has no invariants, This proves the lemma, 

c) Let us consider those algebras of chapter II, for which we have asserted, 

that they have no invariants, Algebra 2b) satisfies the conditions of the lemma 

with n= 1,-\:1 , Since kA = U cannot be satisfied by any k > 0 the algebra 

has no invariants. 

Algebras 3;:::) can be complexly extended, written as 

l A'.- 3' l = 0, l A',. C'-J = (cos a+ i sin a) A'.- l 8'<':'-J = (-cos a+ i sin a) B'-

and they satisfy the conditions of the lemma, We have 0=k
1

A
1
+k

2
A,=i(k

1
+ k.Jsina + 

+ ( k 1 - k 2 ) cos a • This can be satisfied only for a= 0 and hence of all groups 

of the type 3c) only E2 has an invariant, Algebra 4~ The conditions l C B I= C 

and [ D B I = D imply l c" , B I = n C" , l D" , B I = n D" Let us write the possible 

invariant as 

= ~ p 
•. r kf 

( A, B ) C k Df 
(37) 

We obtain 0 = [ f, B J = ~ Pkf ( A, 3 ) ( k + P ) Ck D p 
d 

and we see, that 

pkf ;oi () implies k = r = 0 • It follows that th'\ invariant must be a poly-

nomial in A and 3 • Put E = C + i D • We have l A B ] = fJ , ! A, E ] = i E 

[B,E]=-E • It follows from the lemma that the algebra A,~E has no invariant, 

since m1 i - m
2 

= 0 cannot be satisfied by reo.! m
1 

, m
2 

• Still less can a 

function of only A and B be an invariant of the whole group. 

APPENDIX III, Symmetrical quudratic polynomials in the generators of 

the group E
2 

We shall consider non commutative polynotnials of the type 

2 2 2 
f = a A + b 

1 
( A P

1 
+ P

1 
A ) + b2 ( A P

2 
+ P

2 
A ) + c 

1 
P

1 
+ 2 c

2 
P

1 
P

2 
+ c 

3 
P 

2 
( 38) 
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We call two polynomials f 1 and f 2 equivalent if f 2 =A f 
1 

+ '' h where 

,\ ,i 0 and 1'. = P1

2 
+ P; As mentioned in chapter N, equivalent polynomials define 

the same coordinate system, Let us denote: 

A (f)= a 
2 2 

B(f) =b
1 

+b
2 

-a(c
1
+:c

8
) 

C (f)= ( c - c ) 
2 

+ 4 c
2 

I 8 2 
2 2 

D (f )=b
1

c
3
-2b

1 
b

2 
c

2
+b

2
c

1
-a 

2 

( c t c s- c2 ) 

(39) 

Every polynomial is equivalent to one of the following: 

a) Let A (f),( 0 
3 (f) 

~=---· 
2 A2 (f) 

Put ,\ A(c). 

We obtain an equivalent polynomial with 

A (f 
2

) = 1 , 3 (!
2 

) = 0 
-~ -3/2 

t'J)LetA(f)=O, B(f),(O. PutA=[B(f)], i•=-D(f)[IJ(f)j, 
( 40) 

We obtain an equivalent polynomial with 

A ( f 2 ) = 0 , B (f
2
)=1, D(f

2
)=0 ( 41) 

y 

Put 

Let A (f)= !3( f)= 0 (which implies also D ( 0= 0 ) <md C(f)f,O 

,\=leu> r~ . ·~ ~ =- 2vcnJ 

A( f2 ) = B ( f 
2

) = D ( f2 ) = 0 

F'or the equivalent polynomial we have 

C(f
2 

)=1 c t + cs = r ( 42) 

We shall not consider the trivial class of polynomials equivalent to 0, Polynomials 

satisfying (40), (41), or (42) will be called normal (every polynomicl[ is equiva

lent to one of the normal ones), Now we shall classify equivalent polynomials 

with respect to conjugacy (the operator i\ is conjugated only to itself and hence 

conjugation does not violate equivalence), We nqw prove: 

The necessary condition for two classes of equivalent polynomials I f 1 I 
and £2 1 to be conjugated is that both must belong to the same type a I {3) 
or y J , This condition is also sufficient for classes p) and y) ; for the class 
a) a further condition must be fulfilled: 

e'u, >=e'er.> vvnere 

2 2 2 

1
4 

( f ) = 4[ bt b 2- a c2 I· + [ bt - b ~ -a( c ,- c~_l_ 
• a 

Proof, 1) Necessity, Any internal automorphism in E
2 

parameters x, y, ¢ and the relations 

16 

• 

(43) 

is determined by three 

A ·• A +X P, + y p2 ' P
1

-+ <.'Os ¢ P
1 

+sin (,') p2 , P
2

-+- sin <j;P
1
+ cos tP P

2 

Putting ( 44) into ( 38) we see that goes over into the conjugal 

f' with the coefficients 

a ~a 

b; · = ax+ b
1 

cos ¢ - b 2 sin ¢ 

b;·=ay +b
1

sin¢ +b 2 cos¢ 

, 2 "' ) 2 c
1

· =ax+ 2x ( b
1 

cos¢ -b2 sin" + c 1 cos ¢ - 2 c 
2 

cos ¢ sin c/J + c 3 sin 
2 

¢ 

c; = axy + x 

c'·=ay
2
+2y a 

( b
1 

sin</> + b
2 

cos</>)+ Y ( b
1 

cos</> - b 2 sin '(J) + l c 1 - c 3) cos¢ sit 

(b sin</> +b cos<(>)+·c sin
2

</> +2c 2 cos ¢sin</> +c 3 cos
2

¢ 
I 2 I 

The invariance of a implies that conjugation conserves the 
2 2 2 

a=a'~O we have b; 2 +b;·=b
1 

+b 2 and the type ( {:J) is conserve 

a= b = b = 0 we have C (f') = C (f) and the type y) i~ 
I 2 4 

It can also be directly verified that 1 ( f ) is invariant with resp 

jugation. 

2) Sufficiency, We shall prove that any polynomial £ is cc 

certain " canonical" polynomial, which we choose in the following f 

considered types: 

Type ""' 
Ee= A2 +..t(P2 

- p 2 ) (various r;::. 0 imply mutually nc 
/ I 2 

Type (3) p = A p2 + p2 A 

Type y) P, p 2 

F'or the type a) we have 
~ 

1
4

= 4 ( b b -c) 
2 

+ l ( b 2 
- c ) - C b 

2 
- c l I 

2 

I 2 2 t t 2 a 
=4[(b

1
b

2
-c

2
) 

1) Let e ,.: 0 , Putting 

cos 2 9 = ~ 
2 sin 2</> = _z_ ( c -b b 

( C I - b1 ) , p 2 I 2 

we see that an automorphism with the parameters 

with a general polynomial £ satisfying ( 40). 
2 

2) Let e =I) I i.e. bl b.= c •• b,= c, 

The general of this type can be written as 

2 

f = ( A + b
1 

P
1 

+ b2 P2 ) 
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f 1 and f 2 equivalent if f 
2 

~ .\ f 
1 

+ " ll where 

P; As mentioned in chapter IV, equivalent polynomials define 

Let us denote: 

2 2 
b

1 
+b

2 
-a(c

1
tc

8
) 

2 2 
( c

1 
- c 

3
) + 4 c

2 
2 2 2 

b
1

c
3
-2b

1 
b

2 
c

2
+b

2
c

1
-a (c

1 
c

8
-c

2 

( 39) 

is equivalent to one of the following: 

A (f) ;I 0 1 
A(£). 

3 (f) 
ll ~ 2A2 (f). 

Put .\ 

polynomial with 

= 1, 3 (12 ) ~ () 

0. 
·10 • 8/2 

Put.\~[B(f)], 1' ~-D(f)[3(f)J, ( 40) 

polynomial with 

A(f 2 )~fl, B (f 2 )~1, D(f 2 )~fl ( 41) 

ll( f)~ f) (which implies also D (f)~ 0 ) •"lnd C(f);ifl 
U=-~ 

2\TCTO 

(f 2 ) = D (f
2 

) = 0 

For the equivalent polynomial we have 

cu.)= 1 c t + ca = f\ ( 42) 

the trivial class of polynomials equivalent to 0. Polynomials 

( 42) will be called normal (every polynomial is equiva

ones). Now we shall classify equivalent polynomials 

( U·1e operator /\ 
is conjugated only to itself and hence 

violate equivalence). We now prove: 

condition foe two classes of equivalent polynomials 

conjugated is that both must belong to the same type 
I f I l 

a J {J) 
is cJ.lso sufficient for classes 

must be fulfilled: 
p) and y) ; for the class 

\'\.There 

2 
2 2 

~-c~_Lb_t__.::_b ~- a(c ,-call 
4 --------~ 

a 

Any internul a.utornorphisrn jn 

and the re?latlons 

Hi 

.. 

( 43) 

E2 is determined by three 

A ·• A +X P, + y p2 • P
1

-+ cos¢ P
1 

+sin(/) P
2

, P
2 

-+- sin ¢ P
1 
+ cos t/1 P

2 
( 14) 

Puttin_e ( 44) into ( 38) we see that goes over into the conjugated polynomial 

f' with the coefficients 

a' c::: a 

b;-=ax+b
1

cos¢ -b
2

sin¢ 

b;-~ay+b 1 sin¢+b 2 cos¢ (45) 
, 2 2 2 

c
1

· =ax+ 2x ( b
1 

cos¢ - b
2 

sin¢ ) + c
1 

cos ¢ -2 c
2 

cos¢ sin</> + c
3 

sin ¢ 

c; =axy +x (b
1
sin¢ tb

2 
cos¢)+y(b

1 
cos</> -b

2
sin¢)+(c

1
-c

3
) cos¢ sin¢tc

2
cos2¢ 

c'·=a/+2y (b sin¢ +b COS\~)t·c sin 2 ~\ t2c 2 cos ¢sin¢+ c 3 cos
2
¢. a t 2 t 

The invariance of a implies that conju_~ation conserves the type a) • For 
2 2 2 

a= a'= 0 we have b;" + b;- ~ b 
1 

+ b2 and the type ( () ) is conserved, For 

a= b = b = fl we have C (f)= C (f) and the type y) is also conserved. 
I 2 4 

It can also be directly verified that r (f) is invariant with respect to con-

jugation., 

2) Sufficiency, We shall prove that any polynomial is conjugated to a 

certain " canonical" polynomial, which we choose in the following fonn for the 

considered types: 

Type c.) Er = A
2 

+ +( P~ - P~) (various V ;;_ 0 imply mutually non- conju15ated f ) 

Type {3) P ~ A p2 + P2 A ( 46) 

Type y ) P, p 2 

For the type a) we have .. 
r 4 

= 4 
2 2 2 2 ::! 

b b -c) +l(b -c )-(b -c )j =4[(b b -c )t(b 
122 1 t 2 3 122 t 

2 
- c ) I. 

I 

1) Let r ;~ o Putting 

2 2 
COS 2 cp = Jnl ( C I - b1 ) , sin 2¢ = __'!_ ( c - b b ) 

f2 2 I 2 

we see that an automorphism with the parametc'rs b 
1 

b 
2 

«nd ¢ connects Er 
with a general polynomial satisfying ( 40). 

2) Let 

The general 

2 
= o , i.e, b

1 
b 

2 
= c 

2 
b 

1 
= c 

1 

of this type can be written as 

2 
f ~ ( A + b

1 
P

1 
t b

2 
P

2 
) 
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I 

and Js obtained from 

arbitrary, 

A 
2 

by an automorphism with X= b
1 

1 

F'or type {3 ) we put 

- sin </> ~ b1 , cos </> = b2 , x = _.S_,y= _s, 
2b 1 2b 2 

y = h 
2 

and q, 

The corresponding automorphism transforms 

tying (41), 

P into the general polynomial satls-

F'or type y) we put 

cos 2</> = 2 c
2 

, sin 2 q, = 2 c 
8 

, x,y - arbitrary 

and thus transform !'; P 
2 into the general expression satisfying ( 42). 

This completes the proof, 
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• 
A by an automorphism with X= b ,. 

we put 

= b2 ' X = _..s. , y = __£a 
2b I 2b 2 

y = b 
2 

and ¢ 

automorphism transforms 
P into the general polynomial satls-

we put 

sin 2 ¢> = 2 c a , x,y - arbitrary 

P, p 2 into the general expression satisfying ( 42). 
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