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Recently a series of papers 
1
-

3 
has appeared which are devoted to the 

construction of quantum field theory in the external gravitational field. However, 

in these papers the gravitational field is assumed to be either weak or satisfyi

ing fairly strong special requirements. In the present work the tw<>- dimensional 

model of an arbitary pseude>- Riemannian space- time is considered and an exp

licit -expression for the scalar field commutator is found. 

Let us ·first consider the true case of the four- dimensional pseude>- Rieman

nian space- time. In accordance with th~ fiat- space- time case we have to solve 

the Cauchy problem for the Klein- Gordon equation 

_1_ a 
ax" f-g ( 1) 

provided that on a certain space-like hypersurface ~ one specifies the func

tion 1/l(x) and its derivative in the direction of the normal to I. • On the hyper-

surface I. the function 1/l(x) is a operator obeying conditions 

(2) 

where if! •· ~ , a" (M) is the normal to I. .. ax" and f(M) is an arbitrary functionx) •. 

After solving the Cauchy problem we can calculate the commutator 

here M 1 and M 2 are the arbitrary space- time points. 

x) 
In the geperal case of a + 1 - dimensional space 

.. --
"' .. da ·v-·& 

1/J 0 "'I • • o 0 •"' D 

dl .f dl XI • • • .dl XD 
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G af3 
"' • g 'l/1 f3 
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In the twc>- dimensional case the problem in question can be explicitly 

solved by the Riemann method. In this case 'any metric form of the space- time 

can be written as 
• 2 

ds •· 4a (x,y)dxdy • ~ ( 4) 

~'{ 

'The coordinates x , y are called isotrQPic ; the " future" with respect to the 

point 11
0 

(x0 ,y 0 ) is defined by the condition 

(x-x 0 )(y-y 0 )>0, x+y>x 0 +Yo • ( !5) 

'The Klein- Gordon equation in the isotropic coordinates is written as follows 

a a"' • • -- + a (x,y )m r/1 • 0. 
0'11.0 y 

( 6) 

Now we have to find the solution for eq, ( 6) under the condition that on the 

curve 
Y •fL(X), 11'~ 0 

( 7) 

r/1 • ¢(x) and [li -I'' -~I • · • IT(x) are kiven, In accordance with ( 2) the operators 
OX ay y•fi(X) 

¢(x) and IT(x) obey the commutation relations 

(<f>(x
1
),</J(x

2
)1,. 0, (JT(x 1 ),1T(x 2)I,.O, 

( 8) 

[¢(x 1), IT(X 2)1·- ill (x 1 -·x 2 ) 

since on the curve ( 7) r/Ja du·a •" (x)dx. 

Tl;le Riemann method is based on the Green formula 

A • I! dua(vr/1 -·r/Jv ) • 
I a a 

f d V ( v V 1/1 a -.P V v a ) ; 
v a , 

(9) 

here a is the symbol of the covariant differentiation and d V is the invariant 

element of the volume of region V • If 1/1 and v obey the Klein-: Gordon 

equation, then the integrand in the last integral vanishes and, consequently, for 

such r/1 and v 
A •· ~Idoa ( v r/Ja - rfrva ) • 0 r 

In the tw<>- dimensional case we apply this formula to the contour 

plotted in 'Fig. 1, where M0 (x 0 
, y0 ) is an arbitrary point. We have 

( 10) 

Po Qo Mo 

( 11) 
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Mo 1:·.: Po 
A • f (vr/1 -!/Ivy )\ .;t d~ t:J (r/Jv -vr/Jx )\. dx + 

~ y X a,:;;"/ ~ X yay0 
:f'' 

~ ' 
•·P(, (l/lv. -vr/1. )\,~ IL<Jx • o, 0 .• ,. 

where we introduce the 'notation • •• : \ -•f.l'ay • 

We choose for v•v(x,y;x0 ,y0 )-v~'(_x,y) the Riemann functi• 

solution for the Goursat problem: 

a2
vo (x,y) 
axay 

2 2 
+ a (x,y)m v0 (x,y) •-0, 

'b lx•xo • 11! l>'•vo • 1 • 

'Then the formula ( 11) yields 

Qo 

r/J(M
0

)*Y,r/J(Q0 )+ Y,l/J(P0 )+ Y,((v r/1 -r/lv
0 

)1. dx. 
0 n n \tDJ'{x) 

Po 

'lhus, we have expressed the function obeying the Klein- Gordon 

tenns of its ve..lue and the value of its normal derivative on the c 

In particular, the field operator at the point ~~0 (x 0 ,y0 ) is 

l/l(Mo) • y, ¢ (xo) + y, 4> (11* (yo)) + 

Xo 
+Y, (, dx lv0 (X 0 f.I(X))IT(X)-V

00
(X,f'(X)).f>(x)l, 

f.l*bo> 

where x •·f.l*(y) is the function inverse to that y • 1o1 ( x). 

.Putting in ( 13) r/J(M
0

) •·v(M
0 

;M 1 ) 

' 
we get an identity fo 

v(M
0 

;M
1

) 

2v(M
0
;M

1
) •v(Q

0
;M 1 )+v(P0 ; M 1 )+ 

Qo 
+: {. dx 

Po 

v(M.;M 0 )v(M;M 1 ) I 
v. (M ;M0 )v.(M; M 

1
) 

y•·u(x). 

' Using eq, ( 11) it is not difficult to prove one more identity tor tl 

v(M
1 

;M
2 

)· , Let in ( 11) the point &10 possess the coordinates xQ 

'Then the point P 0 coincide>!i with the point P 1 , and the point 

Assuming further r/J(M) • v(M ; M1 ) , v(M) • v (M ; M 2 ) we find 
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(X I) , IT (X 2 )) ,c i /l (X I - X 2 ) 1 

(7) c/Ja duac" (x)dx. 

method is based on the Green formula 

-·c/1 v ) c J dV ( v V c/J a -1/1 V v a ) ; 
a v a a 

(9) 

bol of the covariant differentiation and d V is the invariant 

e of region V , 1f c/1 and v obey the Klein- Gordon 

"ntegrand in the last integral vanishes and, consequently, for 

A • ~ du a ( v c/1 - ifr v ) • 0 , 1: a a . 

nal case we apply this formula to the contour 

here M0 (x
0 

,y0 ) is an arbitrary point. We have 

4 

.';; 

( 10) 

Po Qo M o 

( 11) 

·;.:' '1 
,;,:-~ 

'\.) 

I} 
·~ 

1 r, 
,J 

l 
l 
J 

I 
~· 
I 

J 
~ 'i ~·~~~ 

.·• 

' 1: 

I\ 
!.i 

~~ 

Mo 
A • J (v,P -</lv 

Q y y 

. Po 
ll. . dJt·:f (,Pv -vc/1 )J. dx + x•"o .. ..0: x x y•yo 

0 
~ . 

+{ (.Pv. -v.P. >l,.,.I-'(Jx • 0, 
0 

where we introduce the 'notation •. •· ~ .• -·p.'ay , 
~· 

( 11) 

We choose for v•v(x,y;x
0
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solution for the Goursat problem: 

a"vo (x,y) + a 
2 
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axay 
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Then the formula ( 11) yields 

Qo 

I/I(M0 )•~c/J(Q0 ) + %1/r(P0 ) + Y, {(v c/1 -c/lv
0 

ll dx. 
0 b n Y-,.t(x) 

Po 

( 12) 

( 13) 

Thus, we have expressed the function obeying the Klein- Gordon equation in 

terms of its value and the value of its normal derivative on the curve y •·1-' ( x) , 

In particular, the field operator at the point M0 (x 0 ,y
0 

) is 

1/l(lo) •· Y, ¢(xol +. y, ¢ (p.* <Yo)) + 

where x • .,_ *(y) 

"o 
+ Y, (, dx l v0 (x, jt(x)) 11 (x)-v

0
n (X,/L(X)) cp(x) I , 

u*(Yo> 

is the function inverse to that y • p. ( x). 

( 14) 

.Putting in ( 13) c/J(M
0

) •·v(M
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v(M
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1
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we get an identity for the function 
~ 

2v(M
0

; M 
1

) • v(Q
0 

; M 1 ) +·v( P0 ; M 1 ) + 

Qo 

+: {. dx 

Po 

v(M.;M 0 )v(M;M 1 ) I 
v. (M ;M0 )v0 (M; M 

1
) 

( 15) 

y •·U( x). 

'Using eq. ( 11) it is not difficult to prove one more identity {or the function 

v(M
1 

;M
2 

)· , Let in ( 11) the point M0 possess the coordinates x
0 

•· x., Yo •·Y 1 

Then the point P0 coincide!!O with the point P1 , and the point Q0 with Q2 • 
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Qa 

v(Q a l M 1 ) - v( P 
1 

; M a) • J dx 
PI 

v (M JM 1 ) v (M l M a ) 

vn(M~If 1 ) vn(M;M 1 ) ( 16) 
Y•jt(X) 

From ( 15) and ( 16) it follows that the ~emann function is symmetrical: 

v(M 
1 

; M 
1

) • v(M 
1 

;M 1 ). ( 17) 

The obtained results allow one to find the commutator D(JI 1,M1 ). In oal.cula.

ting it one needs to commute the operators of the fonn 
bt 

A
1

•·</>(a
1 

)+</>(b
1 

)+:J dxl p
1 

(x)rr(x)+q1 (x)</J(x) I 

"' (l ··1, 2) ; 

without loss of generality it may be assumed that b 1 > a1 

are possible. 

( 18) 

, The three cases 

In the first case intercepts [ a 1 , b 1 1 

then, obviously, [A 1 , A a I •• 0 • 

and [ a 
2 

, b
2 

I . are not overlapped and 

In the second c;:ase these intercepts are overlapped partially; assuming 

a
2

>.a
1 

we get 

i[AI(MI ),Aa(M,)) •• 

•·p a bl I '•''' '•''' I ( 19) 

I ( l)•pl(bl) +: (, dx ... ql (x) qa(x) 

ln the third case one of the intercepts, e,g, [ a 1 , b 1 I • , contains the whole 

another, Then 

i[A 1(M 1), A2(M 2 ) ),. 

ba 
• p 

1 
(a

2
) +·p

1 
(b 2 ) + J dx 

o.a I PI (x) 

q I (x) 

P
1

(x) 

ql(x) 

(20) 

t.Sing the expresion of the fonn ( 19) and ( 20) obtained by an immediate 

commutation of r/l(M 
1

) and r/l(M 2 ) , and on the other hand, applying the identi-

ties ( 15), ( 16) 1 ( 17) for the Riemann function, it is not difficult to get that 

D(U
1

,M
2
)• %f(M

1
,Ma)v(M 1 ;M 1 ), (21) 
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:i'Where 

1, 

f(MI'MI) • - :1.. 

0 • 

~- the point M 1 is in " the futur• 
to*~~J,f I i 

'f\ 
if ~ point M a is in "the future 

toM''; 
if the· points M 1 and M 1 are sp• 
respect to one another, 

In isotropic coordinates f (M 1 , M1 ) can be expressed in tenns c 

in the following way: 

1, X> 0 
(J ( x) • I 0 , x < 0 

f(M
1

,M
2

) •·O(x 1 -x~O(y 1 -y 2 )-0(x 2 -x 1 )0(y2 -Yt)•~'" 

By differentiating 

but on any spac&-like . . 
¢(x) •r/l(x),,.(x))satisfy 

( 21) it may be shown that not only o~ 1 

curve y .,t(x) the operators ':(x)•fi*-1 

the commutation relations ( 8), 

In conclusion we note that the Riemann function, as it foil 

the solution of the integral equation 

2 X J' 2 
V(x,y i Xo ,yO) • 1-m f d( ( d7J& (,;,7J)V{(, 7JlX ,y ) • 

S0 Yo 0 0 

Solving this equation by iterations we get an expression for v 

fonn of the convergent series 

v ( x, y ; x
0 

, y0 ) • 

/: 'I 'n-1 '~n-1 
.. 2n x !' Y I r.s t 2 2 

•1 + I. (-1)n m fd fd'll a (,;1,7JI)f,de2f~7J2a <e2,7J2) .... r de fd'ln a <· 
n•·l X() Yo ~ Yo xO Yo 

2 
In the fl,;>.t spac&-time case a (x,y)•·1 we obtain from (: 

v(x,y; x 0 ,y0 ) •· ]0 (2mv'(x-x0 )(y -y0 ) ), 

where J 0 is the Bessel function. In this case the expression 

the squared distance between the points M and M 0 

Note that for m 
2 

• 0 the obtained results entirely coincide 

ones for the flat two- dimensional case, This is due to the fact 

the function a 
2 

( x , y ) fall out of eq, ( 9 ) , In other words, in two

l"l.e curvature of space does not affect zero mass particles. 

7 
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