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Recently a series of papers 1-3 has appeared which are devoted to the
construction of quantum field theory in the external gravitational field. However,
in these papers the gravitational field is assumed to be either weak or satisfyi-
ing fairly strong special requirements, In the present work the two-dimensional
model of an arbitary pseudo-Riemannian space-time is considered and an exp-

licit -expression for the scalar field commutator is found,

Let us first consider the true case of the four-dimensional pseudo- Rleman-
nian space-time. In accordance with the flat-space-time case we have to solve

the Cauchy problem for the Klein- Gordon equation

1 - + m3 -

v
provided that on a certain space-like hypersurface 3 one specifies the func-
- tion ¢(x) and its derlvative in the direction of the normal to £ , On the hyper-

surface £ the function ¢¥(x) is a operator obeying conditions

) v, oz =0,

a s
L (M9, M), o H)dg ML, =0, (2)

[ FA0LUCH, ), 4, (0, 5 40" (M) -ikCH,),

where ¢ :_'/‘a_ . na(M) is the normal to £ and f(M) is an arbitrary functionx)
x

After solving the Cauchy problem we can calculate the commutator

D(M,M,) = ily(M,), ¥ (M,)]; (2)
here M; and M; are the arbitrary space-time points,
x) In the general case of a+1 - dimensional space
vlul et
'ﬁadaa..\/j 4@ dx' ... idx" , ¢“-.E“B¢ﬂ )
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In the two-dimensional case the problem in quesﬁ'on can be explicitly
solved by the Riemann method. In this case ‘any metric form of the space- time
can be written as

3 2
ds = 4a (x,y)dxdy . e (4)

A
The coordinates x , y are called isotrapic; the "future” with respect to the
point Ilo(xo 1Yo ) is defined by the condiﬁon

(x=xu Wy=yy) >0, x+y>x5+¥ « - B (1s)

'
The Klein- Gordon equation in the isotropic coordinates is wrilten as follows
] .

3y s 'y =0. (6
353y + a (x,y)m ¥ )

Now we have to find the solution for eq. ( 6) under the condition that on the
curve .
y=u(x), p°< 0

; - (?)

= n(x) are éiven. In accordance with (2) the operators

Y=9(x) and [2¥ -p 9%, .
dx dy YmHx

#(x) and 7(x) obey the commutation relations

(d(xy), d(x )= 0, [m(x,), w(x,)l=0, (8)

(60x,), w(x )= i8(x,~x,) ,

since on the curve (7} ¥, do = (x)dx.

The Riemann method is based on the Green formula

A= fdot vy, ~uv,) = LAV (v u =g v v (9)

1

here is the symbol of the covariant differentiation and 4V is the irvariant

a
element of the volume of region V , If ¥ and v obey the Klein- Gordon
equation, then the integrand in the last integral vanishes and, consequently, for

such ¢ and v
Aw§ do®(vy —yv, )= O
s, a a .’ 4 (10)

In the two-dimensional case we apply this formula to the contour P, Q, M,

plotted in Fig. 1, where Mo(x0 1Y) is an arbitrary point, We have

(11)



Mg
A ..go(w/;, AN )l,_xndy,r(¢v —-vy, )|y_v +
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where we introduce the notation a = i“ ~u'ey, .
. L3

We choose for v--v(x,y;xo,yo)-vo(x,y) the Riemann function being the
solution for the Goursat problem:

El ! 3 v '
;gxag;..l_)_ + a (x,y)n’v (xy) =0, (12)

% bean, ™ % lymy= 1

Then the formula (11) yields
. %

M) = P - :
G(M)) =Wy (Qe) + KU (Py) + &‘zpro(vo Yo =¥ %u My’ (13)

Thus, we have expressed the function obeying the Klein- Gordon equation in
terms of its value and the value of its normal derivative on the curve y=u(x).
In particular, the field operator at the point Ho(xo Yo ) is

Y(Mg)m hp(xg) +. % (u* (y4)) +
(14)

-

+% f dx L, (x,u(x))vr(x)-v EATENTICIR

w (vo

where x=u*(y) is the function inverse to that y =u(x).
»Putting in (13) Y )=y (M N ) we get an identity for the function
v(M° ;Mx) 3
2v(M°;M l) -vv(Qo M) +v(Py; M)+

(15)

Qq v(M;Ho)v(M;Ml)
+:f dx
Py vn(M M v (M M)

y=u{x).

- Using eq. (11) it is not difficult to prove one more identity for the function
v(M ;M) . Let in {11) the point M, possess the coordinates 0k %Yy
Then the point P, coincideg with the point P, , and the point Q, with Qj.
Assuming further (M) =v(M; M, ), v(M) =v(M;M,) we find

\

#



il RACE L BRICTE
v(Q’;Ml)-v(P‘;Ma)-};dl \
S RACH BRNCEH W (16)

I y=yulx)

From (15) and (16) it follows that the R;iemann function is symmetrical:
V(MI;"a)"'v(Ml;M!)‘ (17)

The obtained results allow one to find the commutator D(M,,M;). In calcula~
ting it one neeis to commute the operators of the form
by
A= ¢(a, )+ (b )+:_f' dafp, (0)w(x) +q, (x)$(0) ] (18)
(1 =1,2);
without loss of generality it may be assumed that b,> a . The three cases

are possible.

In the first case intercepts [a,,b ] and [a,,b]. are not overlapped and

'

then, obviously, [A ,A,1= 0. !

In the second case these intércepfs are overlapped partially; assuming

a,>a, we get

0A, (), A, (M, o=

(19)
° Py(x) 2, (x)
wp (a_ )wpg(b, ) + [ dx
e q,(x) q,0] - .

In the third case one of the intercepts, e.g. [a,,b,]., contains the whole

another, Then

1(A,(M,), A(M,) o \

_ ‘ (20)
*s p,(x) py(x) )
- pl(a’) +p, (by) + [ dx ‘
*3 q,(x) q,(x) .

Ueing the expresion of the form (19) and (20) obtained by an immediate
commutation of ¢(M,) and ¢¥(¥,) , and on the other hand, applying the identi-
ties (15), (16), (17) for the Riemann function, it is not difficult to get that

D(M,,M,) = %((II,M”)V("I;H,), (21)



‘where

1, the point M, is in "the future" with respect
"‘“2 :
X
(M, M) = -1, ‘

g5 §®

point M5 is in "the future" with respect
M‘ :
o, |if the\- points M; and M, are space-like with
respect to one another,

In isotropic coordinates ¢ (M;,M,) can be expressed In terms of the function

§ l 1, x>0
g -
(x) 0, x<0
In the following way:
€My My ) =8 (x, =x)0(y, =y, ) ~0(x;=2,)00y, =y, )+ (22)

By differentiating (21) it may be shown that not only on the curve y =u(x)
but on any space-like curve Y=k (x) the operators ;(x)-(.gi-u'-a'l’ : ,.(a)nd
~ X 3 x.
$(x) =¥ (x),1(x)) satisfy the commutation relations (8). y

In conclusion we note that the Riemann function, as it follows _ from (9}, is

the solution of the integral equation

x

2 7 2

V(N ¥ixo.y) = 1=m"[df [.dna (§,mv(€,nix 0y, ). (23)
- X% Yo .

Solving this equation by iterations ‘we get an expression for V(x,y;xo,yo)in the

form of the convergent series

V(X:Y;XO lYo)-
2
- n omX 7 ‘a R S Gt Tt (2¢)
=1+ E(~D"m [dE [dn, e’ (&, 46, dn 0 (Epuny)enes [ AE [dn 8 (€ 47 ).
n=tl % v % Y L non

. .
In the fiat space-time case a (x,y)=1 we obtain from (24)
V(XY X0,¥0) = Jo (2m v (x~x4 My ~y,) ), (25)

where J, is the Bessel function, In this case the expression 4x—x )y ~yy) is

the squared distance between the points M and M, .

Note that for m” =0 the obtained‘ results entirely coincide with analogous
ones for the flat two-dimensional case. This is due to the fact that for. m’= 0
the function a’(x,y) fall out of eq, (9). In other words, in two- dimensional model
the cur?ture of space does not affect zero mass particles.
i
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In conclusion the authors express their gratitude to academician N.NBogo-

lubov for valuable discussions. .
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