





Many experimental and theoretical works are devoted to investigation of the
collective Ka=2+ states (i.e. states with the momentum projection along the nuc-
lear symmetry axis equal to 2 and positive parity). So, iA1’2/ the energies of the

Ka=2+ states and the probabilities of the B(E2) electromagnetic transitions are
calculated on the basis of the superfluid nuclear model, taking into account quad -~
rupole- quadrupole inieractions, The present paper which is a continuation of pa-
per/ 2/ deals with the calculation of the energies of two most low-lying K#»=2+
states of even-even nuclei in the range 150 < A <190 and 228 £ A< 254, taking
into account the blocking effect. The properties of these states are investigated
and the relationship between the collective and two- quasi-particle structure of
excited states is found,

In 2 using the variational principle in the framework of the method of ap-

proximate second quantization a secular equation is obtained which determines

the excited Kz =2+ state energies ®; .« When the quadrupole- quadrupole
interaction constants are equal, ie, KD = D =B =, the secular equa-
n p np

tion takes the form
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where the summation of pp’- is performed over the average field levels, f{(pp”)

(1)

is the matrix element of the quadrupole momentum operator (the wave functions
and the scheme of the one-particle levels of the Nilsson potential are used)
e(@=vVCZ+IE@ -x17, Upp’="p"p’+ urv, -

‘To improve the accuracy of calculation we take into account the blocking
effect, It 'is very difficult to take into account the blocking effect in a rigorous
way, therefore, we use here the following simplified method: the chemical poten-
tials A are determined from the condition of conservation, on the average of
the numbér of protons and neutrons in the Kr»z=2+ states, the values of poles
e(p) +e(ph in (1) are replaced by the two-quasi-particle st:ate energies
calculated in just the same way as in 3/ . -Energies calculated for different value
of k , the first two poles of (1) and the corresponding experimental data are
presented in Fig. 1. The second roots of (1) are located between the values of v
the first and se_cond poles, As long as in most cases the distances between
these poles are not large then the energies ® are mainly determined by the
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position of the appropriate poles, From Fig.l it is seen that the energies of the

-4/8
first Kn= 2+ states calculated for «x=10A" h % (Kn]): x ). are in sufficiently good

agreement with corresponding experimental data in both regions of strongly defor-



med nuclei. The account of the blocking effect has led to an improvement of this
agreement, Agreement between theory and experiment is improved if calculations

-4/
in the range 150 < A <186 are made for x=9,5A‘aha{,’ y and in the range

228< A < 254 for k=11A hal .

We discuss the particularitites of the solution of (1). For this in Fig2 we
give the values of F (w) for Pu24o and 01250. ‘The points of intersection of the
straight line 1/x with the curve F(w). are the roots of eq, (1). As is known
the collective state wave function is a superposition of two- quasi-particle states
of different kind, If a state possesses the very pronounced collective properties
then the value of the root essentially differs from that of the nearest poles, and

Flw) intersects 1/x at a small angle, If the state is practically two-quasi-
particle one than the value of the root almost coincides with that of the pole and
Flw) intersects 1/« at the right angle,

To answer. the question with what weights the two-quasi-particle states
enter the given collective state we use the normalization condition of the one-
photon state wave functions, The study shows that the overwhelming majority of
the lowest Knr=2+ states possesses collective properties and a large number
of two-quasi-particle states contributies to them, Their structure is similar to that
of the states of 0234 given in Table 1, which contains the contribution of most
important two- quasi- particle states™). to the first © ~ and the second «, states
withKs= 2+ ., From Fig, 1 and Table_‘luit is seen that the energy @, and the
structure obtained in the case x =12A hw] and x,,= 07 x are close to the case

xe= 10 A"” hew® and x =« » Thus, a decrease of Kop as compared to «, and K,

may be compensated bn; some increase of the. latter,

The one-phonon collective state wave function turns into the two- quasi-par -
ticle state wave function when the root of the secular equation @ is very
close to the pole, For the used values of x fO{‘ the lowest Kr =2+ states
this occurs only when the matrix element f(pp’) corresponding to the first
pole is very small, In this case the first or second state with K g=2+ is two~
quasi-particle one, If the straight line 1/x  intersects F(w) first at the right
angle, and then at a small one then the first state will be two-quasi-particle and
the second one - couective.y Such was the way in Yb172 where the contribution
of the neutron state 512#-521}( calculated with account of the blocking effect)

X) ‘ By Nllz/\0 we denote the state Kn[Na A lof the Nilsson potential with
K=A+S and by Nao A} with K=A-3



to the Yn=2+ state and of energy 1.468 MeV is 99,6%, The calculations made
prove the correctness of the interpretation of this state given in 3 on the basis
of the analysi_f, of the beta decay of ’I‘m172.

Itt 1/x ir‘xtersects Fw) first at an small angle and then at an obtuse one
then the first state is collective and the second one -two- quasi-particle, Such is
the way in Cﬁ250 what is seen from Fig, 2 and Teble 1, In 0238 and Pu240 the
situation is more complicated, A small change of « or a displacement of the
pole of the neutron state 6224t 6314 leads to a change of the order of the collec-
tive and two- quasi-particle states. So, according to calculations without the ac-
count of the blocking etiect’ “/ the first states in U?38ana Pu24oare collective and the
calculated probability of the electromagnetic transition agrees with experimental
data/ 4/. In the present calculations for x=11 f\“ﬂwg the first state is two-quasi-
particle and the second one- collective, yet, for «x=13 A. Uahmz the first state is
collective and the second one -two- quasi- particle, Experimental data on the Cou-
lomb excitation of U238/ gnd on beta decay to Pu24o/ 5/ point out that the obser-
ved Kn=2+ states are collective, To prove the correctness of the given state-
ments about the relationship between collective and quasi-particle states it is new

cessary to study experimentally the structure of the two first states in Yb172 )

U2'38, Pu24o and C 50.

Thus, in the framework of the superfluid nuclear model a common descrip-
tion of two-quasi-particle and collective non-rotational states of deformed even
nuclei is obtained, It'is shown that the average nuclear field defines which of the
low lying Kn=2+ states are collective and which are two- quasi- particle ones,

In conclusion I express my gratitude to N,Bogolubov and P.Vogel for interest-
ing discussions and also to ALA.Korneichuk and G.,Jungklaussen for performing

numerical calculations.
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Fig.1.

Energies of states with Kr=2+
Notations: — experimental data

-~ — neutron pole
proton pole,
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Fig,2, The behaviour of functions F(w) of Pu24o and sz 50



TABLE I

Contribution of two-quasi-partiole states to colleotive states with K‘n"2+

( in percent) /n, x = A-hfﬂ:‘- (&,=’<)

Configuration 234 238 2v0 2s5¢
of two-quasi-~ f( ) 4 9 R 24 Q[/

PF. ) %
5@32 :l ° “ “ W W @, ak & @,

Neutron states

633+ - 6314 -C,82 40,3 SI,0 63,7 4,3 0,5 I3,48 0,1 1074
622»- 631t -0,005 10°* 10°%* 107® 95,3 94,9 I0 "% 107 1078
6224~ 6204 -1,67 0,8 0,5 2,5 100 1,0 17,3 26,7 0,07
62u4- 6224 -I,42 0,2 0,2 0,6 I07° 0,2 3,2 21,4 0,07
6064~ 6044 -I,84 1,2 0,8 0,8 10°° I I,5 1,2 1072
M3~ eI+ 1,02 9,8 8,4 23 0,05 0,09 1,6 0,07 1070
73u- 7524 -0,89 2,1 15 1,9 0,01 0,2 3,9 0,8 1074
785¢- 743t -0,73 0,4 0,3 0,8 10 0,1 2,3 1,2 1072
6I3t- 6IIt -2,04 0,06 0,03 0,05 I0°* 0,0 o0,2 1,8 1073
6314+ 631+ -0,86 15,8 14,9 59 0,1 0,2 5,1 0,1 1074
622++ 6204 -1,71 0,I 0,007 0,2 I0°* 0,06 0,7 18,2 0,05
Proton states
523t~ S4lf -0,I78 1,2 1,4 1,2 0,07 0,0 Io,4 0,02 1072
52%- S2If -0,94 0,6 0,4 1,2 107 0,2 2,5 3,5 1072
5124~ 5304 1I,I0 1,1 0,7 1,1 107 o, 2,1 1,8 1073
SIup- S2I+ -0,098 107% 100® 107 10 107® 0,02 0,2 99,7
6424~ 6604 -0,96 2,5 1,9 1,0 100® o,I I,9 0,1 1074
6334- 651+ -0,85 2,5 1,9 2,4 0,0 0,3 5,0 1,4 1073
5320+ 530% 0,74 2,9 2,4 0,7 107 0,08 1I,3 0,07 10-%
5214+ 5304 0,60 2,4 1,9 3,6 0,2 0,4 10,0 1,2 1072
524+ S2I4 1,23 0,3 0,2 0,6 Io~® 0,07 I,I 9,5 0,02

W fr Xp<OFE ,x-/ﬁA‘y‘ﬂi,



