1/ता-64.

而ilimilition

붇 [i. Fixtom

ОБЪЕДИНЕННЫЙ
 ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

C 353.3

G.A.Chilashvili, R,M\&Muradyan, V.P.Shelest, A.N.Tavkhelidze

ON AN INVESTIGATION OF THE ANALYTIC PROPERTES OF SCATTERING AMPLITUDES \mathbb{N} THF NONRELATIVIS TIC THREE-BODY PROBLEM II

G_A.Chilashvili, R.MMuradyan, V,P.Shelest, A.N.Tavkhelidze

ON AN INVESTIGATION OF THE ANALYTIC PROPERTIES OF SCATTERING AMPLITUDES IN THE NONRELATIVISTIC THREE-BODY PROBLEM

II

Дубна 1084

Great attention has been recently paid to the stucty of the analytic properties of the nonrelativistic three-body scattering amplitudes in the complex 1 -plane ${ }^{\mid 1-4 /}$.

There exist several methods for separating the total angular momentum in the three-body problem. The first one suggested by Newton $/ 1 /$ consists in separating the two relative orbital momenta and combining them in order to get the total angular momentum with the aid of the Clebsch-Gordan coefficients, Difficulties arising in the analytic continuation of the partial scattering amplitude obtained by this method have been discussed in $|2,4|$.

Another method of introduction of the total angular momentum has been suggested in Omnes"s papers ${ }^{2 / 2 /}$. The melit of this method is demonstrated in investigating the three-body problem in the absence of the bourd states.

In the following we present a recipe of introducing the total angular momentum which is comvenient to study the problems of scattering on the bound state, Notice that this method is easily generalized to the $N(N>3)$ body problem where one can use, e.g., the Weinberg equations.

2. The kinematics of the three-body system

Let us consider the problem of scattering of a particle with mass m_{1} on the bound state of two other particles with masses m_{2} and m_{8}. The particles interact through the two-body spherically-symmetrical potentials.

The state of the three-body system can be characterized by the three momenta $\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{8}$. In place of these it is comvenient to introduce momenta corresponding to the well-known Jacobi coordinates: $\left(\vec{K}, \vec{z}_{21}, \vec{p}_{1}\right)$

$$
\begin{align*}
& s \quad \overrightarrow{\mathbf{K}}=\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3} \\
& \vec{k}_{28}=\frac{m_{8} \cdot \vec{k}_{2}-m_{2} \vec{k}_{3}}{m_{28}} \tag{2,1}\\
& \vec{p}_{1}=\frac{1}{M}\left\{m_{1}\left(\vec{k}_{2}+\vec{k}_{3}\right)-m_{2 B} \vec{k}_{1}\right\}
\end{align*}
$$

where \vec{K} is the total momentum of the system, $\vec{k}_{2 g}$ is the relative momentum of particles 2 and $3, \vec{p}_{i}$ is the momentum of the particle 1 with respect to the center-of-mass of the two other particles, M is the total mass of the system

$$
\begin{equation*}
M=m_{1}+m_{2}+m_{3} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{2 a}=m_{2}+m_{8} \tag{2.3}
\end{equation*}
$$

Other possible sets of variables, $\left(\vec{K}, \vec{k}_{11}, \vec{p}_{2}\right)$ and $\left(\vec{K}, \vec{k}_{12} \vec{P}_{3}\right)$ are determined in a similar way.

In the center of mass system we have

$$
\begin{align*}
& \overrightarrow{\mathrm{K}}=0 \\
& {\overrightarrow{\mathbf{k}_{28}}=\frac{\mathrm{m}_{8} \vec{k}_{2}-\mathrm{m}_{2} \vec{k}_{8}}{m_{28}}}^{\vec{p}_{1}=\vec{k}_{2}+\vec{k}_{3}} \tag{2.4}
\end{align*}
$$

and the same for sets of variables $\left(\vec{K}, \vec{k}_{81^{\prime}} \vec{p}_{2}\right)$ and $\left(\vec{K}, \vec{k}_{12^{\prime}} \vec{p}_{8}\right)$.
Thus, in the center- of mass system the state of the three-body system can be described by the total momentum of two particles (which is equal to the momentum of a remaining particle but with opposite sign) and by the momentum of the relative motion of these two particles \mathbf{x}).

We shall describe the state of the system by the state vectors $|\Psi\rangle$ which form the Hilbert space. In this space as a basis we can choose the set of vectors $\left|\vec{k}_{23}, \vec{p}_{1}\right\rangle$ possessing the orthonormality and completeness properties:

$$
\begin{align*}
& \left\langle\vec{k}_{23}^{\prime} \vec{p}_{1}^{\prime} \mid \vec{k}_{28} \vec{p}_{1}\right\rangle=\delta\left(\vec{k}_{28}-\vec{k}_{28}^{\prime}\right) \delta\left(\vec{p}_{1}-\vec{p}_{i}^{\prime}\right) \tag{2,5}\\
& \quad \int\left|\vec{k}_{28} \vec{p}_{1}><\vec{k}_{23} \vec{p}_{1}\right| d \vec{k}_{28} d \vec{p}_{1}=1 \tag{2.6}
\end{align*}
$$

As another basis a complete set of vectors $\left|I M \mathbb{l}_{38} \mathrm{~m}_{28} \mathrm{k}_{28} \mathrm{p}_{1}\right\rangle$ can be chosen where I, M are the total angular momentum of the system and its projection on an arbitrary axis, ℓ_{28} and $m_{2 s}$ are the orbital momentum, of the
x) The Dalitz variables $/ 7 /$ which are specified in two different inertial systems are convenient for relativistic problems $/ 8,9$! In the nonrelativistic case they are identical to the Jacobi coordinates used by us.
relative motion of particles 2 and 3 and its projection on $\overrightarrow{p_{1}}$ respectively, and $k_{28}=\left|\vec{k}_{28}\right|, P_{1}=\left|\vec{P}_{1}\right|$. The orthonormality and completeness relations for these vectors are of the form

dragon

These bases are linked by the following transformation function

$$
\begin{align*}
& \times Y_{P_{28}}{ }_{28}\left(\vec{k}_{23}\right) \frac{\delta\left(k_{2 s}-k_{2 y}^{\prime}\right)}{k_{23}^{2}} \frac{\delta\left(P_{1}-P_{i}^{\prime}\right)}{P_{i}^{2}} \tag{2.9}
\end{align*}
$$

where $D_{M m_{28}}^{\prime}\left(\vec{p}_{1}\right)$ is the Wigner function.
 can be written analogously.

3. Expansion of the Faddeev equations for the wave

function in partial waves

Let us consider the Faddeev equations for scattering of particle 1 on the bound state of other particles:

$$
\begin{align*}
& \left.\left.\left|\Psi^{(1)}\right\rangle=\left|\Phi_{28}\right\rangle-G_{0}(z) T_{28}(z)| | \Psi^{(2)}\right\rangle+\left|\Psi^{(8)}\right\rangle\right\} \\
& \left.\left.\left|\Psi^{(2)}\right\rangle=-G_{0}(z) T_{81}(z)| | \Psi^{(1)}\right\rangle+\left|\Psi^{(s)}\right\rangle\right\} \tag{3.1}\\
& \left.\left.\left|\Psi^{(8)}\right\rangle=-G_{0}(z) T_{12}(z)| | \Psi^{(1)}\right\rangle+\left|\Psi^{(2)}\right\rangle\right\}
\end{align*}
$$

Here $G_{0}(z)$ is the free Green function

$$
\begin{equation*}
G_{0}(z)=\left\{H_{0}-z\right\}_{1}^{-1} \tag{3.2}
\end{equation*}
$$

where H_{0} is the total kinetic energy which is expressed in terms of the Jacobi variables

$$
\begin{gather*}
H_{0}=-\frac{1}{2 \mu_{28}} \Delta_{28}-\frac{1}{2 \mu_{i}} \Delta_{1}=-\frac{1}{2 \mu_{81}} \Delta_{81}-\frac{1}{2 \mu_{2}} \Delta_{2}=-\frac{1}{2 \mu_{12}} \Delta_{12}-\frac{1}{2 \mu_{8}} \Delta_{8} \tag{3.3}\\
\mu_{1 k}=\frac{m_{1} m_{k}}{m_{i k}} ; \mu_{\ell}=\frac{m_{\ell} m_{1 k}}{M} ; i, k \neq \ell \tag{3.4}
\end{gather*}
$$

and

$$
\begin{equation*}
z=\frac{p_{1}^{2}}{2 \mu_{1}}-\epsilon_{2 s}+i \eta ; \quad \eta \rightarrow 0 \tag{3.5}
\end{equation*}
$$

where ϵ_{20} is the binding energy of particles 2 and 3 . The operators T_{1} satisfy the equations

$$
\begin{equation*}
T_{i k}(z)=V_{i k}-V_{i k} G_{0}(z) T_{i k}(z) \tag{3.6}
\end{equation*}
$$

where $V_{i k}$ denotes the two body potentials.
The initial state is characterized by the state vector

$$
\begin{equation*}
\left|\Phi_{28}\right\rangle=\left|\Phi_{28} \gg_{1}^{\circ} \mathcal{P}_{28}^{0} m_{28}^{0} \epsilon_{28}^{0}=f \mathrm{~d} \vec{q} \phi_{28}^{\circ} m_{28}^{\circ} \epsilon_{28}(\vec{q})\right| \vec{q} \vec{p}_{1}^{\circ}> \tag{3.7}
\end{equation*}
$$

where
is the wave function of the bound state of particles 2 and 3 in the momentum representation.
nd expand
expand the set of equations (3.1) in partial wave we need the follwing matrix elements
where

$$
\begin{align*}
& \left\langle I^{\prime} \cdot M^{\prime} \cdot \ell_{28}^{\prime} m_{28}^{\prime} k_{28}^{\prime} P_{i}^{\prime}\right| G_{0}(z)\left|I M R_{28} m_{28} k_{28} P_{1}\right\rangle= \\
& =\delta_{I I^{\prime}} \delta_{M M}, \delta_{\ell_{28}} R_{28}^{\prime} \delta_{m_{28}} m_{28}^{\prime} \frac{\delta\left(\underline{k}_{28}-k_{28}^{\prime}\right)}{k_{28}^{2}} \frac{\delta\left(P_{1}-p_{i}^{\prime}\right)}{p_{1}^{2}} G_{0}\left(k_{28} P_{1} z\right) \tag{3,9}
\end{align*}
$$

$$
\begin{equation*}
G_{0}\left(k_{2 s} P_{1} z\right)=\left(\frac{k_{2 s}^{2}}{2 \mu_{2 s}}+\frac{p_{1}^{2}}{2 \mu_{1}}-z\right)^{-1} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\langle I^{\prime} M^{\prime} \cdot \ell_{28}^{\prime} m_{28}^{\prime} k_{28}^{\prime} p_{1}^{\prime}\right| T_{28}(z)\left|I M l_{28} m_{28} k_{28} p_{1}\right\rangle= \\
& =\delta_{I I}^{\prime \prime} \delta_{M M}^{\prime} \delta_{l_{28}} \ell_{28}^{\prime} \delta_{m_{28}} m_{28}^{\prime} \frac{\delta\left(p_{1}-p_{1}^{\prime}\right)}{P_{1}^{2}} \times \tag{3.11}\\
& \left.x<k_{28}^{\prime}\left|t_{28}^{\ell}\left(2-\frac{p_{1}^{2}}{2 \mu_{1}}\right)\right| k_{28}\right\rangle
\end{align*}
$$

here $t_{28}^{\ell_{23}}(\xi)$ is a partial two-body scattering amplitudes outside the energy surface and satisfies the equation

$$
\begin{gather*}
\left\langle k_{28}^{\prime}\right| t_{28}^{\ell_{28}}(\xi) \mid k_{28}>=\left\langle k_{28}^{\cdot} \cdot\right| V_{28}^{\ell 28} \mid k_{28}>- \tag{3.12}\\
-\int \frac{d q_{28} q_{28}^{2}<k_{28}^{\prime}\left|V_{28}\right| q_{28}><\left.q_{28}\right|_{28} ^{\ell_{28}}\left|k_{28}\right\rangle}{\frac{q_{23}^{2}}{2 \mu_{28}}-\xi}
\end{gather*}
$$

in this case

$$
\begin{equation*}
\left\langle k_{28}^{\prime}\right| V_{28}^{\ell_{28}}\left|k_{28}\right\rangle=\frac{2}{\pi} \int_{0}^{\infty} j_{\ell_{28}}\left(k_{28}^{\prime} r\right) j_{28}\left(k_{28} r\right) V(r) r^{2} d r \tag{3.13}
\end{equation*}
$$

where ${ }^{J_{\ell_{28}}}$ are the Bessel spherical functions.
Tine matrix elements "of the opexators $T_{85}(z)$ and $T_{12}(z)$

$$
\begin{align*}
& \left\langle\eta^{\prime} M^{\prime} \cdot \ell_{81}^{\prime} m_{81}^{\prime} k_{81}^{\prime} P_{i}^{\prime}\right| T_{81}(z)\left|I M \ell_{81} m_{81} k_{81} P_{2}\right\rangle \tag{3.14}\\
& \left\langle\eta^{\prime} M^{\prime} \ell_{12}^{\prime} m_{i 2}^{\prime} k_{i 2}^{\prime} P_{8}^{\prime}\right| T_{12}(z)\left|I M \ell_{12} m_{12} k_{12} P_{8}\right\rangle
\end{align*}
$$

can be written in a similar way.
In expanding the set (3.1) in partial waves it is comvenient to write the first equation in the basis $\mid f M \ell_{28} m_{28} k_{28} P_{1}>$, the second one in $\| \nmid \mathrm{M}_{81} \mathrm{~m}_{81} \mathrm{k}_{81} P_{2}>$ and the third equation in the basis $\mid\left\{M \ell_{12} m_{12} \mathrm{k}_{12} \mathrm{p}_{8}>\right.$ Multiplying the set of the equations (3.1) by the appropriate bra vectors we get

$$
\begin{align*}
& -<I M \ell_{28} \mathrm{~m}_{28} \mathrm{k}_{28} \mathrm{P}_{1} \mid \mathrm{G}_{0} \mathrm{~T}_{28}\left\{\left|\Psi^{(2)}>+\right| \Psi^{(3)}>1\right. \tag{3.15}
\end{align*}
$$

$$
\begin{aligned}
& \left.\left\langle t u \ell_{12} m_{19} k_{18} P_{8} \mid \varphi^{(3)}\right\rangle=-\left\langle\left\{M \quad \ell_{19} m_{12} k_{19} P_{3}\left|G_{0} T_{18}\right| \Psi^{(1)}\right\rangle+\right| \Psi^{(2)}\right\} \mid
\end{aligned}
$$

Making use of (3.17) and (3.8) for the initial state in the basis <IM $\mathcal{R}_{28} \mathrm{~m}_{28} \mathrm{k}_{28} \mathrm{P}_{1} \mid$ we have

Introducing the following notation

$$
\begin{equation*}
\Psi_{f_{M} \ell}^{(i)}=(k p)=\left\langle\downarrow M \ell m k p \mid \Psi^{(1)}\right\rangle \tag{3.17}
\end{equation*}
$$

and using $(2.6),(2.8),(3.9),(3,11),(3.16)$ and (3.13) we obtain

$$
\begin{aligned}
& { }_{1}^{\circ}{ }_{28}^{\circ}={ }_{28}^{\circ} \epsilon_{28}^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{F_{1} \ell_{12}}^{(2)} \quad\left(k_{12} P_{2}\right)=-G_{0}\left(p_{8} k_{12} z\right) \int d k_{i 2}^{\prime} k_{i 2}^{2} x
\end{aligned}
$$

To link the functions of (3.18) written in different bases we employ the formula

$$
\begin{align*}
& x_{\ell_{31} m_{81}}^{\Sigma}<1 M \quad \ell_{28} m_{23} k_{28} p_{1} \mid 1 M P_{81} m_{81} k_{31} p_{2}>\psi_{1 M \ell_{81} m_{81}}^{(1)}\left(k_{31} p_{2}\right) \tag{3.19}
\end{align*}
$$

and $5 \ell_{1}$ on, where the quantities like $\left\langle I^{\prime} M^{\prime} p_{28} m_{28} k_{28} p_{1}\right| I M \ell_{31} m_{81} k_{81} p_{2}>$ are referred to as recoupling coefficients $/ 10$ and given by

$$
\begin{aligned}
& \left\langle I^{\prime} \cdot I^{\prime} \cdot \ell_{23} m_{28} k_{28} P_{1} \mid I M \ell_{31} m_{81} k_{11} P_{2}\right\rangle=A \delta_{I I^{\prime}} \quad \delta_{M M} \quad \times \\
& \times \delta\left(\frac{\mathrm{k}_{2 \mathrm{a}}^{2}}{2 \mu_{2 \mathrm{~s}}}+\frac{\mathrm{P}_{1}^{2}}{2 \mu_{1}}-\frac{\mathrm{k}_{81}^{2}}{2 \mu_{31}}-\frac{\mathrm{P}_{2}^{2}}{2 \mu_{2}}\right) V\left(2 \mathrm{p}_{28}+1\right)\left(2 \mathrm{f}_{\mathrm{di}}+1\right) \times \\
& \times \mathrm{d}_{\mathrm{m}_{28} \mathrm{~m}_{81}}^{f}(x) \mathrm{d}_{\mathrm{m}_{28}}^{\ell_{28}} .\left(\theta_{28}\right) \mathrm{d}_{\mathrm{m}_{31}}^{\ell_{81}}{ }^{\mathrm{f}}\left(\theta_{81}\right)
\end{aligned}
$$

Here x is the angle between \vec{k}_{1} and \vec{k}_{2}, θ_{28} is the angle between \vec{k}_{1} and $\vec{k}_{2,}$, $\theta_{3_{1}}$ is the angle between \vec{k}_{2} and \vec{k}_{18} and A is definite constant.

Thus, using (3.19) we obtain the set of integral equations for partial waves.

The merit of these equations is that their kernels contain no ClebschGordan coefficients but are expressed in terms of the Wigner D-function possessing the well-known analytic properties in the total angular momentum,

The latter circumstance will play an essential role in investigating the analytic continuation of the Faddeev functions in the total angular momentum $/ 11 /$.

In conclusion we express our gratitude to N.N.Bogolubov, A.A.Logunov, B.A.Arbuzov, OA. Khrustalev and A.T.Filippov for valuable discussions.

References

1. R. Newton. Nuovo Cim. 29, 400 (1963).
2. R. Omnes, Preprint UCRL-11162 (1963), 11186 (1963). 11219 (1963).
3. M. MacMillan. Preprint, Cambridge, August (1963).
4. И.Ш.Вашакидзе, Р.М.Мурадян, А.Н.Тавхелидзе, Г.А.Чилашвяли, В.П.Шелест Прөпринт ОИЯИ, Р-1682, Дубна, 1984.
5. Л.Д.Фаддеөв. ЖЭТФ,29, стр, 1459 (1980).
6. Weinberg. Phys. Rev. 133, B232 (1964).
7. Dalitz. Phys. Rev. 94, 1046 (1954).
8. М.И.Широков. ЖЭТФ, 39, 633 (1960).
9. К.А.Тер-Мартиросян. ЖЭТФ, 44, 341 (1963).
10. Wick. Annals of Phys. 18, 65 (1962).
11. Tamarkin. Ann, of Math. 28, 127 (1927).

Received by Publishing Departament on April 28, 1964.

