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1. Introduction

The “ultraviolet catastrophe’ in modem field theory is essentially that the vacuum expectation values of the
most important physical quantities have singularities on the light cone.

The origin of these singularities may be sought for in the form of causality which is the basis of the physical
space-time metric: s3=t2-x2 ,

On the other hand, there are no grounds to believe that the form of causality in the microworld should coincide
with that in the macroworld as it is adopted in modem theory/l'2'3/. However, in Einstein-Minkowskispace there
exists no notion of the neighbourhood of the two points P(x°) and P(x”) since the distance x2= (x - x”%)?
is indefinite. For this reason any attempts to introduce the ‘‘universal’’ length which would characterize the small
space-time region in Einstein-Minkowski space are doomed

(ne may postulate, of course, that not only Finstein-Minkowski metric but also the very notion of space-time
continuum are not exact enough, and are not at all valid in the microworld. In this case, since we preserve the
notion of space-time continuum the theoretical scheme we are developing will be only a model of reality. In this
case also one has to define the notion of the “*microworld region’’; intuitively we are apt to mean by that elemen-
tary particle physics ~ the region of high energies and small distances.

” In the region of large distances and low energies there seem to be no reasons to doubt the validity of the con-
ventional concepts of space-time and causality. At any rate experiment yields no grounds for this.

Thus, whatever possiblg changes of causality would be on a “‘small scale’’ the notion of *““emaliness’ must
be defined and so that there would exist a transition to the ‘“‘large’” space-time regions where it is natural to keep
old metric relations.

Since the distance x2= t2~r2? ijn Einstein-Minkowski space is indefinite, in order to make a transi-
tion to large distances it is insufficient to have a scalar universal length a which would provide this transition.
It is necessary to have a certain time-like vector n ( without restrictions one can consider n3= }, n, > 0)

For the time being we will treat this vector purely forr.ally. The introdnction of this vector allows us, besides

the invariant x* = t2_r 2 to introduce the invariant I, = (xn)=tn, -ta .

Using these two invariants it is possible to form a positive-definite quantity

2 2 2
R =21 ~x"> 0, (1)
which permits to. define the notion of the neighbourhood of two particles in the four-dimensional spacestime in a

34,

invariant form
In the proper coordinate system where n ={(1,0,0,0) . R’ = t*+ r? weare able besides R:b in-
troduce the invariant
N .

L=_1! [yR =1 +11, (1)
vz X - X



which determines the neighbourhood of the point to the light cone ( — for the cone of the absolute future and + for

the cone of the absolute past); in the proper coordinate system

L=_1 (r+t).
Vo2
2 2 2

The second reason which does not make it possible to restrict to the invariant x =t -t is

5,6/

that if the signal propagation is allowed in the spatial region ( x’ < 0) ,asitis supposed in/ ™", then
such a violation of causality is symmetrical with respect to the past and future.

Meanwhile, causality must be violated (apart) independently for advanced and retarded interactions. Indeed, in
the conventional theory the general propagation function F may be represented in the form

rat adv

F =aF + b F . @

where a and b are arbitrary constants. The violation of causality ( which may be weak) must not put a
bound on the arbitrariness of the constants a and b .

So, we suppose that there is, besides the invariant X 2. 312 the invariant 1 _=(x1n)
as well. Further we note that there are two principally different possibilities for the choice of the unit vector 1
a) the vector n is exterior with respect to the system of interacting particles. A similar possibility is treated
in papersﬂ‘s/. Under such an assumption concerning the vector 1 there exists an explicit dependence of
the scattering amplitnde on the frame of reference ( see., e.g nl ). This means that the scattering amplitude
may be different in the laboratory system and in the centre-of-mass system. In other words, a possibility is al -
lowed that Mickelson’s experiment gives a positive result in the high energy region. This seems to be very attrac-
tive, but still very little studied.

Therefore, we will treat another possibility b) when the vector n s connected with the very system of
interacting particles ( see/3/ and /4/ ). It is supposed in this case that the violation of the metric relations
takes place not in vacuum, but in a medium formed by the matter of colliding particles. As a vector n one may
take any unit vector directed along the momenum of one or several particles participating in the collision*. How-
ever, it is more reasonable to take the vector I which is more symmetrical with respect to the particles or
their states. Such a symmetrical vector in the case of the pairing collision may be, for instance, the centre-of-mass

momentum of colliding particles P =(p+k) of the Breit vector P = {p+p”)

P

nz\jp ' P=(p+k) or P={(p+P ) (3)
(here p is the nucleon momentum , k is the meson momentum before the collision, prk’ are the same
quantities after collisions). By such a choice of n the scattering amplitude M - for the process

_

In this case of many particles each subgroup of the interacting particles may have its internal vector n -



a+b+c+d will be, as in the conventional theory, a function of only the invariants s =(p+k )2
and t = (p +p'-)’ =k’ ~k )2 and of some universal length @  which characterizes the acausality
region; M = M( s t,a)

f n ls a vector exterior with respect to the system of colliding particles, then in the amplitude M there
will hold an explicit dependence on the coordinate system so that besides s and t there will be present ,

at least one invariant =(p+k,n) which does not reduce to s and t .

2. Retarded and Advanced Amplitudes .

We assume that there exist asymptotic incoming and outgoing waves ¢, (x) and ¢°“ (x) (see, e.gn /97y,
which are related through the unitary matrix S

$ (x)=5¢ (x) s @

Then the retarded and advanced matrix elements of the scattering amplitudes M for the two-body process p+k+
+p’+k” (where p isthe nucleon momentum, k is the meson momentum before the collision, p%k’ the same

quantities after the collision ) may be written in the bnn/g’;

X (pkrpk )=t [ em d(kektyx) <pt | 2 (25 _ sTpp >
X -X
. o ¢(3) S40g)
Mok pk) =l fem (kb 0 2 (25 5 1lp > (59
54 (--X) 59021

These processes do not yet imply the causality of the processes.

1)

Denoting the one-particle matrix elements by

ret )] [ 8 S

6™ (x) =1 <p’] st e > )
»p a¢(_’.2‘—) 8¢(-_;_)

and
o:d’:(‘) “tcpf 8 (85 B ITE 6 )
dg(~X) &¢ (L)
2 S 2
we notice that
O (x) =0 Yex), B (x) =07 (x) -
PP 133 p’p PP

( In the following, for the notational simplicity we shall often omit the indices p and p’- .Instead of ¢ ,(x)
PP
we shall write @®(x)} ). It follows from (7) that the Fourier transforms of the corresponding functions possess the

properties: N

Q)= 9% (-Q), 87 (Q - 7' (-Q), o
8

Now we consider possible types of the causality violation which are compatible with the usual form of the

causality for large distances r and large time intervals t



We will be concemned at first with the usual retarded F""(x) and advanced F ‘dv(x) propagation

functions.

In Fig, 1 the shaded area shows the space-time region where these functions may be different from zero. At the

same time
ady ret
F (x)=F (-x).
()]

The corresponding acausal functions will be designated by ®(x) . The causality violation is supposed to
be that these functions may be different from zero outside the chaded area as well. However, they must decrease

sufficiently rapidly as we go into the *“forbidden’’ region:

r

ot
@ (x)-»0 at L=1 (r=t)se (10)
; 72 ,
adv ’
¢ (x)-0 at L=l (r+t)»m 10 )
V2 :

A more special case would have taken place if causality has been violated only near the vertex of the light -
1
cone. Here in (10) and (10 ) we should mean R-+oe insteadof Lo,
The remaining functions may be constructed in the usual manner out of d’“t(x) and o (x) .« The

acausal analogue of the causal commutator @ (x) is equal to

om) = (@) - 0T x) = 0T (x) v (x) =

. (11)
=<P"l[1(-21): j('__g-)]-[p>,
+
where J (x) = __E—S.___. § and d)i mean the positive and negative-frequency parts of the commutator
5 ¢ (x
® (x) . Similarly, the acausal analogue of the causal fanction T. ) s

o (x) =% (@ (1) +0" (0] - % (o (x)- @ (x) 1. 0

The ‘Becond requirement which we impose on the acausal propagation functions consists in the conservation of
the usual spectrality condition.

It follows naturally from the assumption that the acausality which manifest itself at small distances does not
affect the spectrum of free particles. The spectrality condition states that the Fourier transform of the acausal

function :D Q)

- -(® iQx 4
®(Q) =f0(x) e d x (13)

must vanish in some region R(Q)  which is the same as that for the corresponding causal function F(Q).
Hweput Y%(p+p"=(4,0,0,0) and denote by m, , m, the masses of the lowest intermediate states which

may contribute to the tems of the commutator then the region R (Q) will be determined by the inequality




a-— \/62 +m? <QO<—0 +¢62+ mzl (14)

2

i.e. , this is the region outside two hyperboloids. In the case a > _'_n’_t_m_l. these hyperboloids intersect.
2
For pion-nucleon scattering , we have:

m'=3m, m2=M+m,

3 Interaction with an Indefinite Signal Propagation .
In what follows we will consider a model of the acausal theory in which the signal propagates not quite along
the light cone.

To start, we take the sinplest example which is a direct generalization to the relativistic region of the acansa-
lity case treated in papers 9/ and /10/.
Let F"‘(x) be a retarded propagation function of the conventional local theory. We assume that in the

acausal theory the interaction may propagate inside the shifted light cone ( see Fig.I
Suppose that the magnitude of the shift is equal to
{=ano, (15)
where a is a certain small leng'th, n is a characteristic time vector, o is the invariant parameter ( the
“proper time'” ).
Then the true acausal propagation function will be

@™ (x)=F™ (x-¢ ), (16)

Regarding £ as a function of o and introducing the propagation function of the shifts f(g) , we can

write ( 1.6) in a more general form

' (x )= [F™ [x - £ ] f (o) do . (17)
For the advanced functions we shall have, respectively N
adv adv
® (x) =fF T x=~¢(a)] i (0)do, (18
In virtue of condition f (o) =f2(-0)= f(a),
The Fourierstransform of these functions states
®™' (Q) =F™ (Q)f(Qna) (19)
and _ .
“adv adv ,
¢ (Q)=F (Q)f('Qﬂﬂ)- (19 )
where 1Qnag (200

f(qua) = fe f(o)do,



It follows from (11), (19) and (19 ) that

® o> =F " (@) T(Qua)-F*(Q) f(-qna) (21
One can just see from here that the spectrality condition is fulfilled if T(Qna)= ; (-Qna) . Besides,
since the equality f(-Qna) = f ) (Qna) must be also fulfilled, the function ‘f'(Qna) must be

even and real.

Further, in the proper coordinate system n=(1,0,00), L=v2 &(cf. Fig 2 )5 therefore Lo means
that g+ o0 , It follows from here that the condition of the macroscopic causality will be fulfilled ( the
“‘apomalous’’ signal will be whatever emall ), if f(o) is a sufficiently rapidly decreasing function at g+

It is seen from the fomulae (19) aad (10 ) that for the quantities €' (Q)/ f(Qna) and
@*4v (Q)/f (-Qna) there will hold ordinary dispersion relations. The additional singularities of the
acausal fanctions @ ' and o~ coincide with the singularities of the functions ( +Qna) .
Note, that if f(a) falls off very sharply with the growth of o , then inthe Q plane appears a
singularity on a circle of infinitely large radius. For example:
f(o) =8(o~-1), ?(Qnu)aem“) (22)

-a %aqny?

2 ~ ’
flo)=¢e7 f(Qna)se 22 )

For a more smooth, exponential decrease there arises a pole
flo) =% ,o>0, T(Qua)=— L __ (22 )
1-iQna °
However, in virtue of what has been said above the spectrality conditions are satisfied by the function (22 1)
only.

A. Consider now a more general case of the acausal propagation function

A (x) = [F ™ (x=£)p, (£0)8E (2

Here the propagation function F“}X) is again taken over from the conventional causal theory, while the weight

function p . (&,n) vanishes at R+ . Note that condition (9) requires that p (£,n)=p (-&n)
1 3
Therefore, further we omit indices 1 and 2 Due to the vanishing of p at R-w macroscopic causality is fulfilled.
Indeed, the signal @ ret may be regarded as the one from a certain source p(X)  extended near
the coordinate origin r,t~0 ( see Fig.2). Further the Fourier transform states
o (@) =F™(Q) e (Qun) (20
@™ (Q) = F*(Q) p(-Q.n) (2 %)



where P (Q.n ) is the Fourier-transform of the function p(&n) . The symmetry conditions (8) require

that

PL-Qm) =5(Qun), 5(-Qum) =5 (Qum) ()

Then
Q) =[F™ (Q)=F*"(Q)) 7 (Qua) | ™)

These functions evidently vanish in the region R(Q) and, hence, the spectral condition is fulfilled.

Note, that the analytic properties of the functions 6(0) /5(Q,n) coincide with the analytic properties
of these functions in causal field theory.

As we have pointed out above the appearance of essential singularities ( at infinity) of the function

A IQ , Q2 ) is rather an anomaly than a usual situation.
Indeed, for this the space-time region of acausality should be sharply bounded ( sharper than by an exponent).
2

a
In particular, by a sharp cutoff p{x,n)= fdg& s (£ - H,) we shall have

4

m2q
0 2
~ 4 1qx ®
p(1,,Q% = — fd'z= e Y rags(g- Yy - (25)
o
8 ————
J;(ay2(Qn)* q3),
o’ [2(qn)~ 7], * e
where Ja (z) is the Bessel function. Since asymptotically J’ (2) ey _Z Cos(z .._E_ 7 ) ’
z Tz
then p( I,0Q 2) will have a singularity at infinity, This ia clearly seen in the proper coordinate

system n=(1,0,0,0), where the invariant

v2(Qn)'-Q” -y QP+ 37
———— 0 —————e
In particular, if thisis a Breit system then / Q: + Q3 =y/2w?-m 2___q 9’ where  ,  is the meson
energy, m s its mass, g is the momentum transfer. When ;: 0, lw}>> m the function 3
A 3

will contain the factor exp( «iy/2 o « )« For the Caussian diatribution

2

px)=dpemo T, p1,Q" = e (-2t2(qa) "o |
and the esseatial singularity is due to the factor exp — < o .
Now we consider in more detail the case when p (x) decreasea exponentially, or in a more general
form
" R
p(x) ~ R “P(—T_‘—). (26)

In this case there appear additional poles in the plane w .



For the sake of definiteness, we will be concerned with the case

p(x)=gf_‘_,—,—exp(-l) @
g » a° R a
( the factor u“ischosensothat ;(Q)—ol when a -0 ) . Then
Q) = g (2
1+d[2(Qn)—-Q]'
Or in the Breit system
p(Q) = ! 51 . (®)
1 +a (20 - @ —-q)

As far as there is no essential singularity at infinity, the dispersion relations with the necessary subtractions
may be written for the observed matrix element W (kyp’i Ep) .

Note that the case (A) treated above is formally obtained from (17), if we put

p(&n) =[8 (& ~ anc)flade

and integrate over £ .
ght cone. Here one

w we consider the case when the causality is violated only near the vertex of the i

B. No
can suppose:

(Dnt (x) = Fut (X) +¢ret (x,n ) , (m)
where o™ (xun) is an acausal addition to the causal function F ™' (x) vanishing as we go
away from the coordinate origin. e assume that dn"" (x,n) =¢"'(R’,xn) and that

¢™ (R%xn)- 0
R = (&)Y
Analogously one can introduce
¢sdv(x) - Fndv(x) + ¢ndv (x,n)
and hence .
re ady 2
d(x)=¢ (x)- @ (x) =F (x)+¢ (R ,xn)
At the same time
o (Rhxn)= o (R xn) = o7 (R xn )
Th ~
” ¢t(°)=f¢t(ﬁa.!n)upi0*d‘! =
2
& R(Q_En) (32)
P T T da’aps dndé
n
10



J,laR(Q=&n) 1.
= f¢i(a2.ﬁ ).‘B'f_"‘_ﬁ’_i_ a*dedfdé
R(Q-¢n) ’

Here R® (Q~£n) has the same meaning as in (1) with the substitution of x by (Q —¢n) :in the

system where n=(1,0,0, 0 ). R : = ( Qo - & )2 + 62 - In this system our expression is of
the form
~ %
33 (Q0= et (at gy ef Alavieea?+ Q. , da dp de
"‘_’—r—x-
—y \/(Qo- :) +Q
In virtue of the spectrality conditions ¢ (Q)=0 forall Q satisfying the inequality Qo >-a +
+ d2 4 ml’ » Similarly ;' (Q) =0 forall Q. satisfying the inequality Qo >a-y/ 6—2+ m:
The expression
s -
QQ-¢)+ Q7 = R¥(g) (33)

is a family of the circumferences of radius R and the coordinates of the centre (£.0,0,0) . We choose

R(&) = Ro (&) so that the hyperballs (14) would be envelopes for our family of the circamferences. Then

for the upper hyperboloid

* (£+a)’ 3
R (£ = 1 (34)

o

and ¢ must change within the interval [+ o0 , 2 m —a ], Here the lower boundary is found from the

2
requirement that Q =+ \/(_'f_:i). - mlz be a real value ). Similarly for the lower hyperboloid
2
- (£- 2
R (&)= o m,y (35)
and ¢  must change within the interval [ ~(2 m,-a), - °éb‘] Therefore, in order to satisfy the causality

conditions it is necessary that the integrande would vanish outside the given intervals, Thus, the spectrality con-

ditions are written down in the form

+ —_—
o (a8 ™ ap 1(aV o217 87 Jama

+ +
{ RE(R. &) for R < Ro({) (36)

bt

0 for R > Ro (&)
where £ changes within the above-mentioned intervals. It follows from theorem’ that if
R .

[ ag (a,,ﬁ)e’Bf dB—fRf(R £)J (eR’)R’dR” (31

11



4
s L . ’ -
and £~ (R’ &) is a holomorphic function of R'on the segment fromQup to R (£), then the spectrality

conditions (36) will be fulfilled x/.'&lbstimting (37) into (32) we get’:
+
oa R (¢

. P ’_0 £(z,£)dz?

$(Q) = [ d& ; —
m—a mhoo oz -l(Q-€)+Q ] (38)
n-(‘f) . 3
.(Qma-n) ? 0 f(z'f)dz
- e L , I
- mi 0 z2-[(Q -4 +Q" ]

i
where f (z,J) are the hofomorphic functions of the variable z on the half-axis from 0 to = . As to the
ady

t
analytic properties of & ™' in the continuationin w to the upper half—plane or in the continuation of ¢

ret
which is a Bessel transform

to the lower half--plane, they are determined by the properties f*dv (z,£)

of index 1 in the first argument and the Fourier transform in the second argament of the function ¢ adv {a . B)

(Ine can see by examples that the above—formulated cansality condition (31) allows a wide class of analyticity

violations involving the appearance of poles, cuts, and singularities.

4 Dispersion Relations

At first we consider the case A) when the scattering amplitude may be represented in the form

M (pik’ip k)=N(pVkipk)p(pkipk) ()

or N(pikipk)=X (pykipk) p-'(pikipk) , where N (p°k5pk) is the scattering emplitude
which possesses all the usual analytic properties of the causal scattering amplitude, and 5 (p5k%5p, k)

is the real function detemmined in §3B. To go on with the construction of dispersion relations we choose a special
coordinate system~ the Breit system in which the expression (3) will be' rewritten as

N(wAs) = M (eh &) 570 (@, A% ), (40)

x/
This theorem states’; If the real part exceeds 1 and if
q
£(A) =1 ¢ (p)I (Ap)pdp 0<p<q<
then ®

(0, p<r<gq

FEA) I (Ar)ada=t
° " [ 0<r<p, g<r< o

12



where wis the meson energy, e is the unitort [p and A = \/ma —-pg— m? The concrete form of dispersion
-t
relations will depend on the order of the growth of p . Indeed, the dispersion relations in energy for N in

case of forward scatt‘éring ( ; = 0) without subtractions, provided that ¥*(w) =M(~-w) / are as follows

Re M (w)p™' (w) = 20, RelRes N (w )]

= 4D
(wz-m,z)p(m,) )

. 2 ?}o Im M0V do’

kg

m (w’,s_ m’);(w’)
or
Re M (o) = _—@tRel[ResM(w,) f’(w)
(w? —w:) plw,) .
41 )

v 2 ey tnfeDe o]

g n (0 -~e Yp (0”)

2
In the frequency region where p (w), plw,)~1 andif the factor (m'?-—m ) cuts off the integrand
stronger than ;" {w) grows, one obtains ordinary dispersion relations. For the real dispersion relations ;;'l ")

must not grow faster than % If ;‘l(w') grows faster than «“then it is neccesary to increase the number of

subtractions, and the ordinary dispersion relations will no longer hold.

If the growth of M(0) remains bounded ~ &  what corresponds at present to the experimental data, then

the acausal dispersion relations may be written down for M(w) directly. They have the form

20 ¢ Re[Res M (0,)]. = P
Re M) = — ' el _Z.SJ’[IL””"’_""_.;‘_’__+W(I‘,) (42)
(w -02,) " m (m'-z—m) ’
her
e Y)=Re s L ¢ NI
t 2mi of v-a
(43)

x/

The condition for the field being real is ¢ (x) .



means the integration over the contours C; which rule out the singularities of the function p(v) . In

particular, if ;;(y) has only the poles then for a pair of the conjugated poles we get (cf.(28))
A+ Bow
¥ (o) = r Yt
(a-w)'+ b (49

i.es, @ relation different from the ordinary dispersion relations not only in the high energy region, but also at

low energies (if A #£0).

In the case B) one cannot write s0 generally the dispersion relations as it is done in the case A). However,

it is possible to apply the following recipe. We divide the total scattering amplitude M(w) into two parts
N (w) =7!(u(w)+ m.(w). (45)

where Y (w) is the scattering amplitude satisfying the *normal’ dispersion relations N (o) is the
acausal part of the amplitude appearing as a result of the causality violation in the vicinity of the vertex of the

light cone. In this case the dispersion relations may be written down for the difference

M) = M(w) ~ X (o).

(46)
We get
ReM(w) = Zo, Re[Resﬂ(mr )]
(@’~ o))
' 47
Nolde’
I L U T
" m ( w'- - w’ )
i
where
20, Re[Resm-(w')]
Y(w) = Re ﬂ-(w) - - —trn
(07 = o) (48)
_ _z. 9 | X, (0 Yede’
- ™ PRENINE]
re 2
Since the functions ¢>‘dt" (R ,xn ) are concentrated near the vertex of the light cone, the function
ret :
ﬂ- (w) which is the Fourier transform of ¢>'a" (R 2, ) vanishes at @ » o . Ifitis

14



not equal to zero everywhere, it is different from zero also at small frequences. Therefore the function ¥ (w) is
different from zero over the whole frequency interval. In virtue of this, the ordinary dispersion relations will not
be fulfilled both at high energies and at low ones.

In conclusion we write down the dispersion relations for 7~ N scattering with two subtractions under the

assumption that the scattering amplitade ™ (w)  is at infinity -~ and has singularities on the imagi-
nary axis: 2
;(w)=n_ where Q=1_
3 2 a
Q'+ o

and a is a universal length. Thus, the amplitude "M(w) has additional poles at the points o =+ i .
For charged pions we obtain in this case:

[(}) 0) 0)
D, (m)+D (w)-—D (0, ) =D _{w,) =

[A+(m')+A (w Now'do’
—_(w - w, )?r + (®)
(0?~? )(m-—mo)

2 2 ©)
+ W+ (w),

M 2M 2 3 m’

o~ (2251w - )1

0) (0) ©
D+(m)—D_(w)-—_...|D (a))—D (w W o=

wo
) ;
As(e) - A_(a) Ndo’ . (499

(o’

2 m(w2—m:)?f
w m

,2 2

-0 ?)(w -w,y)

2 2 €0)
= . f Y- le), ")
- (e - (mfy ¢
2N 0 28

n ()}
D,(w)+ D _(«) - 21D (w)+D (mo)l-
wo

M, , , -
R DA "] do
ra e n (w—m’)(m’?—m?,)

F (4 497)

2
3 w(w?-w, ) n
+ 28 0 + ‘l’+(‘°)v

—
M

lo ~ (22 )][wo 8.1

) 1)

Dy(w) - D ( )-D+(wo) + D_(wo)

- 200~ A2 (0" - A0 o dw’ - -
(w W, )?f (o1—0? )(m"-—w’) 497

2&2 2 3 mz-m: (&)
i L - 5 + ¥ (w) ;
MO (e - () -

2 o aM

15




)
for neutral D(Z)(w) - D, (wgo) =
- A(o)( Yo
_ 2 a 3)? o (0Nde +
2 2 2
8 " )2 w?-wg +¥4 ()
T e N L 2 | P S A
0 2M
(@]
Do (w) - Do (@)=
L e
2 o0 A wl_ w’
Y RS | > *
" wlw wo . ( 73 g)(woﬂ_woﬁ)
2 R 2
g wlw - wy) o
L 0 + ¥Y,(0).

2 2 .2 2 22
Additional terms lo’ =~ () Vo= (2D 1

) 0 ) (¢)) 0) o
‘P+ (@), \I’_(w), ‘P+(w)1 ‘P_ (‘0): ll’o (w ) l[lo (w):

may be written out in the form

© wa-—w: €0} ©

¥, (@) 5 o Fle)dy (AD)+d_(D),
D +w,
2

© w —w: -~ w o X ©

¥_(w)= 5 p(w) la, (i0)-a_ (iQ)N,
Q +w: Q

1 2 2 m N

¥, (@)= 22 G S la, (1) 8 G,
Q7+ w, Q

2 q

, . ‘
2 W" T, o m
¥_(0) = —7r——_.5(w)[d+(in)-d_(i0)].
Q +w:
(0) 2_ 2 ©)
@
Wy (@) = o Flw)d o (10),
Q"+ w
o el m
V() = 220 L5 (w)d, (GO,
Q +mo

where
d(z) = Re N(z), a(z)=1ImN(2).

Suppose that
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(i) =~ o ", ai) = ga”
Qs o0 Q00

where m< 0 ngl,

then the additional terms ¥ (w)  will be of the order

2
w? ~? n m
— 0 —ee . a §
Q + w N?24+0?2 ’

(53

o’ -w @ B Q n
O T g —r - .
Q + w Q*+ o Q
It is seen from here that at w << Q Bhe additional terms are small. But they become essential at >0
h -14
If the length a = o = 10 " cm, then already in the region ©  of several GeV essential deviations
from the nomal dispersion relations will take place. The analysis made in/lz’ 13,14/ shows that with the pre -
sently available accuracy the dispersion relations for # M scattering are fulfilled with an accuracy of 5-10%
in the region 0f 0.1 — 0.5 GeV and in the region of 10-20 GeV — with an accuracy of 10-20%. This points out that

the universal length is probably less than 1014 ¢,

5. Conclusion

We have considered two types of acausality: the acausality concentrated near the surface of the light cone
( the case A ) and the acausality concentrated near its vertex ( the case B ).

A measure of concentration of acausality is a certain universal length @ . As such we can take, for example,

-14
the Compton nucleon length ay = % =2.10 am. or a characteristic length of weak interaction
-G =17
a =v IqE. = 6. 10 om. Both these possibilities do not contradict the pres:ntly available ex~
c

perimental data.

In the cases  A) and B) the conditions of microscopic causality and spectrality were fulfilled

It turned out that the appearance, due to the acausality of the interaction, of the singularities at infinity in the
complex plane @ is rather an exception than a rule: for this it is n‘ecessary to bound sufficiently sharply the
space-time region in which the usual causality is violated.

Besides, one should bome in mind that the appearance of the factor e e in the scattering amplitude
will lead, in virtue of the optical theorem, to the oscillations of the total cross sections, while the appearance of
the factor e 'azwzto an essential decrease of the total cross section with the increasing ®

Both these possibilities are likely to be in contradiction with the well-known experimental facts. Nne can draw
a conlclusion that the space-time region of acausality must have a diffuse boundary ( the decrease is not faster
than the exponential one ) .

In this case no singularities appear at infinity in the complex plane . llowever, there appear other ad-
ditional singularities coinciding with those of the Fourier transforms of the functioms p(x,) (cf (23))

re

or ¢ : (x,n) (et (30). These function do not vanish in the spatial region of the variable x ~ «
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and therefore the singularities of their Fourier trsnsforms di ffer from the usual singularities characteristic of cau-
sal theory,

In view of these now singularities the dispersion relations for the scattering amplitude suffer this or that
change, what depends on the nature of the singularities of the fanction  p (q.n) of ¢ (Q.m)

This change is displayed in the appearance in the dispersion relation of additional terms of the type ¥(w),
(51) and (52) in the general case are essential not only in the high energy region (@ >> __1 '}  butalso
over the whole energy interval invol ving low energies. ¢

The example given in the previous Section shows that the universal length & is probably less than 1014cm.

If this is o, then in order to find lity it is y to make the verifi cation of dispersion rel ations more

precise. In particular, when a = 1016 cm, for the pions of 10 GeV energy, the accuracy should be higher than

3 %,for 20 GeV pions it should be more than 10%.

Therefore, the experimental veri fi cation of the dispersion relations for 7 N scattering( in this case, the non-
physical region @ is known to play no role) seems to be extrimely important and apparently quite a real prob-
lem of today’s experiments.

Although we carried out the calculations in the explicit form for the case when the vector n  is an intemal
vector of a system of interacting particles, all our conclusions hold true for the case when this vectoris extemal,
i.e. when the homogenceity of space-time is violated. Here it seems to be more important to check up a possible
violation of this homogeneity rather than to verify dispersion relations. This can be accomplished by comparing
the results of scattering experiments ( of electrons ) in the laboratory system and in the centre-of-mass system.
When the vector n  is external both these systems are equivalent: the system in which space inhomogenetien

are at rest is singled out if compared with the othera. The validity of this singling out will be treated in another

publication,

In conclusion the authors would like to thank the participents of the theoretical seminar and in particular

1. Todowv for useful discussions.
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(b) advanced interaction.
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Fig 2 (a) retarded (b) advanced interaction. A is the
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