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4 
1. Introduction 

The "ultraviolet catastrophe" in modem field theory is essentially that the vacuum expectation values of the 

most important physical quantities have singularities on the light cone. 

The origin of these singularities may be sought for in the form of causality which is the basis of the physical 

space-time metric: s2= t2- ;2 

IJn the other hand, there are no grounds to believe that the form of causality in the microworld should coincide 

with that in the macroworld,as it is adopted in modem theory11•2•31• However, in Einstein·\linkowskispace there 

exista no notion of the neighbourhood of the two points P(x') and P(x") since the distance x 2 = ( x'·- x'~)2 

is indefinite. For this reason any attempts to introduce the "universal" length which would characterize the small 

space-time region in Einstein•l\linkowski space are doomed. 

One may postulate, of course, that not only Einstein~linkowski metric but also the very notiDn of space-time 

continuum are not exact enough, and are not at all valid in the microworld. In this case, since we preserve the 

notion of space-time continuum the theoretical scheme we are developing will be only a model of reality. In this 

case also one has to define the notion of the "microworld region"; intuitively we are apt to mean by that elemen-

tary particle physics - the region of high energies and small distances. 

·· In the region of large distances and low energies there seem to be no reasons to doubt the validity of the con-

ventional concepts of space-time and causality. At any rate experiment yields no grounds for this. 

Thus, whatever possibls changes of causality would be on a "small scale" the notion of "..,allness" must 

be defined and so that there would' exist a transition to t~e "large" space-time regions where it is natural to keep 

old metric relations. 

Since the distance x2 = t 2_ r 2 in Einstein.,'\linkowski spsce is iodefinite, in order to make a tranai· 

tion to larj~e distances it is insufficient to have a scalar universal length a which would provide this trsnsition. 

It is necessary to have a certain time-like vector n (without restrictions ()ne can consider n 2 = 1, n > 0 i 
0 

For the time being we will treat this vector purely forr.ally. The introduction of this vector allows us, besides 

the iuvariant to introduce the invsriant 
.... 

I • = ( x, n ) = tn 0 - r n 

Using these two invsrisnts it is possible to form a positive-definite quantity 

2 2 2 
R=2I.-x ~o. (1) 

which permits to define the notion of the neighbourhood of two particlea in the four-dimensional spac~me in a 

invsriant fonn/3,4/. 

In the proper coordinate system where n : ( 1, 0, 0, 0 ) 
1 

R 
2 

= t
2 
+ r 

2 

troduce the invariant 

L 
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which detennines the neighbourhood of the point to the light cone ( -for the cone of the absolute future and+ for 

the cone of the absolute past); in the proper coordinate system 

L=-'_l_(r+t). v 2 -
The second reason which does not make it possible to restrict to the invariant x

2 

= t

2

- r • is 

h f h 

0 I 0 o II d 0 h o I o ( ' 0 ) o o d 0 /5,6/ h 
t at i t e signa propagatiOn Is a owe m t e spatia regwn x < , as II IS suppose m , t en 

such a violation of causality is symmetrical with respect to the past and future. 

Meanwhile, causality must be violated (apart) independently for advanced and retarded interactions. Indeed, in 

the conventional theory the general propagation function F may be represented in the form 

F 
ret 

= a F + b 
F adv (2) 

where a and b 
are arbitrary constants. The violation of causality ( which may be weak) must not put a 

bound on the arbitrariness of the constants a and b 
the invariant I x = ( x, n ) 

So, we suppose that there is, besides the invariant x 
2
= t

2
- r 

2 

as well. Further we note that there are two principally different possibilities for the choice of the unit vector n 

a) the vector n is exterior with respect to the system of interacting particles. A similar possibility is treated 

in papers/7 ,S/. Under such an assumption concerning the vector n there exists an explicit dependence of 

the scattering amplimde on the frame of reference ( see., e.g. /7/). This means that the scattering amplitude 

may be different in the laboratory system and in the centre-of-mass system. In other words, a possibility is al-

lowed that Mickelson's experiment gives a positive result in the high energy region. '~'his seems to be very attrac• 

tive, but still very little studied. 

Therefore, we will treat another possibility b) when the vector n 
is connected with the very system of 

interacting particles ( see/3/ and / 4/). It is supposed in this case that the violation of the metric relations 

takes place not in vacuum, but in a medium formed by the matter of colliding particles. As a vector n one may 

take any unit vector directed along the momenum of one or several particles participating in the collision*. How· 

ever, it is more reasonable to take the vector n 
which is more symmetrical with respect to the particles or 

their states. Such a symmetrical vector in the case of the pairing collision may be, for instance, the centre-of-mass 

momentum of colliding particles 
P =(p+ k) of the Breit vector P = (p+p'·) 

n = p 

TP 
(here p is the nucleon momentum, 

p = ( p + p' ) (3) P=(p+k) or 

k is the meson momentum before the collision, p',- k' are the same 

quantities after collisions). By such a choice of 
n the scattering amplitude m lor the process 

In this case of many particles each subgroup of the interacting particles may have its internal vector n • 

4 

• 

a + b .. c + d will be, as i.n the conventional theory, a function of only the invariants 1 

and t = ( p + p'·) 2 • ( k'- k ) 2 and of some uninrsal length a which characterizes 

region: , = m ( .. t, a ) 

II n 
is a vector exterior with respect to the system of colliding particles, then in the I!ITipl 

there wi s and 
will hold an explicit dependence on the coordinate system so that besides 

s and 

at least one invariant 
I = ( p + k, n) which does not reduce to 

2. Hetarded and o\dvanced Amplitudes. 

\'le assume that there exist asymptotic incoming and outgoing waves ¢ 1• (x) and ¢out (x) 

which are related through the unitary matrix S 
¢ (x) 

out 
s ¢ ( x l s·• 

In ° 

Then the retarded and advanced matrix elements of the scattering amplitudes :q{ for the two-b. 

~p' + k' (where p is the nucleon momentum, k is the meson momentum before the collilliot 

qu•tities after the collision) may be written in the lonn/9
1
; 

ret o S S S + 
lll (p;k'spk)=ifexp..L(k+k',x)<p'l~l S lolp> 

I 2 8 ¢(") S¢(-X) 
~ ~ + 

m"d(p'k'spk) -l I exp t< k+k',ox) <p'·l s [ ~ s liP > 
I I 8 cP (-_2_) 8 cp(~) 

These processes do not yet imply the causality of the procfesses. 

2 

Denotinp: the one.,artiele matrix elements by 
s s + 
- S liP> 

and 

we notice that 

<llr:t(x) •l <p'·l--
8 

PP 8 ¢ ~~) s ¢ (-~) 

(f}•d,v (x) = l < p'·l 
PP 

• 

2 2 

s [ 8 s 
8¢(-...!._) 8¢ (.....!...) 

2 2 

+ 
S liP> 

(f}r•: (x) ='flad",(-x) • 
~ ret (X) = 'f! ret ( X) , , 

p p pp p p pp 

(In the following, for the notational simplicity we shall often omit the indices P and p'· 

we shall write 'fl( x) ). It follows from (7) that the Fourier transforms of the corresponding 

properties: 
~ret (Q) = ;t;adv (•Q ), 

iret ( Q) 'I! rot (-Q). 

~ow we consider possible types of the causality violation which are compatible with the 1 

causality for larp:e distances r and large time intervals t • 
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ghbourhood of the point to the light cone ( -for the cone of the absolute future and+ for 

past~; in the proper coordinate system 

L=-!__(r+t). 
..; 2 -

ich does not make it possible to restrict to the invariant x
2 

= t
2 

_ r... is 

. ll d . h . l . ( 2 0 ) . . . d . 15•61 h ts a owe m t e spatia regton x < , as tt IS suppose m , t en 

ity is symmetrical with respect to the past and future. 

must be violated (apart) independently for advanced and retarded interactions. Indeed, in 

the general propagation function F may be represented in the form 

F = a Fret + b F adv 

(2) 

arbitrary constants. The violation of causality ( which may be weak) must not put a 

and b 

x 2= t2-r2 the invariant I x = ( x, n ) 

that there are two principally different possibilities for the choice of the unit vector n 

erior with respect to the system of interacting particles. A similar possibility is treated 

an assumption concerning the vector n there exists an explicit dependence of 

on the frame of reference ( see., e.g. n I). This means that the scattering amplitude 

laboratory system and in the centre-of-mass system. In other words, a possibility is al -

experiment gives a positive result in the high energy region. 'This seems to be very attrac• 

b) when the vector n is connected with the very system of 

and / 4/). It is supposed in this case that the violation of the metric relations 

hut in a medium formed by the matter of colliding particles. As a vector n one may 

ted along the momenum of one or several particles participating in the collision*. How-

to take the vector n which is more symmetrical with respect to the particles or 

etrical vector in the case of the pairing collision may be, for instance, the centre-of-mass 

P =(p+ k) of the Breit vector P = (p+p'·) 

P={p+k) or p = ( p + p' ) (3) 

k is the meson momentum before the collision, p',. k' are the same 

). By such a choice of n the scattering amplitude m for the process 

particles each subgroup of the interacting particles may have its internal vector n • 

a+b .. c+d will be, as in the conventional theory, a function of only the invariants s e ( p + k ) 2 

and t = ( p + p '·) 
2 

• ( k ' - k ) 
2 and of some uninrsal length a which characterizes the acausality 

region: lll = lll ( 1, t, '"a ) 

If n Is a vector exterior with respect to the system of colliding particles, then in the amplitude m there 

will hold an explicit dependence on the coordinate system so that besides s and there will be present , 

at least one invariant I = ( p + k, n) which does not reduce to s and 

2. Hetarded and .\dvan ced Amplitudes • 

We assume that there exist asymptotic incoming and outgoing waves </;1 (x) and </; (x) (see, e. flo, /9/ ), 
n oat 

which are related through the unitary matrix S 

</; (x) = S </; (X) s"'. (4) 
out fn 

Then the retarded and advanced matrix elements of the scattering amplitudes l!i for the two-body procesa p+k .. 

.. p' + k' (where p is the nucleon momentum, k is the meson momentum before the collision, p~k' the same 

quBIItitiea after the collieion ) may he written in the form/9/; 

rot 8 8 S + 
lll (p;k'spk)=lfexp.L(k+k',x)<p'l~--[ Sl-IP> (5) 

I 2 8 <f;(X) 8¢>(-X) 
2 2 

m•d{p'k'spk) =l f exp t< k+k',·x) <p'l 8 [ _B_S_ S + 11 p > (5') 
I I 8 </> (-~) 8¢(2_) 

These processes do not yet imply the causality of the prolesses. 
2 

Denoting the one-particle matrix elements by 

and 

we notice that 

<!I ret (x) = l .<p'·l--8 
p'p 8 ¢ (~) 

~·~v(x) =l <p'·l 
pp 

2 

8 [ 
8¢(-...!._) 

2 

~s+llp> 
8 ¢ (-~) 

2 

8 s S+llp> 
5¢ (_...!.__) 

... 2 

~·o: (x) =~·d"A·x), ~rot (x) =~ret (x) , . p p pp 'P p pp 

(6) 

(6 1.. ) 

(7) 

( In the following, for the notational simplicity we shall often omit the indices P and p'· • Instead of oil , (x) 
p p 

we shall write ~( x) ). It follows from (7) that the Fourier transforms of the corresponding functions possess the 

properties: 

¢rot (Q) = ~adv (•Q ), i rot ( Q) ¢rot (·Q), 

(8) 

~ow we consider possible types of the causality violation which are compatible with the usual form of the 

causality for large diatances r and large time intervals t • 
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\Ve will be concerned at first with the usual retarded Fret( x) 
and advanced F adv ( x) propagation 

functions. 
In Fig. 1 the shaded area shows the space-time region where these functions may be different from zero. At the 

same time ... 
(x) = F 

adv 
F (-x). (9) 

The corresponding acausal functions will be designated by <ll ( x) • ·The causality violation is supposed to 

be that these functions may be different from zero outside the shaded area as well. However, they must decrease 

sufficiently rapidly as we gn into the "forbidden" region: 

ret (10) 
<1> (x) -+ 0 at L =_1_ (r-t) .... 

y2 
adv no' l 

• {x) .. 0 at L=-1- (r+t) .... 
y2 

A more special case would have taken place if causality has been violated only near the vertex of the light 

1 
cone. Here in (10) and (10 ) we should mean R .. oo instead of L .. oo 

The remaining functions may be constructed in the usual manner out of <11ret{x) and <11adv (x) 
• The 

acausal analogue of the causal commutator <11 (x) is equal to 

<1> (x) = <11ret (x) - <1> adv (x) = <11 + (x) + <11 {x) 
(11) 

=<p'·i[l(~). j(-2-)J.Ip>, 

1) s 
2 2 

S + and <11:!: mean the positive and negative-frequency parta of the commutator 
where j(x) 

<11 (x) 

1) cp (x) 
• Similarly, 

the acauaal analogne of the causal function T c (x) is: 

r t adv + -
<11 

0 
( X ) = Y, ( <11 e (x) + <11 (x) ) - Y, ( <11 (X ) - <11 (X ) ) (12) 

The ·second requirement which we impose on the acausal propagntion functions consists in the conservation of 

the usual spectrality condition. 
It follows naturally from the assumption that the acausality which manifest itself at small distances does not 

affect the spectrum of free particles. The spectrality condition states that the Fourier transform of the acausal 

function <11 (Q) 

<11 ( Q) = r <11(x) 
IQX 

e d 4 x (13) 

which ia the same as that for the corresponding causal function F (Q). 
must vanish in some region 91 (Q) 

If we put Y. ( p+ p ') = (a, 0, 0, 0) and denote by m 
1 

, m 
2 

the masses of the lowest intermediate states which 

may contribute to the terms of the commutator then the region 91 ( Q) will be detennined by the inequality 

6 

• 
~ ~ 

-+ 2 2 .. 2 2 
a-vQ +m

2
<Q

0
<-a+Y.Q+m 1 

i.e. , this is the region outside two hyperboloids.ln the case a > m I + m 2 
these hyper! 

2 

For pion-11ucleon scattering , we have: 

m
1
= 3m , m2 M+m. 

3. lnteraction with an Indefinite Signal Propagation. 

In what follows we will consider a model of the acausal theory in which the signal propagal 

the light cone. 

To start, we take the simjolest example which is a direct generalization to the relatiolistic r 

lity case treated in papers 19 I and /lO 1. 

Let F'"'(x) be a retarded propagation function of the conventional local theory. We assu1 

acausal theory the interaction may propagate inside the shifted light cone (see Fig.l \ 

Suppose that the magnitude of the shift is equal to 

.;=an u, 

where a is a certain small leng'th, n is a characteristic time vector, u is the invariant 1 

"proper time" ) • 

Then the true acausal propagation function will be 

<11 ret ( X ) = f ret { X - .; ) • 

Regarding .; as a function of u and introducing the propagation function of the shift 

write ( 1.6) in a more general fonn 

<11ret ( x ) = f F ret [ x - ~(u) ] f 1 (u) d u • 

For the advanced functions we shall have, respectively 

• adv adv 
¢ (x) =JF [x- .;lull f 2(u)du. 

In virtue of condition f 
1 

( u) = f 2(· u) = f (u). 

The Fourier-transfonn of these functions states 

<11 ret ( Q) = F rot ( Q ) f ( Q n a ) 

and 
~adv(Q) = Fadv(Q) f (. Qna), 

where f ( Qn a) = J e IQnau f ( u) d u • 
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<ll 

F'"'(x) and advanced F adv ( x) propagation 

shows the space-time region where these functions may be different from zero. At the 

adv 
F 

... 
(-X) • (x) = F 

(9) 

functions will be designated by <ll ( x) • The causality violation is supposed to 

be different from zero outside the shaded area as well. However, they must decrease 

into the "forbidden" region: 

••• 
(x) ~ 0 at L =_1_ (r-t) .. ~ (10) 

y2 
adv 

~ (x) .. 0 at L=_1_ (r+t) .. ~ oo' > 
y2 

have taken place if causality has been violated only near the vertex of the light 

) we should mean R .. oo instead of L .. oo 

may be constructed in the usual manner out of <ll'"'(x) and 

(x) 

commutator <ll (x) is equal to 

w'"'(x)- <lladv(x) = <ll+(x) +<ll (x) 

= < p' I r l <2. l. 
2 

i(-2...)].Jp >. 
2 

<lladv (x) • The 

(11) 

+ s and <!>:+:: mean the positive and negativ.,..frequency parts of the commutator 

the acausal analogue of the causal function g) c (x) is: 

[ <!>'"' (x) + <!> adv (x) ] - Y. [ <ll + (X) - <ll- (X ) ] 
(12) 

which we impose on the acausal propagation functions consists in the conservation of 

the assumption that the acausality which manifest itself at small distances does not 

cles, The spectrality condition states that the Fourier transform of the acausal 

<I> ( Q) =I <ll (x) IQx 
e d 

4 
X 

(13) 

9l (Q) which is the same as that for the coJTesponding causal function F (Q). 

0,0) and denote by m1 , m2 the masses of the lowest intermediate states which 

the commutator then the region 9l ( Q) will be determined by the inequality 

6 

.. 2 2 - .. -2--2 
a-yQ +m

2
<Q

0
<-a+yQ+m

1 (14) 

i.e, , this is the region outside two hyperboloid& 1n the case a > mt + m 2 

2 
these hyperboloids intersect. 

For pion..,ucleon scattering, we have: 

m
1

= 3m , m 
2 

M + m , 

3. lnteraction with an Indefinite Si goal Propagation . 

In what follows we will consider a model of the acausal theory in which the signal propagates not quite along 

the light cone. 

To start, we take the s~lest example which is a direct generalization to the relathistic region of the acausa• 

lity case treated in papers 19 I and /lO 1. 

Let F'•'(x) be a retarded propagation function of the conventional local theory. We assume that in the 

acausal theory the interaction may propagate inside the shifted light cone (see Fig.l \ 

Suppose that the magnitude of the shift is equal to 

.;=ana, (15) 

where a is a certain small leng•th, n is a characteristic time vector, a is the invariant parameter ( the 

"proper time" ) • 

Then the true acausal propagation function will be 

<!> ret ( X ) = F rot ( X - .; ) • (16) 

Regarding .; as a function of a and introducing the propagation function of the shifts f(a) , we can 

write ( 1.6) in a more general form 

<~~'"'tx )= fF'"' [x -.;(a)] f
1

(a) da (17) 

For the advanced functions we shall have, respectively • 
adv adv 

<ll (x) =fF [x- .;(a)] f
2
(a)da, 

(18) 

In virtue of condition f 
1 

( a) = f 
2
(- a) = f (a). 

The Fourier-transform of these functions states 

<ll'"' ( Q) = F ••• ( Q ) f ( Q n a) 
(19) 

and 

~adv(Q) =Fadv(Q)f(-Qna), , 
(19 ·) 

where - lQnau 
f ( Qn a) = f e f (a) d a • (20) 
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It follows from (ll), (19) and ( 19 ) that 

<11 (Q) =Fret (Q) f(Qna)-F"dv(Q) f(-Qna) (21) 

One can just see from here that the spectrality condition is fulfilled if f(Qna) = f (-Qna) • Besides, 

sincetheequality f(-Qna) = f
0

(Qna) must be also fulfilled, the function f( Qna) must be 

even and real. 

Further, in the proper coordinate system n= ( 1,0,0,0), L=Jf~(c£. Fig. 2); therefore L-+~ means 

that u-+ + oo • 
It follows from here that the condition of the macroscopic causality will be fulfilled ( the 

"anomalous" signal will be whatever small ) , if f(u) is a sufficiently rapidly decreasing function at u .. ~ 

It is seen from the formulae (19) sod (19 ) that for the quantities 
.t,r•t (Q) I f (Qna) and 

<11 &d v ( Q) 1 f (- Qn a) there will hold ordinary dispersion relations. The additional singularities of the 

rot 
acausal functions <11 

adY _ 

and <II coincide with the singularities of the functions f ( ~ Qna) • 

~ote, that if f ( u) falls off very sharply with the growth of u , then in the Q plane appears a 

singularity on a circle of infinitely large radius. For example: 

f ( u ) = 8( u-1 ), 

f ( u) = 
•U2 

e 

f(Qna)~eiQna 

f ( Q n a ) = e ·• 2(Qn) 2 

For a more smooth, exponential decrease there arises a pole 

f (u) = e-u - 1 , u>0, f(Qna)=----

(22) 

(22 

(22 
1-iQna 

spectrality conditions are satisfied by the function (22 1 ) However, in virtue of what has been said shove the 

only. 

A. Consider now a more general case of the acausal propagation function 

~ret(x) = f Fret (x -.~) P (~,'n) d '.; 
. I 

(23) 

r•\ 
Here the propagation function F \X) 

is again taken over from the conventional causal theory, while the weight 

function p ( .t", n) vanishes at R-+ ~ • Note that condi lion (9) requires that p (.;, n) = p (- .;,n) 
I I 2 

Therefore, further we omit indices 1 and 2. Due to the vanishing of p at R .. ~ macroscopic causality is fulfilled. 

Indeed, the signal 
<]) ret may be regarded as the one from a certain source p ( x) extended near 

the coordinate origin r, t - 0 ( see Fig.2). Further the Fourier transform states 

~ret ( Q ) = f ret ( Q ) p ( Q , n ) (24) 

<lladv ( Q) Fadv(Q) p(-Q,n) (24 • ) 

l.l 

" 
;\ll 

~ ~·I 

~ If '~. ,;. i'"~ j, 

6 

8 

• 

where p ( Q, n) is the Fourier-transform of the function p ( .;, n) • The symmetry co• 

that 

- - - -· p (·Q,n) =p(Q,n), p(-Q,n)=p (Q,n) 

Then 

<ll(Q) =(Fret (Q)-Fadv(Q)].p(Q,n). 

These functions evidently vanish in the region 9l ( Q ) and, hence, the spectral cond 

Note, that the analytic properties of the functions 

of these functions in causal field theory • 

~(Q) /P(Q,n) coincide with the 1 

As we have pointed out above the appearance of essential singularities ( at infinity) of th 

p ( I , Q2
) is rather an anomaly than a usual situation. 

Q 

!ndeecl, for this the space-time region of acausality should ~e sharply bounded ( sharper t 
4 a 2 

In particular, by a sharp cut off p ( x, n) D • rd.~ 8 ( ·~- R ) we .hall! 
IT2a 

P < IQ, o•> = __ 4 __ 
IT 2 a 4 

8 

.2 
• IQX 2 

fd X e fd,;8(,;- R) 

Ja (a V 2 ( Qn) »_ Q 2) 

where 

a 2 (2(Qn)~], 
J

2 
( z) is the Bessel function. Since aaymptotically J ( z) • v~ Cos ( z-

- 2 2 IT z 
then p ( I Q, Q ) will have a singularity at infinity. This is clearly seen in th 

system n = ( 1, 0, 0, 0), where the invariant 

v2(Qnl~.:.~- =vQ2 + q• 
0 -----..-

In particular, if this is a Breit system then y Q 2 + Q2 =y2<U 2 -m 2·-q 
2 

where 
0 ' .. 

energy, m is its mass, q is the momentum transfer. When q • 0 , I"' I >> m 

will contain the factor exp ( & J,V2 "' a ) • For the Cau saian di atribution 

(U 

tl 

R 2 

p (X)= _!_,_ 8JP - -- ' 
a • a 2 

- 2 ft~ 2 2 
p(IQ,Q )~up1-ft2(Qn) -Q ]I 

and the essential singnlari ty is due to the factor 

Now we consider in more detail the case when 

form 

2 2 

a "' exp --2-

P (x) decreases exponentially, or 

p (x) .. Rm •liP (-~) 
a 

In this case there appear additional poles in the plane <U • 
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and ( 19 ) that 

<ll (Q)=~'"'(Q)f(Qna)-F"dv(Q) f(-Qna) (21) 

that the spectrality condition is fulfilled if f {Qna) = f (-Qna) • Besides, . 
a)= f (Qna) must be also fulfilled, the function f(Qna) must be 

nate system n=(1,0,0,0), L=y'Z~(cf. Fig.2); therefore L-+oo means 

from here that the condition of t~e macroscopic causality will be fulfilled ( the 

f(u) is a sufficiently rapidly decreasing function at u-+oo 

(19) and (19 ) that for the quantities ~··• (Q)/ f {Qna) and 

there will hold ordinary dispersion relations. The additional singularities of the 
adv 

<ll coincide with the singularities of the functions f ( :!:: Qna) • 

falls off very sharply with the growth of u , then in the Q plane appears a 

tely large radius. For exampl~: 

u)=b(u-1), f(Qna)~ eiQna (22) 

u)= 
-u2 

e f(Qna)~ 

decrease there arises a pole 

-a 2(Qn) 2 
e (22 

f(u) =e-u ,u>O, f(Qna)= __ 1_ (22 
1-iQna 

been said above the spectrality conditions are satisfied by the function (22 1 ) 

general case of the acausal propagation function 

•!l'"' (x) = f F '"' (x -.;) p {,;, n) d 
4
.; 

I ' 
(23) 

is again taken over from the conventional causal theory, while the weight 

at R-+.. , Note that condition (9) requires that p (,;,n)= p (-,;,n) 
I 2 

land 2. Due to the vanishing of p at R-+oo macroscopic causality is fulfilled. 
,., 

may be regarded as the one from a certain source p ( x) extended near 

• t - 0 ( see Fig.2), Further the Fourier transform states 

~ret 
( Q ) = F '"' ( Q ) p ( Q , n ) (24) 

<!Jadv { Q) Fadv(Q) p(-Q,n) (24 ') 

8 

• 

" ' 

where 
p ( Q, n ) is the Fourier-transform of the function p ( .;, n) , The symmetry conditions (8) reqliire 

that 

- - - -· p (-Q,n) =p{Q,n), p{-Q,n)=p (Q,n) 
(24 

Then 

<ll ( Q ) = [ F '"' ( Q ) - F ad v ( Q ) ) p ( Q, n) . I'll. 

(24 

These functions evidently vanish in the region 91 ( Q) and, hence, the spectral condition is fulfilled. 

Note, that the analytic properties of the functions ~ ( Q) 1 p ( Q, n) coincide with the analytic properties 

of these functions in causal field theory, 

As we have pointed out ahove the appearance of essential singularities (at infinity) of the function 

p( I , Q
2

) is rather an anomaly than a usual situation, Q 

Indee<l, for this the space-time region of scausality should be sharply bounded ( sharper than by an exponent), 
4 a2 2 

In particular, by a sharp cut off p (x,n) a fd,; b (,; _ R ) we shall have 
~r2a4 

P ( IQ, Q2) = 

0 2 
I a 

_4_ fd 4 x e Qx {d,; li(,;-
,.2 a 4 o 

(25) 
2 

R ) • 

8 

where 

ll 2 li J2(ay2(Qn)2-Q2), 
a f2(Qn)- Q ), 

is the Bessel function, Since asymptotically J ( z) • y---,; Cos ( z -...5.. rr ) 

then 
2 "z 4 2 . 

I Q, Q ) will have a singularity at infinity, This is clearly seen in the proper coordinate 

J2 ( z) 

p ( 

system n = ( 1, 0, 0, 0), where the invariant 

y2(Qn)2 .:.Q1" •yQ2 +Q2 
----.,-- 0 ----=--...... -

In particular, if this is a Breit system then y Q 2 + Q2 •v2w2 -m 2·-q 2 where 
0 , ... 

energy, m is its mass, q is the momentum transfer, When q • 0, I w I >> m 
\ 

will contain the factor exp ( .c i vT w a ) • For the Causaian distribution 

R 2 
p(xJ=...!.. exp---:T • 

a• a 

and the essential singularity is due to the factor 

- 2 .. ~ 2 2 
p(I ,Q )•api-~2(Qn) -Q] 

Q 4 
~ 2 a w 

exp-_2_ 

w is the meson 

the function p 

Now we consider in more detail the case when p ( x) decreases exponentially, or in a more general 

form 

m 
p (x) .. R exp ( -__!!_ ) 

a 

In this case there appear additional poles in the plane w • 

9 

(26) 



For the sake of definiteness, we will be concerned with the case 

p (x) = 1 • ~ exp(-~) 
811a"R a 

(27) 

( the factor a n is chosen 110 that p ( Q ) -+1 when a -+ 0 
) • Then 

1 
( 28) 

p (Q) = § 2 2 
1+a [2(Qn) -Ql 

Or in the Breit system 

p(Q)= •
1 

2 .... 

( 29) 

1 +a (2w -m -q) 

As far as there is no essential singularity at infinity, the dispersion relations with the necessary subtractions 

may be written for the observed matrix element ~ ( k',. p' ·; k, p ) . 

Note that the case (A) treated above is formally obtained from (17), if we put 

p ( e. n ) * f 8 ( e - an <1 ) f ( "' d <1 

and integrate over ~ • 
B. Now we consider the case when the causality is violated only near the vertex of the light cone. Here one 

can suppose: 
ct>'"t ( x) = F ••t ( x) + cf>'"t ( x , n ) 1 

(30) 

where cf>'"t ( x, n ) 
is an a causal addition to the causal function 

F .. t(x) vanishing as we gu 

away from the coordinate origin. \lie asswne that cf> ••t ( x, n) = cf> ••t( R

2

, x n) 

and that 

cf> ret ( R 21 X n) -+ 0 
(31) 

R .... 

Analogously one can introduce 
<I> adv ( X ) = F adv ( X ) + cf> adv ( x, n ) 

and hence ret adv 2 
ct>(x)=¢ (x)-41 (x)=F(x)+cf>(R,xn) 

At the same time 

cf> ( R2 , x n ) = cf> + ( R 
2

, x n ) - cf> 
• ( R , xn 

Then 
- + ± 2 • 
cf>- ( Q) = f ¢ ( R , xn) exp lQx d x = 

2 
R2(Q-~n) 2 (32) 

exp l [ 71 a + . ] da d {i d '1 d ~ 
4 71 

+ 2 
1M 

=-~ fcf>-(a 1 {3) e 

10 .. 
,...,.1~-· 

't 
)\ 

.,llcj! 

t: I 

'·•' 

-~ 

± 2 t{3f 
f cf> ( a , J:l ) e , 

J 1 [aR(Q-·~n)l· 
R(Q-~n) 

a 2 da df3 de-

Here R "I ( Q- ~n) has the same meaning as in (1) with the substitution of 
2 2 .... 2 

R = ( Qo-.;) + Q 

by (Q-X 

• In this system our 

system where n=(1,0,0,0), 

the mnn 
- ±. ± 2 'M 
cf>+(Q)=fcf> (a,f3)e 

2 .. 2 

~ [av'~Qo·el +_9 1 ·a•da dJ:l 
. • -~ 2 

y(Qo- .~) + Q 
-+ for all Q satisfying the inequal 

In virtue of the apectrality conditions "' (Q) =0 

Similarly <P- ( Q) =0 for all Q . satisfying the inequality Q 

+io• + m 
2 
1 

The expression 

0 

2 .. 

( Qo - ~ ) + Q 2 = R 2( 0 

is a f~Dily of the circumferences of radius R and the coordinates of the centre ( .; , 0, 0, 

110 that the hyperballs (14) would be envelopes for our family of the ci 
R(f,)=R 0 (~) 
for the upper hyperboloid 

+ 
R

0 
U) 

(f,+ a) 2 

2 

2 
m, 

' and ~ must change within the interval [ + .. • 2 m 1 - a 1 . Here lhe lower boundar 

requirement that Q =± v'(f,~ a)•_ m~ be a real value). Similarly for the lowerh 

R-(0= (f,-a) 
0 2 

2 
2 

m, 

and .; must change within the interval [ - ( 2 m2 - a ) , - .. ] Therefore, in ordet 

• conditions it is necessary that the integrands would vanish outside the given intervals. Th 

ditions are written down in the form 
;1:. 2 1{3f, - .. 

ff c/> (a, f3) e df:i J
1
(av' (Q0 -f, )

2
+ Q

2

)a
1 

+ 
;1:. 

R f (R, n RS:R:(.;l for 
+ 

where c 
'> 

0 for R>R~(f,l 

changes within the above-mentioned intervals. It follows from theorem

11 

± 
R (~) 

+ IM 0 + f a¢-(a2 , {3)e d{3= J R'C(R',-;l J (aR'·)R'dR' 
0 

11 



we will be concerned with the case 

p (x) = I• exp (-___!!_) 
811a•R 2 a (Z7) 

so that p (Q) ~I when a ~ 0 ) • Then 

p (Q) 
I + a~ r 2To--;;J2 -fl1 · ( 28) 

p(Q)= .- ..... 
I +a (2w -m -q) (29) 

essential singularity at infinity, the dispersion relations with the necessary subtractions 

matrix element :'ll ( k'; p'-; k, p) , 

above is fonnally obtained from (17), if we put 

p (e. n ) * J 8 ( e - an u ) f ( u) d u 

case when the causality is violated only near the vertex of the light cone. Here one 

<!>ret (X) = F rot (X) + ¢!"' ( X' n ) I 
(30) 

is an a causal addi lion to the causal function F ••• (X) vanishing as we go 

1\e assume that cf; ••• ( x, n ) = cf; •••c R2 , x n ) and that 

cf; ••• ( R 2
, x n ) -+ 0 

R (31) 

<!> adv ( X ) = F adv ( X ) + cP adv ( x, n ) 

... 
adv 2 

(x)- <!> (x) =F (x )+¢; (R ,xn) ¢I (X) = ¢ 

2 + 2 - 2 
¢>(R,xn)=cf; (R ,xn)-cf; (R,xn 

+ q,- ( Q) {cf;±(R
2
,xn)expiQxd 4 x = 

+ 
cf;- ( a 2. (3 ) e lfJe 2 R2(Q-(n) 

e:xp i [ 'I a + ] da 2dfJ d'l d( 
4 'I 

(32) 

10 

• 

tl 

f 
.:1',1\

1 

i
~r 

' . 
' . . 

~ 

± 2 1{31' J 1 [aR(Q-.;n)], r cP (a I fj )e > a 2 dadf3de 
R(Q-(n) 

Here 
R 

2 
( Q- (n) baa the same meaning as in (1) with the substitution of X by (Q -(n) ·:in the 

2 2 ...... 2 syatem where n = ( 1, 0, 0, 0 ) , 

the ~nn 
R = ( Q

0
- e) + Q • In this system our expression is of 

- ± ± 2 1{3( 
cf;+(Q)=Jcf; (a,(3)e 

In virtue of the spectrality conditions 
-+ 

¢ (Q) =0 

11 [ay'~~-~·a 2da dfj d( 
. 2 .; 2 

y'(Qo-.;) + Q 

for all Q satisfying the inequality Q >-a + 
0 

>a- v' ~2~ 
+iQ2 +m 2 . 

I 
Similarly ¢;- ( Q ) ~o for all Q • satisfying the inequality Q 

0 The expresaion 2 

2 ~ 

( Oo- ( ) + Q 
2 = R 2( () 

(33) 

is a f...,ily of the circumferences of radius R and the coordinates of the centre ( .; , 0, 0, 0 ) • We choose 

R(()=R
0
(() so that the hyperballs (14) would be envelopes for our family of the circumferences. Then 

for the upper hyperboloid 

+ 
Ro ( e ) ce+ a) 

2 

2 
2 m, 

(34) 

and ( must change within the interval [ +,. , 2 m,- a l. Here the lower boundary is found from the 

requirement that Q = ± v'( e: a) 
2

- m~ be a real value). Similarly for the lower hyperboloid 

Ro (eJ = 
<e- a ) 

------r-

2 

2 
m2 

(35) 

and e must change within the interval [ - (2m2 - a ) , - J1 Therefore, in order to satisfy the causality 

conditions it is necessary that the integrands would vanish outside the given intervals. Thus, the spectrality con

ditions are written down in the fonn 

where " '• 

rr ¢>± (a
2
, f3) e

1
p.; df:J J,(av (Qo-.;)ii:;:Q 2 )a 2 da 

± 
Rf(R,.;J for 

+ 
R ~ R:ce > 

±. 
o for R>Ro(el 

changes within the above111entioned intervals. It follows from theorem ill/ that if 
± 

R c6 + !J./: 0 .. 
fa¢-(a2,(3)e 1 ~'-'"' dfJ= f R'C(R',-.;)J (aR')R'dR' 

0 

11 

(36) 

(37) 



+ ± 
Hnd £- ( R'1 .~)is a holomorphic function of R~n the segment from 0 up to R (~),then the spectrality 

conditions (36) will be fulfilled x/. 'Substituting (37) into (32) we get': 

.P ( o) = r 
2m 1- a 

-(2m • a) 

r • d.; 

± 

R+ <•c) 

d" p 0 > t(z,t)dz 2 

~ - . r 

p 

"i 

"1 

R (•~) 
0 

-2------···------2----::;2-- -
z -[(Q0 -~) +Q 1 

• 2 
£ (z,.ndz 

2 ----2- """'2 
z - [ ( Q 0 - .;) + Q 

(38) 

where f ( z, ~ are the holomorphic functions of the variable z on the half-axis from 0 to oo • As to the 

I · · f "' ret · th · · ' h h If I · th ' ' f adv ana yttc properttes o 'I' 1n e conllnuat1on 1n w to t e upper a -p ane or m e contmualton o 9 
ret 

to the lower half-plane, they are detennined by the properties f adv ( z, ~) which is a Bessel transfonn 
ret 

of index 1 in the first argument and the Fourier transfonn in the second argument of the function ¢ adv (a , {3) 

One can see by examples that the above-fonnulated causality condition (31) allows a wide class of analyticity 

violations involving the appearance of poles, cuts, and singularities. 

4. Dispersion Relations 

At first we consider the case A) when the scattering amplitude may be represented in the fonn 

lll (p',-k'·; p, k) =N ( p',-k';·p k) p(p',k';p,k) (39) 

or N ( p ',. k '~ p k ) g lll ( p ~- k '1 p, k ) p" 1 ( p ',- k ';· p,k ) 
1 

where N ( p ',k ';·p,k) is the scattering smplitnde 

which possesses all the usual analytic properties of the causal scattering amplitnde, and p (p',- k';·p, k) 

is the real function detennined in §3B. To go on with the co.nstruction of dispersion relations we choose a special 

coordinate system· the Breit system in which the expression (3) will he! rewritten as 

N(w,A;) •lll (w,A:) p" 1 (w, A-;), 
(40) 

x/ 
This theorem statea': If the real part exceeds 1 and if 

f(A) = f ¢ (p)Jn(Ap) pdp O~p<q-:_oo 

then 
p 

¢(r) • p < r < q 

f f(A) Jn (Ar)AdA-=1 
0 0 • O<r<p, q<r< 

12 

-
-~. 

where wis the meson energy, e is the unit ort lP and ,\ = y w2
- p 

2
-m 

2 
• The concreto 

- •I 
relations will depend on the order of the growth of p • Indeed, the dispersion relations in 

case of forward scattering ( P = 0 ) without subtractions, provided that lll* ( w) =lll( -w) x 

or 

Re l!l (w )p" 1 
(w) 

2 w r Re ( Res lll ( w 1 ) 1 
--~-----------------+ 

(w 2 - w: )p (w
1

) 

+ 3.. p J 
Im lll(w')w'·dw' 

" ( "', 2 - "'2 ) p ("' ') 

Relll(w) = 
2w 1 Re[ Res~ (w 1 ) 

(w 2 - "': ) 

+ _2_ p (w) p J 

" 

Imlll (w')w'dw' 

(w' -w )p (w') 

p("') 

p(wl) 
+ 

2 

In the frequency region where p (w), p(w 1 )• 1 and if the factor (w'
2
-w ) cu 

stronger than p" 1 (w) grows, one obtains ordinary dispersion relations. For the res! diapers 

must not grow faster than w~· If p·l (w'~ grows faster than w'then it is neccesary to incro 

subtractions, and the ordinary dispersion relations will no longer hold. 

If the growth of lll (w) re.::ains bounded - w what corresponds at present to the e 

the acaussl dispersion relations may be written down for lll(w) directly. They have the l 

where 

x/ 

2w 1 Re[ Res l!l (wl)] · + .2... p J Im lll(w')w'd(u' + 'P(wl, 

Re m(w)= 2 " m (w'-2 -w 2 ) 
(w - "'1) 

'P(w) =ReI _•_ ,._ lll(v)dv 
I 2~rl l' ----

0i v -w 

The condition for the field being real is ¢ ( x) 

13 



± 
... lnmorphic function of R ~n the segment from 0 up to R (~),then the spectrality 

filled x/. 'Substituting (37) into (32) we get': 

¢ ( Q) r 
2m 1- a 

-(2m •a) 

r 2 
dt 

R+ c 
d c p 0 (•,) 

' ---:-- r 
+ 

f (z,t)dz 2 

p 

1T i 

1T I 
·--~- ·---~ --2----:; 2-- -

z -[(Q
0
-tl + Q I 

R (•;) " 2 
o f (z,()dz 
r 

2 :it -+ 2 
z - [ ( Q 0 - tl + Q 

(38) 

bofomorphic functions of the variable z on the half-axis from 0 to oo • As to the 
ret 

in the continuation in w to the upper half-plane or in the continuation of ¢ adv 
ret 

they are detennined by the properties f •dv ( z, t) which is a Bessel trsnsfonn 

ret t and the Fourier trsnsfotm in the second argument of the function ¢ adv (a , {3) 

that the above-fonnulated causality condition (31) allows a wide class of analyticity 

lappearance of poles, cuts, and aingolaritiea, 

case A) when the scattering amplitude may be represented in the fonn 

m , p', k'·; p, k > = N, p', k~· P k l P' (p',k';p,k > (39) 

(p~k';p,k) p" 1 (p~·k'~p,k) 
1 

where N(p',k';-p,k) iathescatteringamplitude 

analytic properties of the causal scattering amplitude, and p (p~- k';· p, k) 

in §3B. To go on with the eo_natruction of dispersion relations we choose a special 

system in which the expression (3) will be rewritten as 

N (w,A;) c m (w,A; l ;·I (w, A-: l I 

If the real part exceeds 1 and if 

f(A) = f ¢ (p)J
0
(Ap)pdp 

p 

¢(r), 
A) Jn ( Ar) A d A= I 

0 • 

12 

.. 

Os_p<q-:_oo 

p < r < q 

O<r<p, q<r< 

(40) 

where wis the meson energy, e is the unit ort lP and A = y w 2 
- p 

2
- m 2 

• The concrete fonn of dispersion 
-·I 

relations will depend on the order of the growth of p , Indeed, the dispersion relations in energy for N in 

case of forward scatt~ring ( p = 0 ) without subtractions, provided that m• ( w) =ln ( -w) x/ are as follows 

or 

Rem(w)p' 1 (w) 2w r Re[ Res l!l ( w r ) ) 

+ 2 P r 
1T 

Re lll (w) = 

(w 
2

- w: )p (w,) 

Im l!l(w')w'-dw' 

(w'·
2

- w
2

)p(w') 

2w r Re[ Res llt (w r) 

(w 2 
- w:) 

p( w) 

p(wr) 

+ _2_ p (w) p f Im!'ll (w')w'dw' 

1T .. (w' -w )p (w') 

+ 

2 
In the frequency region where p (w), p(w r ) • 1 and if the factor (w'·2 -w ) 

+ (41) 

(41 ) 

cuts off the integrand 

stronger than ;·I (w) grows, one obtains ordinary dispersion relations. For the real dispersion relations p'1 (w ') 

must not grow faster than w:- If j;'1(w') grows faster than w'then it is neccesary to increase the number of 

subtractions, and the ordinary dispersion relations will no longer hold. 
j, 

If the growth of lll (w) remains bounded - w what corresponds at present to the experimental data, then 

the acausal dispersion relations may be written down for lll(w) directly. They have the fonn 

2wr Re[Resl!l(wr)J. + ....2.. p f Imll!(w')w'cku' + 'P(w). (42) 
Re lll(w) = 2 11 m ( w'.2 - w 2 ) 

(w - wrl 

where 

x/ 

'I' ( w ) = Re I _1_ _. llr ( v) d v 
I 2TTi y --

Of v -w 

The condition for the field being real is ¢ ( x) 

13 

(43) 



means the integration over the contours C; which rule out the singularities of the function p(v) , In 

particular, if ~(v) has only the poles then fora pair of the conjugated poles we get (cf.( 28)) 

A+ Bcu 
'i' (cu) ~ 

(a-cu) 2 +b
2 (44) 

i.e., a relation different from the ordinary dispersion relations not only in the high energy region, but also at 

low energies ( if A .f 0 ) • 

In the case B) one cannot write so generally the dispersion relations as it is done in the case A), However, 

it is possible to apply the following recipe. We divide the total scattering amplitude m(cu) into two parta 

'-! (cu) = m 0 ("') + '"a ("') . (45) 

where :m.<"') is the scsttering amplitude satisfying the 'nonnal' dispersion relations m ( w) is the 

acanssl part of the amplitude appearing as a result of the causality violation in the vicinity of the vertex of the 

light cone. In this case the dispersion relations may be written down for the difference 

We get 

where 

lJI(cu) 

••t 

lHJcu) = lll(cu) -ll.(w). 

Re~ (w) = 
2w

1 
Re[Reslll(w, )} 

(w 
2 - "':) 

+ 

!. p J 
Im lll (cu')cu'·dcu' 

" 
, 2 2 

+ 1Jl (cu ), 

("' . -"' ) 

Re '-l.(cu) -
2cu 

1 
Re [Res lll • ( "'r )] 

(cu
2

- cu:) 

2 p J Im ll! .(cu'·)cu'dcu' 

•2 2 

" "' -"' 

(46) 

(47) 

(48) 

Since the functions </>ad v ( R , x n ) 
are concentrated near the vertex of the light cone, the function 

•at . 
ln. (cu) which is the Fourier trsnsfonn of q,• v ( R 2 , xn ) vanishes at cu + "" • If it is 

14 

• 

• 

~-~1 
\ 

not equal to zero everywhere, it is different from zero alao at small frequences. Therefore d 

different &om zero over the whole frequency intervaL In virtue of this, the ordinary dispersi 

be fulfilled both at high energies and at low onee. 

In conclusion we write down the dispersion relations for 11- N scattering with two sui 

assumption that the scattering amplitude ~ ( cu ) is at infinity - "' and has singu 

nsry axis: 

p (w) 

2 

0 
2 2 

n + "' 

where n ~ 
a 

and a is a universal length. Thus, the amplitude ~(cu) has additional poles at the poir 

For charged pions we obtain in this case: 

(0) (0) ( 0) 

D+ (cu) + D_(cu)- D+ (cu0 

(O) 
-D_(cu 0 )~ 

(0) (0) 

2 2 
2 

"' "" [A+(cu')+ A_(cu')] <u'dcu' 
-<"' -cuo)J r 

1T m (cu '-2 -cu 2 )( cu'-2- cu 2 
) 0 

2 2 

+ 

(0) 

2g m )2 
-(

M 2M 

w2- wo 

2 2 
+ 1Jl + (cu)~ 

(0) (0) 

D+(cu)-D_(cu) 

[cu 2_ (~ )2][w2 
2M 0 

(~) l 
2M 

"' 
(0) (0) 

ID+ (cu
0

) -D_ (cu 0 )1 
"'o 

2 2 2 
-- w (cu - "'o ) p r 

(0) (0) 

A+ (cu')- A_ (cu')] dcu' 

1T (cu'"-w 2 )(cu'
2

- w~ 

(0) 
2 2 

,lgm w(cu
2

-w;) + lJI_ (cu), 

~ [,.}2-
2 2 2 

(_2!1_) Hcu
0

-

2M 
(~)·] 

2M 

(I) (I) (I) (I) 

D + (w) + D _ (<<>) - ~ ID+ (w )+D+(cu 0 )1 
cuo 

[ (I) , (I) , } , 
2 

2 2 
""A+(cu)+A_(cu) dcu 

=- w(cu -"' ) p r 
" o m (cu'2 - "'2 )(w'~-"' o ) 

2 
2& +7 

2 2 
w(cu -cu

0
) 

2 22 2 2, 
{w - ( m ) ][cu -(J!LJJ 

(I) 

+ 1Jl + (cu)' 

nr o 2~1 
(I) ( 1) (1) (1) 

~ 

+ 

+ 

D+(cu)- D_(w) -D+(w0 ) + D_(cuo 

= ..2(cu 2 - w~) p f -~~(cu')- A<
1
>(cu')]cu'-dcu' ,+ 

1T m (cu'2-w 2 )(cu'11-cu:) 

2g 2 2 2 w - wo 
--(~) 2 
M 2M [w" -(~)2][cu2- (...!!L )2] 

2M 0 2M 

(I) 

+ 'i' (w) 

15 



over the contours C i which rule out the singularities of the function p (v) • In 

only the poles then forapairofthe conjugated poles we get (c£.(28)) 

A+ Bw 
'I' (w) = 

(a-w)~+b~ (44) 

from the ordinary dispersion relations not only in the high energy region, but also at 

0 ). 

cannot write so generally the dispersion relations as it is done in the case A), However, 

the following recipe. We divide the total scattering amplitude m(w) into two parts 

'-l(w) = m.(w) + ~a(w). (45) 

scattering amplitude satisfying the 'normal' dispersion relations '-! ( w) is the 

itude appearing as a result of the causality violation in the vicinity of the vertex of the 

the dispersion relations may be written down for the difference 

lllJw) = lll(w) -ll.(w). 

(46) 

Re ~ (w) = 
2<» r Re[Resl!l(w, )] 

+ 
(w

2
- w:) 

(47) 

!.. p f Im ~ (w')w'·dw' 
+ ll'(w), 

" 

(w) = Re '-!a (w) -

2 p J 
" 

~~\ ( R , xn ) 

Fourier transform of 

, 2 2 ) (w·-w 

2w 1 Re [Res lll a ( w
1

)] 

(w~- "'r2) 

lm lll.(w'~w'dw' 

•• 2 
w - w 

(48) 

are concentrated near the vertex of the light cone, the function 
'3' . q,• v (R 

2
, xn) vanishes st w .. oo • If it is 
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not equal to zero everywhere, it is different from zero also at small frequences. Therefore the function ljl (w) is 

different from zero over the whole frequency interval. In virtue of this, the ordinary dispersion relations will not 

be fulfilled both at high energies and at low ones. 

In conclusion we write clown the dispersion relations for "- N scattering with two subtractions under the 

assumption that the scattering amplitude :'!! ( w ) is at infinity - OJ and has singularities on the imagi-

nary axis: 
2 

n 
where n c 

a 
p (w) 

n 2 + "'2 

and a is a universal length. Thus, the amplitude :':l(w) has additional poles at the points w = + i!l • 

For charged pions we obtain in this case: 

(0) (0) ( 0) (0) 

-D_(w
0

)= D+(w)+D_(w)- D+(w
0 

(0) (0) 

2 2 2 ., 00 [A+(w}+A_(w')]w'dw' 
-;;-<"' -wo)J r 

(w •.2 _<U2 )( .,•.2_ <U~) 

2 2 

+ 

(0) 2g m )2 -<-
M 2M 

w2- wo 

2 m2 2 2 2 2 
+ IJI (w)~ 

+ 
[w - (_) llw - (~) ] 

2M 0 2M 

(0) (0) 

D+ (<U)- D_ (w)-
(<) 

(0) (0) 

In+ (w0 ) -D_ (<U 0 )1 
«lo 

(0) (0) 

2 2 2 __ w(w -w
0

)P( 
A+ (<UJ- A_ (w')].d<U' 

1T #"" 2 ,2 2 
( (<) -(<) )( (<) - (<) 0 ) 

(0) 2 2 
.lgm 

~ [<U2_ 

w (w ~ - w;) 
t '1'- (w ), 

~ ~ 2 

(.2'!.... l H (<)o -

2M 
(~)2] 

2M 
• 

(I) (I) (I) (I) 

D (w)+ D_(,,)- .~In+ (<U) + D+(«lo )I m 
+ «lO 

[ 
(I) , (I) , J , 

2 2 .. A+(<U )+A_(w) dw 
w(w -w

0
)P( 

2 
1T m (w'2-<U 2 )(w'~-wo) 

2 2 
(I) ~ 

+ 2& 
7 

w(w -w
0

) 

+ IJI + (w)' 
2 22 2 2,;1, 

[w - ( m ) ][ w - (..!JL.J 1 nr o 2M 
(I) (I) ( 1) (I) 

D+(w)-D_(w)-D+(w
0

) + D_(wo 

= .1.(w 2 - w:) p r ~~(w')- A<.!_>(w')]w'dw' 
1T m (w'2-w 2 )(w"~-w;) 

2g
2 

•• w -wo (I) 

+ 

+ 

.+ 

~(~) ~ 
M 2M [w~ _ (~)2 ][ w •- (...!!!...) 2] 

+ IJI (w) 

2M 0 2M 

15 

(~) 

(49') 

(49") 

(49"·) 

(49'"~) 



for neutral 
(0) (O) 

D 
0 

(w) - D 0 (w 0 ) = 

(0) , , 
A 0 (w ~dw 2 ~ 2 _(w -w

0 
)!J' 

" 
+ 

(w' 2 -w 2 )(w'~w~ 

• m 2 2 

~(--) 2 

w• • ~ -wo <OJ 

<

2

; )2 ][w; -(

2

mM2 )~] +'Po(w), 
M 2M [ w -

2 

1t 

(1) 

D 0 (w) 
w 

(I) 

Do (w0 )= 
wo 

2 2 "" (I) 
w (w - w ) p f A 0 (w')dw' 

0 ( .~ m W · - w 2
) ( • • 2 w - "'o) 

+ 

2 
g 

1f1 
w(w2 -w~) + 

(I) 

'Po(w). 

Additional tenns 
[w 2

- (~)2 llw 2-(~)2 ] 
2M o 2M 

(0) (0) (1) (1) (0) (1) 

IJI+(w), IJI_(w), 'P+(w), 'P_ (w), 'P0 (w), '1'0 (w), 

may be written out in the fonn 

where 

Suppose tlut 

(0) 

'P+ (w)= 

(0) 

IJI_(w) = 

(1) 

'P+(w)= 

(1) 

'!' (w) = 

(0) 

w - cuo 

0
2 +w~ 

2 
(LI - wo 

2··-2-

n +wo 

(0) 

p(w )[ d + 

(0) 

(lfl)+d_ (iO)], 

w (O) (0) 

p(w) __ [a+ (ifl)-a_ (if!)]., 
n 

(1) (I) 
w2 -w2 

0 ji(w)~[a (if!)+ a_(i{l)]., 

n 2 + w~ n + 

w2 -cu: (I) (1) 

p(w)[d+ (if!)- d_ (i!l)] 

n 2 + w~ 

2 2 (0) w -w 
'l'o(w) = ~ p(w )d 0 (if1 ) , 

{l +"' 

(I) 

'Po(w) = 

2 2 
w -"'o 
~ n + "'o 

(I) 

~p(w)d 0 (i!l), 
n 

d(z)= ReN(z), a(z)=lmN(z). 

16 

• 

(50) 

(50') 

(51) 

(51') 

(51") 

(51"') 

(52) 

(52') 

·~. ·~~~ 

d (if!) {lm a( i {l = f3 n n 

{l ... oo ' 

a 

n .... 

where m::; 0 n ::; l , 

then the additional tenns 'P ( w) will be of the order 

(1)2 - w? 
n 

n• 
----- a {l 

fl+w !1 2 +w 2 

2 ? n2 n 
w -wo u -~ {3 n 

It is seen from here that at 

n 2 +w 2 n2 +w 2 n . 
w .« fl 1\.e addi tiona! tenns are small. But they be com• 

JL the length a = _h_ = 10" 14 em, then already in the region w of several Ge' 

. MC: . . . . /12, 13, 14/ 
from the nonnal d1spers1on relahons wtll take place. The analysts made m shm 

aently available accuracy the dispersion relations for "N scattering are fulfilled with 1 

in the region of 0.1 -0.5 GeV and in the region of 10-:.n GeV -with an accuracy of ID-:n~. 

the nniversal length is probably less than 101
4 

em. 

5. Conclusion 

We have considered two types of acausality: the acausality concentrated near the surfac 

( the case A) and the acausali ty concentrated near its vertex ( the case B ) • 

A measure of concentration of acausality is a certain universal length a • As such w 

the Compton nucleon length 
h -14 

aM=_= 2.10 
MC 

em. or a characteristic lengt 

-- -17 
a =v ~ = 6. 10 em. Both these possibilities do not contradict the pres 

F h C 

perimental data. 

In the cases A) and B) the conditions of microscopic causality and spectrality were I 

It turned out that the appearance, due to the acausality of the interaction, of the singul• 

complex plane 
' w is rather..;, exception than a rule: for this it is necessary to bound 1 

space-time region in which the usual causality is violated. 
taw 

Besides, one should borne in mind that the appearance of the factor e in th• 

will lead, in virtue of the optical theorem, to the oscillations of the tots! cross sections, " 
2 2 

the factor e ·a w to an essential decrease of the total cross section with the increasin1 

Both these possibilities are likely to be in contradiction with the well-known experimet 

a oonlclusion that the space-time region of acausality must have a diffuse boundary (the d 

than the exponential one) • 

In this case no singularities appear at infinity in the complex plane w • However 

ditional singularities coinciding with those of the Fourier transfonns of the functiors pI 

,., 
or <? ( x, n) ( cL (3()). These function do not vanish in the spatial region of the 
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(0) (O) 
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(w) - D 
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(0) 
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D 0 (w) -
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wo 

2 2 ~ (I) 
w - w ) p ( A 0 (w')dw' 

0 ( , ~ m W · - w 2
) ( '!I 2 w - "'o) 

+ 

(1) w(w2 -w~) 
+ 'I' o (w). 

[w
2

- (~)2 ][w 2
-( __ 1!! .. ~_.)"] 

2M o 2M 

(I) (I) (0) (I) 

) , 'I'+ (w), 'I'_ (w), 1P
0 

(w), '1'
0 

(w), 

w2 -cu 2 
0 

fl 2 + w~ 

(0) 

p(w)[d + 

(0) 

(lfl)+d_ (if!)], 

w (O) (0) 

p(w) __ [a+ (if!)- a_ (i!l)], 
fl 

(I) (I) 

p(w) ~[a+ (if!)+ a_ (if!)]., 
fl 

(I) (I) 

p(w)[d+ (if!)- d_ (H1)] 

2 2 
w -wo - (O) 

!l2+w2 p(w)d 0 (in), 

2 2 
w -c.uo 
--r-----;
!1 + "'o 

(1) 
~p(w)d 0 (if!), 
fl 

~ Re N (z) , a ( z) = im N (z). 
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(50) 

(50'·) 

(51) 

(51') 

(51") 

(51'") 

(52) 

(52') 

d (in) m 
f3!l\ = a fl ' a( i !l ) = 

n--~ n--~ 
where m::; 0 n .:S l, 

then the additional terms 'I' (w) will be of the order 

w~ -w~ 2 
0 

a f! -~·---

fl + w 0 2 +w 2 

w
2

- w ? n~ w n (53) 
o... --.Bfl n• + w n~ + w ~ n · 

It is seen from here that at w .<< n ~e additional terms are small. But they become essential at w ~ n 
If. the length a = _h_ = 10-

14 
ern, then already in the region "' of several GeV essential deviations MC 

from the normal dispersion relations will take place. The analysis made i/12• 13• 141 shows that with the pre-

sently available accuracy the dispersion relations for 11 N scattering are fulfilled with an accuracy of 5-10" 

in the region of 0.1 -0.5 GeV and in the region of 10-ID GeV- with an accuracy of 10-IDr,. This points out that 

the uoiveraal length is probably less than 101 4 em. 

5. Conclusion 

We have considered two types of acausality: the acausality concentrated near the surface of the light cone 

( the case A) and the acausality concentrated near its vertex ( !he case B). 

A measure of concentration of acausality is a certain universal length a 
h -14 

• As such we can take, for example, 

the Compton nucleon length 
--- -17 

aM = -- ~ 2.10 
MC 

em. or a characteristic length of weak interaction 

a =v ~ = 6. 10 
F h C 

em. Both these possibilities do not contradict the pres,..tly available ex-

perimental data. 

In the cases A) and B) the conditions of microscopic causality and spectrality were fulfilled. 

It turned out that the appearance, due to the acausslity of the interaction, of the singularities at infinity in the 

complex plane 
.. 

w is rather an exception than a rule: for this it is necesssry to bound sufficiently sharply the 

space-time region in which the usual causality is violated. 
law 

Besides, one should borne in mind that the appearance of the factor e in the scattering amplitude 

will lead, in virtue of the optical theorem, to the oscillations of the tots! cross sections, while the appearance of 
2 2 

the factor e ·• w to an essential decrease of the total cross section with the increasing w 

Both these possibilities are likely to be in contradiction with the well-known experimental facts. ()ne can draw 

a conlclusion that the space-time region of acauaality must have a diffuse boundary ( the decrease is not faster 

than the exponential one ) • 

In this case no singularities appear at infinity in the complex plane w • However, there appear other ad-

ditional singularities coinciding with those of the Fourier transforms of the functions P (x,) ( cf. (23)) , .. 
or 9 ( x, n) ( cf. (3()). These function do not vanish in the spatial region of the variable x - a 
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I 

and therefore the singularities of their Fourier tr•sfonns differ from the usual singularities characteristic of cau-

11111 theory. 

In ~ew of these new singularities the diaperaion relations for the scattering ...,plitude .,{fer this or that 

change, what depends on the nature of the aingalarities of the function p (Q' D) or ¢ (Q, D) 

This change is diaplayed in the appearance in the dispersion ~ation of additional tenns of the type 'l'(w), 

(51) and (52) in the general case are essential not only in the high energy region ( w » _L_ ) but. alao 
a . 

over the whole energy interval inwl~ng low energies. 

The example given in the previoua Section ahows that the nniversal length a is probably leSB than l014cm. 

If thia ia ao, then in order to lind acausality it ia neceasary to make the veri&cation of di..,eraion relations more 

precise. In particnlsr, when a ~ 1016 an, for the pions of 10 GeV energy, the accuracy should be higher than 

3 ~,for ID Ge V pions it ahould be more than 10 '-

Therefore, the experimental veri &cation of the di..,eraion relations for "N scattering ( in this caae, the non-

physical region w ia known to play no role) seems to be extrimely importat •d apparently quite a real pmb-

lem of today's experiments. 

Although we carried out the calculations in the explicit fonn for the case when the vector n is.., internal 

vector of a system of interacting partidea, all our conduaioua hold tnJe for the case when this vector is extemal, 

i.e. when the homogeneity of ..,ace-time is violated. Here it seems ID he more important to check up a posaibl.e 

violation of this homogeneity rather than to verify di..,ersion relations. This can he accomplished by comparing 

the re .. Ita of scattering experiments (of electrous) in the laboi'Mory system ... din the centre-of...., ass syatem. 

When the vector n is external both these systems are equivalent: the ayatem in which ..,ace inbomogenetiea 

are at rest is aingled out if compared with the others. The validity of this aingling out will be treated in another 

publication, 

In condnaion the •thora would like to th..,k the particip•ta of the theoretical seminar and in particular 

1. Todomv '"useful discussions. 
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Fig 1. (a) retarded, (b) advanced interaction. 

A is the region of usual causality. B is the 

region of acausali ty • 
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Fi!jo 2. (a) retarded (b) advanced interaction. A is the 

region of usual causality • B is the region of 

acausali ty. 

The circle at the centre is the region where p(R)=/n • 
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