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IITOTHYECKHUX COOTHOIUECHHAX MeX Oy CeYeHHAMH IIpU
NEKTPOMATHATHOTO B3auMoOeACTBUA,

s iunwowil0, UYTO IIPH y4YE€TEe CHUJIBHOI'O U 3JIEKTPOMATHUTHOIO B3aUM O™
OeRCTBHE OTHOLIeHHe AudbepeHuManbHbIX CEYEHHH PacCesHud YacTHU

M aHTH4acCTHIl MPH BLICOKHUX PHEPIrHAX CTPEMUTCH K edHHHUEe, €CJZIh 3TH
CCUCHHA H3MEepeHbl annapatypo#t ¢ oOuHakoBOHR ( nocTaTouHo xopomeﬁ)
paspeilapiliefi cnoCobHOCTBIO 10 3Heprdd. OTHOCHTRMBHO IOBEEHUH
aMOauTy A Npd GONBIIUX 3SHEPrudx CLe/laHo NpealdioXKeHde, anHamoruy-—
HOE€ TOMY, KOTOpOe OBIIO HCHONb30OBAHO B pa60Te/1/ npu paccMorpe—
HUU CUNBHOI'O B3auMoneficteud.

Patora uanaeTcd TOJNbLKO HA AHTNIUACKOM d3blKe,

INpenpuatr O6beAMHEHHOrO0 MHCTHTYTA AQEPHBIX HCCIEeLOBAaHHR,
Ly6una. 1964.
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Asymplotic Relations between Cross Sections with the
Electromagnetic Interaction Taken into Account.

It is shown that the ratio of the differential cross sections for
particles anl antiparticles with strong and electromagnetic inte-
ractions taken into account tends to one at high energy if both
cross sections are measured with equal ( high enough) energy
resolutions, The assumption about high energy behaviour of the
scattering amplitudes which is made here is sirr/Jilar‘ to what has
been assumed for strong interactions in paper ! 1/ .

Preprint. Joint Institute for Nuclear Research,
Dubna, 1964,




In paper‘ll the equality of the differential cross sections for particles and anti-
particlesat high energies has been established on the basis of general postulates of the
local quantum field theory for strong interactions and under the assumption that at high
energies the scattering amplitudes do not oscillate. In this treatement the electromagne-
tic interaction has not been taken into account. On the other hand, the present experimen~
tal data show that the difference between » p and ﬂ+p cross sections at 20 to 30 BeV 1s a
few per cent. Can the electromagnetic interaction be responsible for this difference ?2

The purpose of this paper is to show that when the electromagnetic interaction is taken
into account then the differential cross sections for particles and antiparticles at high
energies are equal (their ratio 1s equal to 1) if both of them are measured with equal
(high enough) energy resolutions. The electromagnetic interaction will be considered in
the framework of the quantum electrodynamics and we shall make an assumption about the
high energy behaviour of the scattering amplitudes which 1s similar to what has been as~

sumed for strong interactions in paperlll.

Let us consider the processes (the bar designates the antiparticle)
a,+a_ »a +a &Y}
a,+a, a3, +a, , )
where the particles interact through strong and electromagnetic (or only electromagnetic)

interactions.

Let h(p:= mj) and z,e(e>0) be the momentum and the electric charge of the particle

a,(i= 12,3, 4) 1in process (1), p,(p.=m’>), p,(p =m]) and p, (i = 34) be the momenta of

the particles », , &, and a, respectively 1n process (2), s ={p’+p7)21=ﬂvfjind u=(p,—ﬁ;

Without the electromagnetic interaction the equality of the cross sectionsfor processes
(1) and (2) follows from the analytic properties of the four particle scattering amplitu~
des. When the electromagnetic interaotion is inoluded and process (1) involves charged par-
ticles, we oannot any longer confine ourselves to considering only four particle processes
(or processes with any fixed number of particles) amd must take into acoount an indefinite
number of soft photons which are emitted in processes (1) and (2) and esoape detection.
The amplitudes of processes (1) and (2) without emission of the photons are equal to zero;
this fact manifests itself in perturbation theory as infrared divergence. The usual way

to avold this difficulty 1s



to introduce a fictitious photon mass X 1intg the photon propagator and to put * =0 only
at the end of calculations when the cross section has been summed over all undetected pho-
tons. The disadvantage of this procedure is that the analytic properties of the amplitudes
as functions of s apd t may be different depending on whether X =0 or A #o0 . As we
want to use these analytic properties we shall proceed in the following way. Let us intyo-
duce A and denote by T7,(st) any of the invariant amplitudes for processes (1) and (2)
without emission of photons. We shall consider the invariant amplitudes with definite cross—
ing symmetry properties, which were used in paperlu. The dependence of 7, on the auxili-

liary parameter A can be taken into account explicitly with the aid of the formulalzl

Th = ew (Fy) T} €))
where the factor exp (F,)contains infrared divergences at X~ 0 . It is very likely (though
not rigorously provedlzl) that at A=0 1; 1s finite in the physical region. Under this

assumption we shall in the following consider the amplitude 7% at A=0 which will be de-
noted by 77 .

The function F, for process (1) is equal to

i ” _151 2070 F)“l ' (4)

where 0, ,-: for outgoing particles and -~ 1 for incoming ones,

. _ vk 2
F.. = a dk ¢ 20,p, -k _ 26,p;+ ) 5
MiC e T TRXT 20,p k-7 20,pk +K° ()

and « 4is the fine structure constant. For observable values of = By (s) = F/\"(s + i0) .

Integral representations for Faiy were given in papersiz’Jl.

The function F, for process (2) can be obtained from equation (4) by the substitu-
tion
L SRk m > m
(&)

Let us define the functions in question for negative s as the causal limit for

Ims ++ 0 . Then the functions F“\(a, t) are crossing symmetrio

Fo(st)= Fifu t). ¢))
From this and the continuity of 7; at a-o follows that the amplitudes 7° have
the same crossing symmetry properties as T, that is the properties which were considered

in paperlll.

The analytic properties of the amplitudes 7° are different from the analytic proper-
ties of the amplitudes in the theory of strong 1nteractionsl1l. In paper:’.Dl there were

oonsidered the analytic properties of 7° for photon, meson and fermion scattering in



quantum electrodynamics. It was shown there that instead of the poles (s ~m% ' and(a~m’)~'
which the amplitudes would have bhad in the case of a non-zero photon mass, the amplitudes

]
59 and ococu-m? PO 12
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7° have the so called infrared singularities, dO(t)(s-m
these singularities are subtracted from 7° , then at fixed ¢ <0 in the fourth order per-
turbation theory th¢ mAaining functions can be represented as dispersion integrals over

s along the real axis; they become infinite (in an integrable way) only at s - m~ and

u=m? .

We oan admit that the electromagnetic interaction in all orders in o does not vio—
late the analyticity of 7° in the upper half plane of s (at fixed ¢ ) and gives infi-
nite singularities on the real axis (infrared singularities, or Coulomb poles for the

charged particle scattering) only at a finite distance fromthe origin.

Let us assume now that the amplitudes I’ satisfy the same conditions at s+~ and
fixed ¢ as the amplitudes in the theory of strong 1.11ter:=\c1zion.~3”'l that 1s: 1) 71° 1s
less than any exponent e‘l'l ,e>0 at s+~ 1in the upper half plane; 2) at s -+ » along the

real axis there exist the finite limits

lim M = V(t) , lim L(j‘_) = v/(¢t) " (8)
oo B(8y 1) ! avoo g(—a, t) 2

among which at least one 1s not equal to zero. The function & (s} here 13 an admissible
function defined in'lla®. Por example at s+« 4 may behave as s )" (lnms) ",

where u 4, v 4 k s ara real,

In this case, using the crossing symmetry conditions and applying Phragmén-Lindeldf's
theorem with the contour going along the real axis for big |s| and rounding the origin
from above (to leave out the singularities of the amplitudes) we conclude that the limits

(8) are equal to each other.

Then we have at fixed ¢ .

im SPA(®Y L, (9
Ll daﬂ(s,!)

# When the processes in question are described by several invariant amplitudes some of
the amplitudes may satisfy condition (8) after multiplying them by s or s? . Then all
the amplitudes contribute to the cross section at s+ =~

*% {40s,51"" at fixed ¢ satisfies the oonditions: 1) 1t 1s analytic in the upper
half plane of # and less than any exponent el , e 50 at s+ 1g t}ie upper half
plane; 2) it is continuous along the real axis for big s ; 23) lim (&1 ot where

ult) is real. . e ¢(-5t)



where the cross sections are formally defined by the amplitudes 7, and T

We shall use equation (9) in the following. It is worth noticing that this equation
can be obtained upder some other assumptions. Let us consider the amplitude T, for big
enough A . As a function of = 1t has analytic properties which are gquite similar to
the properties of the amplitudes in the strong interactlon theoryu’“. If at s » L

and T, satisfy condition (8) (do not oscillate), then

im fo (g (10)
e oy (550

where the cross sectlons doy are defined by T, . The treatment up to this point is

quite similar to that in strong interaction theoryll’“.

It 1s not difficult to see (for instance, with the aid of a spectral representation

tor F,, 131y that at fixed ¢

lim Re(F, = F, )= 0. 1)

o

From (3), (10) and (11) we can write

tim dop(nd - 1, Q2)
oo da;)(s,l)

where doj, is defined by T, .

To get from here equatilon (9) we must assume that in equation (12) the order of the
limits at s -~ - apd A-~0 can be changed. It is sufficient for this to assume that for
the amplitudes T, ‘the limits (8) exist uniformly with respect to X (for *» 1ina
neighbourhood of zero), or that the amplitudes 7) (and function #(s ) ) are continuous

at A~ 0 uniformly with respect to ¢ for sufficiently big positive s .

Let us consider now the physical processes with emission of an arbitrary number of
soft'undeteoted photons. Let us suppose that the energy of these photons in the laborato-

ry system 1s sdall enough:
RN M b po <),

13)
where ¢ 1in general 1s much less than the electron mass, If for processes involving
strong interaction we neglect the contribution of virtual electron—-positron pairs, then

13 1s much less than the pion mass.

—¥ 515 condition can be written in a more general form:
(p,+ Py=py-pJc/Ve? e, (13a)

here a timelike vector. Condition (13 means that at fixed ! in the coordinate
!yggem ;hei‘g & =gm %ktheegng;gy ggso ugiox(l o%)the experimental arrangement shouiﬁ 115e

not worse than ¢ . In what follows we shalluse the invariant condition (13a).



Let us introduce the photon mass A and denote by ‘I;"’ an amplitude of processes

(1) or (2) with emission of » photons with the momenta k, and the polarizations e, .

Under condition (13) we can write

(n) n -
Ty, =(la,e,. )T

i=1

L a4

where for process (1) /with substitution (6) for process (2)/
(15)

LTS :‘:’l 6,p, /o, k

The amplitude 7, differs from the amplitude T, 1n (3) only by the new momentum conser-
vation law which contains now the momenta k, « This difference can be neglected for

small « . Then the physical cross section for processes (1) or (2) with emission of un-

detected photons is equal to

dote) = lim 3 e ST ﬂ.L_(:l_)-)en:IZReF‘\ ydo' s (16)
x»on=on o g2m) 2k,

where the region of integration-‘is defined by the conditﬂ.on 2 k c/\/c’g ¢ . Summing here
over n» 151 and taking the limif at A-0 we get the following result

L
do(e) = (2 )" W a0, 7)

where , is an arbitrary mass (de does not depend on u ). For process (1) /with sub—

stitution (6) for process (2)/ we have

IJ-KEI z,()’z,(l’b" » (18)
1+a m'm? %
b, = & (2-1m y: a=(1- 3
v w a I1-a (plp'J (19)
¥=I[T(rr+ B)I'? ~CB - D - 2ReG ),
[T(1+ B expy( eG ) (20)

where U 1is the I function and € 4s the Buler constant. The expressions for D and G

have the form of equation (18) where

y = dy -2, vd, G, -8, 28, +4, (21)
fd 1+ b

] L pyp, ! x’ % in i (22)
L o py I-h
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