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I. Introduction 

In paper/ 1 / invariant expansions of the scattering amplitude are introduc~d 
in terms of the eigenfunctions of the Laplace operator in the Lobachevsky space 

of relativistic velocities. It has been shown/
2

/ that 34 three- orthogonal coordi

nate systems exist in which the variables of the Laplacian in a three- dimensional 

space of constant negative curvature are separable. Four of these systems, spe

cially convenient for investigating binary collisions/ 3 /, i.e. those which have one 

center and are axially symmetrical have been studied in .detail in/ 1 / • 

In th:s paper we shall consider some of the properties of "these four sys

tems from the point of view of group theory and their connection with the four

dimensional angular momentum. Complete systems of commuting operators, corres

ponding to definite subgroups of the homogeneous Lorentz group, are introduced 

in each of these systems. The classical quantities corresponding to these opera -

tors are given explicitly and electromagnetic fields, in which they are conserved, 

are calculated. 

II. Infinitesimal Operators of the Homogeneous Lorentz Group 

We shall work in the space of funcJions determined on the upper sheet of 

a two- shee·t three- dimensional hyperboloid, which is an invariant hyper- surface in 

the four- dimensional velocity space (this is· a realization of the Lobachevsky 

space). • 

Let us consider representations of the homogeneous Lorentz group which 

have eigenfunctions of the Laplacian on the hyperboloid as their basis vectors 

and write down explicitly the infinitesimal operators. In the following A; are the 

infinitesimal operators of space· rotations, B; of hyperbolic ones. Other notations 

are the same as in/ 1 / • The infinitesimal operators can be obtained by solving 

the Killing equations/ 4 / , or directly as they are obtained in/ S/ for the rotation 

group. 

Spherical system S. 

a 
A,= cos <P a 

0 
-cot{l 0 sincp ~ 

rlc/J 

A =- sincp -L.- cotg 0 coscp _a_ 
• ao a¢ 

( 1) 
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B = sinO sin<fi.J_+ cth a rose sincf> L+ _1_ cth a ccs if; _a_ 
I aa ae sinO a¢ 

!1 = sin e cos¢ _2_ + cth a ens e cos'¢ j!_ - _1_ cth a sin ¢ _jJ_ 
2 aa ae sinO a¢ 

B =cosO _a_ -sinO ctha _a_ 
3 aa ae 

Hyperbolica.l system !1 

A =·!.._ 
I a¢ 

•• =·shb cos</; .J_+ tha chb ens</;_!_ - tha _ 1_ sin</;.!... 
' a a a b shb a¢ 

A = shb sin¢ __i_:....tha chb sin.pL- tha __l_ ens¢ _a_ 
3 a a a b shb a¢ 

B = ch b j!_ - th a sh b j!_ 
1 aa ab 

B = sin ¢ _!!__ + cth b cos ¢ !_ 
2 a b a ¢ 

B =ens</; _a_- cth b sin¢ _a_ 
3 ab aq, 

Cylindrical system. C : 

A = _j_ 
I a¢ 

li =-cha thb ens¢.J_+.sha cos¢ _a_ -sha cth b. sin-cf>_a_ 
2 aa . ab a¢ 

A = ch a th b sin</; _a_ - sh a sin¢ _j_ - sh a cth b cos</; _j_ 
3 aa ab aq, 

Bl 
a 

a a 

B = -shathb sincf>.J_+cha sin¢-a-+cha cth b ens ¢ _a_ 
aq, 2 aa ab 

B = - sh a th b cos¢ _L + ch a ens¢ _a_ 
3 aa a b 

Horospherical system 0 : 

. _,_ a _ ch a cth b stn 'I' ""()¢ 

. . 
•A =r cos¢ ·j!_ -~ ( -e-

4
+(r'+ 1) e"]cos</J _j_+ ___!'__ ( _,;• +( -r'+ 1) e

8

] sin¢ j_ 
a a 2 a r 2r a¢ 

( 2) 

(3) 

A =-r sin¢}_+ .;•(-e .. +(r2+1)e•]sin¢_L+_.,: (-e-•+(-/+1Je 0].cos¢_il_ 
2 a a 2 a r 2r a¢ 

a (4) 
A=-

3 a¢ 

. a .. £ .. 2 • 1 . a .. £ .. • • 1 B =r stn¢- _ __£_ •e +(r-1)e .sm¢-+__£_ e +(r+1)e cos¢--4-
1 a a 2 a r 2r a"' 

a e"'a .... 2 • a e.. .... 2 • • a 
B =renscf>---- [-e +(r-l)e ].cos¢----(e+(r+1)e ].sm¢--

2 a a 2 a r 2r ' a¢ 

a 
3 =--

3 a a 

a 
+ r -

ar 
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Note that the commutation relations for these operators are the same in all 

systems,· 
(A, '·\1 =•,kf A f 

( A 1 ' B k ] .- < lkf ·B f 
(5) 

( B, ' B k ].= - < 1 kf A f 

However, the matrix "canonical" form of these operators will differ in each 

system and ~ill coincide with that given in/ 5•6/ only in the s -system. 

The connection with the four- dimensional angular momentum is given in all 

four systems by the formulas (using the metric ds2 t.. du2 - du2 - du2 - du• ) 
0 I 2 3 

Me=-i (u _a __ af.i_J •i•t- A 
" "a a " ... a f a., 

M • a· .i_ + a _a_ = B 
Ok f iJ a k k a a 0 k ( 6) 

k, f, m a 1, 4o3 

Ill. Invariants of the Lorentz Group and its Subgroups 

It is well-known/ 6/ that the homogeneous· Lorentz-group has two invariants 

3 

f,L • ~ 
PI 

3 

( Jf -A
2 

k k 

t.'.ai A"B" 
k-1 

( 7) 

ln our case the first is equal to the Laplacian on the hyperboloid, the second is 

related to the intrinsic spin and is equal to zero identically. 

The difference between the systems S,H, C and 0 is in invariants cor -

responding not to the whole Lorentz group, but to definite subgroups, i.e. commut

ing only 'with all of the operators of the subgroup. The separation of variB.bles 

in the Laplace equation 

!> L I_( a J •-:- ( p 
2 + 1 J I I a) 

( 8) 

is directly connected with these ~bgroup invariants and the function l(uJ will· 

in each system be· an eigenfunction of the complete set of such (commuting) in

variants. The eigenvalues, originating as separation constants in ( 8), will play the 
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role of quantum numbers. 'The quantum number P always corresponds to . the in

variant 11. L • Note that all the eigenfunctions, corresponding to a certain p form 

the basis of an irreducible ( in general infinite) representation of the Lorentz group, 

Let us consider aU. four coordinate systems from this point of view, 

'The S system, 'The invariants are 

2 • 2 a• a2 L • A + A + •A 2 ~ _ + cotg () _a_ + _l __ 
t 2 3 ao·· ao sin 2 0 a¢ 2 

L=A=.JL 
3 a¢ 

( 9) 

and they correspond to the three- parametrical rotation group and to its one- para

metri~al subgroup. Here we naturally obtain the quantum numbers f and m 

(usual three-dimensional angular momentum and its projection). 

'R -system, 'The invariants are_ 
2 

- A
2 

= _iL_ + cth b _iL_ + _l_ 
t a b 2 ab sh 2 b 

__a__ 
a ¢• ( 10) n• = B

2 + B
2 

2 3 

=_2_ L ='A • t 
and correspond to thg ¢three- dimensional Lorentz group with the infinitesimal 

operators 

the axis 

a= -Y, +iq 

B 
2 

and to its subgroup - space rotations around B and A 
3 I 

• 'This gives rise to the quantum numbers a and m where 

C -system, 'This system is sym~etrical with respect to space and hyperbolic 

rotations, 'The invariants are 

a 
L. =At =a¢ 

a K. B 
a a 

(11) 

and corr~spond simply to the one- parametrical groups of rotations in the ( 23) 

plane or ( 01) 'plane respectively, 'The corresponding quantum numbers are r and 

m. 

0-, system, The invariant operators are 

d=(B +A /+(8 -A )
2

=~_j}_r ~+-l-
1 2 2 t r ar ar t2 

2 

a 
aq,• 

. ( 12) 
L=A =_j}__ 

and correspond to a ti-tree-:' paf'a1hetrical group with the infinitesimal operators 

A3,BI + A •• B ;... A 
2 t 'Their commutation relations are 

[·A3 , B t- + A 2] = B 2 - A 1 , [A
3

,B
2 

-A
1
)F-(B1 + A 2 ) 

( 13) 

[ Bt + A 2 ' B 2- At ] 0 
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and we see that infinitesimally they determine the group of motions oof an- Eucli

dean plane ( one rotation, two translations). In our case the finite group is the 
2 • 

group of motions on an horosphere. The operator 0 is the Laplacian on a 

plane in cylindrical coordinates, which explains why the corresponding eigenfun -

ctions are Bessel functions, As usual . L. just corresponds to rotations around 

one axis. 

IV. Related Topics in Classical Dynamics 

'The connection between the infinitesimal operators and relativistic angular 
momenh ... !n has already been stressed, To illustrate the physical meaning of the 

subgroup invariants, let us consider. the coordinate space. All the coordinate 

systems introduced in velocity space, can naturally also be introduced in the 

x - space, e.g. the S - system can be written as 

X • X cha 
0 

x ~ x sh a cas() 

" 
(14) 

x
2 

~ x ·sh a sin () cos ¢ 

x
1 

- x sh a ·sin () sin ¢ _ 
( X and a can also be complex). Formulas( 1) - ( 4) hold, if the right 

hand sides are multiplied by x • 

Let "i be arbitrary curvilinear coordinatss. The infinitasimal operators 

of the homogeneous Lorentz group can be written as/ 7/ : . 

x =e' _a_ 
a (al aJCt 

i = 1, "'; 4 ( 15) 

where 
a = 1, '"') 6 

are solutions of the Killing equations. ~I 
a 

A linear first integral 

ca'= .; dJC' 
l(a) d·s ( 16) 

of the geodesic equation corresponds to each such operator. 

We shall not write down the values of all such integrals in our systems, 

only consider combinations of them corresponding to the, subgroup invariants. 

'The group invariant 11. L corresponds to the classical quantity 

" D = l: cJU-12 ' - l: c (a)2 

Q/SI ~4 

In Cartesian coordinates this gives 

D ~ m 2 1 x xP. - ( x uP. )
2 

p. p. ( 17) 
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and we see that D is just the square of the four- dimensional angular momentum, 

Further let us consider the quantities, corresponding to the· invariants of ·the 

subgroups ( m 

S -system 

H -system 

c -systeni 

G -system 

is the particle rest mass): 

L ... f . = m i' sh
2 

a sin 2 
(J d¢ 

ds 

L
2

-> f
2 

= m2 x 4sh4 a [(~/ + sin
2

(i (~ )
2
]. 

d·s d·s 

L ... f =mx 2 ch:Zash:zb __s!_S:_ . . . ds 

2 2 "2 4 4 2 2 
2 

H .. J( • m x ch a [(d.ILJ + sh b (d.¢-) ]. 

L ... . 
K . 

d·s ds 

.f • = m xz sh :z b !!.P_ 
ds 

K = . m x:z ch:z b ~ 
ds 

L ... f = m :l -r :ze 2
• H 

• • ds 

2 2 2 • •• dr 2 :z d..!. 
2 

o ... (') =mxe 1(-) +t (.....:::.;r::_).l 
ds ds 

( 18) 

( 19) 

(20) 

(21) 

We see that in the ·s -system we just obtain the square of the three- dimen-

5ionai angular momentum. In the other systems new integrals appear and it is ne

cessary to find the fields in which they are conserved. 

Let us consider the equations of motion in curvilinear coordinates 

rnl aW 
ds 2 

v . 
+ riL !.!__ !.::._P I = 

vp ds ds 

F" (22) 

FIL is the Minkowski force; for a charged particle in an electromagnetic field 

we have 

F"= e(2Aa_ aAIL 

ax ax 
I' a 

where AIL is the four- dimensional potential; 

Writting equations ( 22) in the S , H 1 C 

that 51?.. and one of the quantities f
2

• J( 
2

• K • 

ua (23) 

e - the charge of the particle, 

and 0 systems and demanding 

or e 2 
should be constant along 

the trajectory, we obtain conditions on FIL and hence also on ·AIL • Dropping 

the details we shall only give the final results. ¢ (i 
system are conserved if A = ·A = 0 a) The quantities, describing the S 
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Ax a 
(i ¢ and and ·A do not depend on and , In cartesian coordinates 

this gives 

A = x ~ (x 2 + x2+ x 2, x ) i = 112,.3 
I I 1 1 2 3 0 

( 24) 
A = ~ (x 2 +x2.+x 2, x) 

0 2 1 2 3 0 

where ~ , ~ ( here and in the following formulas) are arbitrary functions ( of the 
1 2 

given variables), 'This formula and the follC?wing ones can of course be simpli-

fied by a . gauge transformation. Equation ( 24) is a well- known result - the 

usual angular ·momentum is conserved in a spherically symmetrical field, 

b) The quantities J( 
2 and f • are conserved in the H -system if 

~ = A¢= 0 , A"' and A• do not depend on b and ¢ • In cartesian 

coordinates this means 

A1 =<ll1 (x1 ,x~+x;-x:) ( 25) 
A = x, ¢ ( x , x2 + x ::_ x :z) .\ = 2,,3,0 

.\ " :Z I 2 3 0 

c) •The quantities f. and K • of the c - system are conserved if 

A• = A¢= 0 , A • <'lnd A b independent on a and ¢ i.e, 

. 
A 

A = x ~ ( x2- x 2, r 2 + x
3

2
) 

0 0 1 0 1 2 

A, = X <fJ ( x2 - X :z, X 
2 + X 

2
) 

1 1 0 1 2 3 

A = x <ll ( x 2 - x2 , x:z + 
:z 2 :z 0 • 1 2 x! ) ( 26) 

d) "l'lp.,e 

and ·A· 

2 

A3 =x3 <ll2 (xo-

qt.Jantities (')Z and 

x", x 2+x
2

) 
1 :z 3 ¢ 

f • in the 0 -system are conserved if ·A = ·A' = 0 

independent on and ¢ i.e. 

•A = x <ll (xa-x"-x"-x2
1 x -x) 

11101 :Z30J 

•A = x <ll (x2-x 2-x:z-x:z, x -x) 
:z 2zot:zso3 

:z 2 
A =~\lx,,xiL <ll(x xv 1 x-x)+~(~-1)~,<ll(xxvlx-x) ( ) 

3 X _X 1 V 0 3 ('X - X )2 ~ :z V 0 3 27 
o 3 o s 1L 
V--x--x;L V 2 :z X X V 

1A = ~ __ IL_ <lJ (X X 1 X -X ) + ~H ~ + 1) ~ ~ ( X X , X - X ) 

o x-x 1 v 0 3 (x-xl' V-;7 2 v o 3 
0 3 0 3 .,.f 

T!;te results of this chapter can be used to write down directly. the first 

integrals of the equations of motion of a particle in fields of the type (24)-(27). 
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V. Conclusion 

We have already mentioned that a number of other coordinate systems, 

mostly if the elliptic type, exists, in which the variables in the Laplacian sepa

rate. These systems are connected with each other by transformations belonging 

to the :15- parametrical group of conformal transformations, This question and also 

the relation between the :15-parametrical group and relativistic angular momentum 

theory will be investigated in a future paper. 

References 

:1, N,'Ya.Vilerikin, Ya.A.Smorodinsky. Preprint JINR, E- :1503, Dubna, :1964. 

2, M.n.OneacKidl. MaT.c6opmiK, ·~ 379 ( 1950). 

3. H.A. CMopO.IlHHCKHl!. AToMHaSI :meprHSI, 1i. 110 ( 1963). 

4. J.L.Synge. Relativity: The General Theory, North-Holland, :1960). (Russian 

translation: n)l{,n,CuHr, 06IUaSI T90pHS! OTHOCHTe,nbHOCTH, !lin,, 1963), 

5. H.M. 1enb¢aH.o, P.A. MHHIIOC, 3.H. Wanifpo • npe.ocTaaneHHSI rpynnbl apatueaun 
H rpynnbl nopeHua. <PM, MocKaa, 1956. 

6. M.A. Hal!MapK. nuHel!Hb19 npe.ocTaaneHHSI rpyn~bl nopeHua, <PM., MocKaa, 1958 r. 

7. W.R.Davis, G.H.Katzin. Am• J. Phys., ~ 750 ( :1962). 

Received by Publishing Department 
on March :14, :1964. 


