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In investigating the collective, but non-rotational, excited states of even-
even nuclei attention was first focussed on the quadrupole states with A = 2
and p = 0 and 2 for which the most complete experimental data are aveilable.
The next term of expansion in multipoles of nucleon-nucleon interaction in a nuc-
leus is a term corresponding to the octupole-octupole interaction. This interac-
tion leads to collectivization of the excited states with A = 3, g = 0,1, 2
and 3 and negative parity. The experimental data on such states are systema-
tized in ref./ 1/. They point out that in & number of cases the octup'ole states
have a clear-cut collective nature, The octupole excited stAtes were studied in

refs./ 2,3/ both on the basis of the unified and the superfluid nuclear models,
Main attention was paid to the investigation of the probabillties of electromagne-

tic transitions.

Calculations of the energies of the octupole states with InK = 1-0
on the basis of the superfluid nuclear model were made in/ 4 in the framework
of the method of approximate second quantization, Close agreement has been
obtained between the results of calculations and the corresponding experimental
data. The investigation accounted for the lowering of the energies of the states
with K7z = 0- in the isotopes of Th , U and Pu below the beta and gam-

ma excited state energies. 7

The present paper is devoted to systematic investigation of the octupole
excited states with A=3 ', p=0,1,2 and 3 of even-even nuclei, The energies
were calculated and the structure of these states were studied.in both regions
of strongly deformed nuclei on the basis of the superfluid nuclear model in the

framework of the method of approximate second quantization,

1, Secular Equations_and Wave Functions

The energies of the collective states will be calculated on the basis of
the superfluid nuclear model. In this model the interaction Hamiltonian between
nucleons in a nucleus is written in the form of three terms:

B (1)
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describing average nuclear field, interactions leading to pairing correlations of



the superconductive type and interactions responsible for collective effects. The

properties of even-even strongly deformed nuclei were studied inthe model with
the Hamiltonian H +H"" It is shown/ 5/ that this model rather well des-
av

cribes all the excited nuclear states but the quadrupole and, in some cases, the

>

octupole states, In calculating the energies of the octupole collective states H"”

is taken in the form
) Km .
H“" = -3 l_z_ Q (n)C (n) +—2L0,F(P)Q,F(P) (2)
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[ , K , K are the octupole- octupole interaction constants,
n P np

According to the superfluid nuclear model the wave functions of the col-
lective states in the microscopic treatment are the superposition of wave functi-
ons’ of two- quasi-particle states of different type, The collective states are con-
sidered side by side with the two- quasi particle ones, there being no restric-
tions to the collective state energies, In studying states with g 1( 0 in addition
to the matrix elements W (p P, )= i (p p,) where K +u = K, the matrix
elements f (p [ =f“(p e, ) with K, +X,=+p are taken 1nto account, Here

K, and Kz are the pro;ecuons of moments on the nuclear symmetry axis,
and p,p* are the quantum numbers characterising the average field levels
both of neutron and proton systems, Further, by s we denote the quantum

numbers of the neutron system states and by » those of the proton ones,

Basing on the wvariational principle, in the framework of the method of ap-

proximate second quantization we get a secular equation defining the energies

@, of the excited states with A=3 , #=0 y 1, 2 and 3 of even-even

strongly deformed nuclei which is of the form
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o = — =

]

levels, e(s) = vCi+lE(a) —Anl’. e(v) = C:+ lE(v)—Apl U .= u vV U,

the index i in w. denotes the first, second and so on roots of the secu-
h i -

lar equation. Notice that for x =0 f(pp’) =0.

In' case L x(”- x(” = x(” , which we shall restrict to in what follows
n P np

the secular equation takes simpler form, namely

- 2,
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The wave function of the i -th octupole state is 0, A 4 where the operator
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here apa . is the quasi-particle absorption operator., The functions 'ﬁpp' ' ¢PP'

J', , q;‘, are wiitten in the form
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After solving secular equations (3) or (4) we find the energies of the octupole

states and the corresponding wave functions,

We discuss the particularities of eq, (4). As an example one gives in
Fig. 1 the values of F(w) as the function of w for the states of .'1“‘
with Kr = 0-, 1-, 2-, 3-, (ke with p = 0, 1, 2, and 3) The points of
intersection of the curves F(w) with the straight line I« ™ for each p
are the first and second roots of the corresponding secular equation. Fig, 1 gi-
ves the values of the first and second poles for g = 0, 1, 2, 3. In those
nuclei where the octupole- octupole interaction is effective it leads to the values
of the first root being significantly smaller than that of the first pole and the
curve F(w) intersects the line I/« e at a small angle, In this case
the octupole state possesses the pronounced collective properties what is the
case for p=0 . If the state is not collective then the value of the first root
©, practically coincides with that of the first pole ¢(p) +¢(p”) and the
curve F(w) intersects the line 1/ at an angle close to 90°. S good example
may be the case p = 3 (Fig. 1). The values of the second roots lie between
the values of the first and second poles, If the state corresponding to the se-
cond root is close to the two- quasi-particle one, then the value of the root is

close to that of the second pole,

The frequencies of the octupole oscillations o, are found by numerical

solution of secular equations (3) with the aid of the electronic computer. The

first root @, is sought in the interval

’

0 <w, < min ((c(s)+e(S)),  (e(v)+e(v)))

l.’.W
halving successively the interval, The second and subsequent roots are sought

between the successive poles in the righthand side of (3). The first root may

be absent if x(’)>x(‘:).' what will happen, e.g. for p = 0 (Fig. 1) if
i/x(’)< 1,6. 103. The second and subsequent roots exist for arry «(3),

(3
2. The Average Field levels and the Values of «

The calculations of the energies of the octupole states with
Kr = O, 1-, 2~, 3~ and the reduced probabilities of electromagnetic transi-
tions were made in both regions of strongly deformed nuclei: 150< A < 190
and 228 < 4 < 254, Use was made of the wave functions and the schemes of
the Nilsson potential single- particle levels/ 6/. All the calculations in the region

150 < A < 190 were performed with the wave functions at the deformation |

——

5 = 0,3 and in the region 228 < 4 < 254 at & = 0,2 and for the
sam?;gﬁg;;'.oi the single- particle levels in the neutron (proton) system for
each nucleus in each region, In-order to clear up how strongly the results of
calculations depend on the change in the wave functions with increasing defor-
mation & the energies w, of the states with Kr = 0  were calculated
in the region 228 < A £ 254 with the wave functions at 6 = 0,3 but
with unchanged values of the energies E(p) of the average field one-particle
levels, The obtained values of @ differ little from those calculated with the
wave functions for 8 = 0,2 but with renormalized x(’) . To make the cal-
culations most unambiguous the changes in the nuclear deformation were not
taken into account, i.e. the same set of E(p) was used for all nuclei in each
region. Therefore near the boundaries of the regions of nuclei with a large. de-
formation the calculations became somewhat worse, since the equilibrium defor-

mation of nuclei changed, while the behaviour of the average field single- partic-

le levels was unaffected.

As the average field one-particle "levels we took the Nilsson scheme le-
vels with the parameters rather close to the data in ref./ 7/ . The energies of
the average field one-particle levels (in units he’ ) the correlation func-
tions and the chemical potentials calculated in 8'97 are"given in Tables 1-4.
The correctness of the location of the average field levels in the regions
61< Z < 79, 89 < N < 115 and 87 < 2 < 99, 137 < ¥ < 155 is justified by[
the available experimental data on the single quasi particle levels of odd 4 !

nuclei. In addition to these levels account was taken of all levels of those




subshells in which the location of, at least, one single- particle state was proved
experimentally. AsS to the behaviour and the account of the other levels there is
a certain arbitrariness related after all to the choice,of the parameters of the

Nilsson scheme,

The one-particles levels given in Tables 1,2 and 3 are fairly clpse to
the levels used in 4/ in calculating the energies of states with Kr=0"  while
the neutron level scheme given in Table 4 differs by that the states 761+ with

N = 153 and 752% with N = 157 are replaced by the states 620t and
622+ respectively. We note that in the present calculations we took into ac-~
count greater number of the average field one-particle levels as compared to the
calculations in 4 . Calculating the energies of the quadrupole states/ 10/ use
has been made of the schemes of the levels given in Tables 1-4,

The calculated values of o, depend on the wave functions and the
eigenvajues of the average field potential and on the octupole-octupole interac-
tion constants. The terms in (4) corresponding to the particle and hole states
for all considered nuclei with [(E(p) = Al > C and |E(p")-Al> C lead
to the renormalization of «™ , For example, when p=0 the term corres-
ponding to states 651+ - 761, given in Table 4 leads only to the renorma-
lization of «‘¥ for all nuclei in the region 228 < 4 < 254, The same
terms in (4) which in some nuclei correspond to particle and hole states and
in others only to particle (or hole) states lead to a change of @, in some
nuclei as compared to others, For example, when pu = 0 the term 6601t - 530f
(see Table 3) for the isotopes of Th corresponds to the matrix element bet-
ween particle and hole states, This term gives a large contribution to the secu-
lar equation, For the isotopes of Pu this term 6601 - 530+ corresponds to
the matrix element between hole states and in (4) it became far less important
due to the factor U:v» as well as to increasing (V) +¢(v”) . We
notice that the average field single-particle levels which were disregarded in
the calculations made, will not affect noticeably o but will m’erely lead to

1
the renormalization of ‘% .

D
The octupole-~ octupole interaction constant « is chosen to obtain the

best agreement of the calculated energies for the states with Kr = 0-  with the
corresponding experimental data, The states with Kz = 0- are most strongly

collectivized of all. the octupole states and therefore their energies are most sen-

sitive to « ¥ . The constant «‘¥ in the region 150 < 4 < 190 was as-

sumed to be «” = 0,00101 ho! , in the region 228 < A4 < 254

(s)

<= 0.00057 hol o & was unaffected inside each region, If by analogy with

the quadrupole states we assume that
()]

% (£}

[ ¢
then &k takes the following values k")-o,s- 1,0 » The vajue ¥ ~ I is about

10-12 times as small as the quadrupole- quadrupole interaction constant ¥

for the identical systems of the average field level/ 10/ . The value of xm as-

%

sumed by us is about 1,5 times as small as the values of « used in

ref./ 4/ due to a considerable increase of the number of terms in (4) The same

values of x were taken in calculating the energies of all the octupole

states with K» - 0, 1-, 2~, 3-,

Ndtice that we have made calculations for the most general case

(3) .

ko :_:(:) ~ 52:’ . However, the results of these calculations do not lead
to a significant improvement of the agreement between theory and experiment as
()] (O] (€] (€]

= K = K LI 4
n P ap
interaction constants were used by us so the number of the parameters applied

should be minimal,

compared with the case « . The equal octupole-octupole

The values of the matrix elements f(ss’) and f(w’) change between
0.01 and 8 (in dimensionless units used in/ 6 ) the most important of them for
v are given in Tables 5-8 for all g . To illustrate the decrease of
the collective properties of the octupole states with increasing p we give
the sums of all the squared matrix elements used in our calculations, For the
region 150 £ A < 190 these sums are p=0- 287, p= 1 - 165,
p= 2~ 173, p = 3 - 143, For the region 228 < 4 £ 254 the sums of
the squared matrix elements are p= 0 - 427, pu =1 - 230, pe= 2 - 249
p = 3 - 173. The increase of these sums in the region 228 < 4 ¢ 254 as

/s
compared with 1560 < 4 < 190 is compensated by the decrease a4 .

In making calculations the conservation of the number of particies, on an

average, was controlled, i.e, the An' quantities were calculated
+ +
An, < Qliaz.a AO'>-<ZaaAa > (8)
po- P -4 po P po

i.e. the difference of the number of neutrons (protons) in the excited and ground
states. In most cases one has obtained An, < 0,2 . however, there are ca-

ses when An, ~1 , The values Anm =~ I occur when the root is close to the




pole and the blocking effect should be taken into account and in case of very

small @ too.

3, Energies of the Octupole Excited States

The first and second roots of secular equations (4) for the states with
Kr = 0-, 1-, 2-, 3- were calculated and the energies of the octupole ekxci-
ted states and the corresponding wave functions were found thereby, The cal-
culated energies of the octupole states ©, and @ , the values of the
first and second poles as well as the available experimental data are given in
Figs. 2-9. The e{cperiment‘al values of the energies are denoted by the conti-
nuous line, the first and second poles by the dashed lines. The first and se-
cond roots of the secular equations are denoted by the dark circles “joined by

the straight lines,

The first roots 'of secular equations (4) for the case p =0 in both
regions of strongly deformed nuclei lie far lower than the energies of the first
poles. The discussion of the location of the energies of the states with Kr=0-
and the comparison between theory and experiment has been made in ref./ 4 .
The agreement between theory and experiment is in this case rather good, It
should be noted that a fairly important result is the explanation of the lowering
of the states with Kr=0- below the ehergies of the beta and gamma vibratio-
nal states in some iéotopes of Th , U and Pu ., Note that the changes
made, as compared with/ 4/ , in the neutron scheme of single particle levels
and the large increase of the general number of terms in (4) do not lead to
any significant changes in the energies of the states with Km=0- . This
shows that the average field single-particle levels which are disregarded by us
will not change all the more the quantity o, and if they will be taken into
account this will lead to the renormalization of x«” .

If the octupole state in its structure is close to the two-particle one then
the blocking effect is of importance and its influence should be taken into ac-
count, In balculatlng the energies of the states with Kr « 1-, 2-, 3-, secular
equations (4) were solved and the blocking effect was not taken into account.
If the first root is close to the first pole then the influence of the blocking effect
on the given octupole state is equal to the lowering of the energy of the ap-
propriate two- quasj- particle state due to the blocking effect, In this case addi-
tional calculations are not needed and use should be made of the results ob-
tained in/ 8,9,11/ . In Fig, 49 the arrows denote the lowering of the octupole

state energies due to the change in the values of the secular equation poles
due to blocking effect,

10

The comparison of the calculated energies of the lowest states with the
corresponding experimental data shows that if the blocking effect is taken into
account then the agreement between calculations and experiment is rather good.
It should be noted that there are at present not many experimental data on the
states with Kr# = 1-, 2-, 3- and a significant growth of the experimental
material is very desirable, The energies of the first octupole states with

Kn = 1-, 2- are lowered by 100-300 KeV as compared to the first
poles., The values of @, ' for the states with Km= 3~ are practically
the same as the energies of the first poles. Therefore in most cases the effect
of the octupole-octupole interactions on the energies of states with K¢ = 1-
and 2- should be taken into account while this effect should be neglected for

states with Knr & 3-,

It is necessary to note that the correctness of the results of our calcula-
tions is proved not only by the available experimental data on octupole states
but also by the experimental evidence for the fact, that up to certain energies
in some nuclei there are no octupole states with a given Kr . We consider,
e.g., states with Kn = 2- in the region 180 < A< 186 ., In the isotopes

of Dy and W state with Kr e 2- is the lowest proton two- quasi- particle
state whose energy is somewhat lowered by the octupole- octupole interactions.

160

183
In-the nuclei Dy and W best investigated experimentally, states with

Kr = 2- are found, there is evidence for the existence of such a state in
18¢
v

of other isotopes of Dy and ¥ are badly investigated, On the other hand,
172
the available experimental data point out that in Yb , e.g4 there are no

levels with Kn = 2- lower than (1.7 - 1.8) MeV, which agrees also with

. These data are in close agreement with calculations. The spectra

our calculations,

Figs. 2-9 show that the values of the second roots o, lie between
the’ values of the first and second poles. ¥ the first root of (4) is close to
the first pole then the second one: is usually close to the second pole, If the
first root is lowered by 100 KeV and more with respect to the first pole, then
the second one may practically lie at any point between the first and second

poles and near the first pole, too,

4, Structure of Octupole Excited States

In considering the behaviour of the functions F(w) and the energies
of the octupole excited states it has been noted that states whose energies

are far lower than the first poles possess the pronounced collective properties,

11
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while states whose energy coincide with the poles are, with sufficiently good
accuracy, two-quasi particle states, Now we look at the study of the structure
of octupole states the other way round, Let us consider the contribution of

each separate term in the secular equation. These terms of eq. (4) are deno-

ted by -
o (Kot t(pp)) 07,
P’

X(pp®) = 2« n
e(p) +((p')—...__wl____ (9)
e(p) +e(p’)

Further we shall treat the problem as to with what weights separate two- par-

ticle states enter the given collective state, To this end we shall use the nor-
+

malization condition of the collective state G, ¥ which is written in the

form:

1

- — {3 s, ,(as')+2'y' (vl =1
Yn'+Y:+Yp+Yp o w (10)
2 7 n3 .2 ’
(1(as)"+ I(ss))U 0 (e(s)+¢(s))

¥y ('as’) = .
! {(e(s) +((‘s'))’—w"]2

As an example we shall consider the structure of the octupole states of
234

U . In Tables 5-8 are summarized data relative to the first and second
roots of the secular equation with K7 = 0-, 1-, 2-, 3- , One gives the

/

the values of the matrix elements f(pp’) (in dimensionless units 6 ), the va-

most important two- quasi- particle _statesx in the neutron and proton systems,
lues of the first and second poles ¢(p) +e(p”) (in MeV). Further one
gives the contribution of certain terms of secular equation (4 ) for the first

X, (pp’) and the second Xz( pp’) roots, For the sake of convenience these
terms are multiplied by 100. And, finally, one gives the contribution (in percent)
of certain two- quasi- particle states to the wave function s, (pe”) of the

first octupole state and y,( pp’) of the second state with a given K= , From
these tables it is seen that in the secular equations the matrix elements corres-
ponding to the states particle-hole with large ¢(p) +¢(p”) are very important,
So e.g. the term corresponding to states 651+ - 7614 in Table 5, while in
the wave functions such states are less important. The two- quasi-particle

states corresponding to nearest poles give much larger contribution

x| Nn_A t denotes the state Knl[Nn, Al  of the Nilsson potential with
K« Z+A and Fn A is the state Kn[Nn, A] with K=A-3 .

12

to the wave functions as compared with the secular equations,

From Teble 5 it is seen that the first excited state with K7 = 0O~ in
v is a collective one since three two quasi-particle states give to the
wave function a contribution more than 10% each two states - more than 5%
and four states - more than 3% each and so on. The energy of this state is
by 0.8 MeV lower than that of the first. pole, The properties of the first state
with K7 = O- in U 4 is not an exce‘ption. The overwhelming majority of
the first states with Kr = Q.- are collective, the exception appears to be the
isotopes of Fm ., Especially clearly the collective properties are displayed
about the isotopes of Th , U , Pu , what is seen from Table 9, From
Figs. 2 and 3 it is seen that the energies of most first states with Xr = O-
are lowered by more than 0.5 MeV as compared to the first pales. In the wave
functions of the second octupole states with given Krn the summary contri-
bution from the first and second poles amounts usually to more than 90%, and
in some case it reaches (95-98%). This particularity of the wave functions
structure corresponding to the values of the second roots is well manifested
by the example for the state with K = 0- in Teble 5 and with Kr = 2- in

Table 7.

In most cases the lowest states with K7 = 1- are rather close in their
properties to the two- quasi- particle states. For example, in v** the con-
tribution of the neutron state 633+ - 743 ¢+ , as is seen from Table 6, is
83,8%,the contribution of Me”r:eutron state 622 t- 743 ¢ in Pu“o is 87%
and so on, However, 'in Th the lowest state with Kr = 1- is’ collective
what is seen from Teble 10. The energy of this state is lowered by 0,23 MeV
as compared to the first pole, Table 11 gives the contributions of various two-
quasi- particle states to the lowest states of Erl“ with Kn =0~ and Kr= I-
While the state with Kr = 0O- is collective, the state with Kz = 1- is fairly
close to the two- quasi- particle one, since the contribution of the neutron state
6331t - 523 is 97.6%. This roughly proves the correctness of the interpre-
tation of state with Kr=1- in Er,“ given in/ 11/.

We notice that in some cases the second states with a given K=
possess the collective properties while the first states have the structure close
to that of the two- quasi-particle states. An example, may be the states of

234
U with Kr = '1- what it seen from Table 6,

The lowest states with Kr = 2-, on the average, appear to be more

collectivized as compared to the first states with K7 = 1- . However, both




states with Kr=I- and 2- are considerably less collectivized as compared with

the states with Kr .= O- what is clearly seen from Fig, 1.

From Table 7 it is seen that the first state of U"‘, with Kr = 2- conta-
ins the contiribution from the two-quasi- particle states equal to 77.7%, 15%, 1.4%,
1.1% and so on, i.e. the collective properties of this state are clearly seen, It
should be noted that the region of the isotopes of Th , and U is the most
favourable for the existence of low-lying collective octupole states., This is relat-
ed to states with Kz = 0- as well and to a somewhat smaller degree to states
with K = 1-, 2-, Table 12 gives the structure of the most low-lying states

160 174 182
L]

with Kr e 2- in Dy , Yb ' . In these nuclei the contribution

from the most important two- quasi- particle states is 87.,6%, 90.8% and 94.8% res- v

160 174
pectively, The interpretation of states with K7 = 2- in Dy , Yb , and
182

/11 as two- qu.a,si- particle léd to a certain overestimation of
174

. . 160 ) 182
their energies in Dy and Yb whereas in ¥ the effect of the octu-

W given in

pole- octupole interaction on the energy of state with K7 &« 2- is rather small.

All the states with Kr = 3 in their structure are close to the two- quasi-
particle ones, This is seen from Tables 8, 13 and Figs. 8 and 9, We notice that
the energies of the first and second states with K# = 3- are the same as
those corresponding to the ﬁrs.t and second poles. The fact that the octupole-
octupole interactions for states with Kr = 3- are of little importance is a con-
sequence of the increase of the number of terms in (4) as well as, in the main,
the increase of the number of terms with large matrix elements fpp’) and ;(PP')
what was mentioned earlier, The nearness of the structure of states with K7 = 3-
to the two- quasi-particle one is demonstrated in Fig, 1, From Fig, 1 it is seen

. . 3,
that a comparatively small increase of x”

leads to significant increase of the
collectivization of states with K7 e 1- , 2- while for states with Kr =3 the
increase of must be larger, We notice that in case Kr = 3 - the interval of va-

(s)

lues of K where these states are collectiveand the first roots of (4)

exist is extremely small, We note that the apparent collectivization of the second
state with X7 = 3- in U"‘ , 8s is seen from Table 4, is due to the energies
of the second and third poles being practically equal to each other, From the

investigations made /it fc/)lldWs that the interpretation of both states with Xr = 3 -
11

; 168 . . R . . .
in Er given in is true since the admixtures of other states, as is seen

from Table 13, do not exceed 0.5%,

/Thus, the lowest states with Kr = 0- in most nuclei possess the clear-

cut collective properties, The lowest states with Xrn = 1-, 2- in some nuclei

14

are collective, however, in most cases these states are rather close in their
properties to the two- quasi-particle states. So, for them the admixture of the
remaining states to the two-quasi-particle one corresponding to the first pole
is (2-20)%. The states with Kn = 33 are Practically two- quasi- particle ones

since the admixture of other states do not usually exceed 1%.

As was already mentioned, the structure of the octupole states with a

given Kn but Kn = 3- , is different, i.e. some states are collective and

others are two-quasi-particle, The average nuclear field defines if the structure

of the states will be collective or two- quasi-particle one.

From the investigation made it follows that if the contribution of single

two- quasi- particle state to the octupole state exceeds 95% then the energy of

such a state should be calculated on the basis of the superfluid nuclear model
taking into account the blocking effect, but disregarding the octupole- octupole
interaction, In this case the blocking effect is more important as compared with

the octupole-octupole interaction,

We have calculated the reduced probabilities of electromagnetic 'transitions,

which will be analysed in other paper. However, it should be noted that the ob-

tained values of the reduced probabilities do not contradict the available experi-
mental data, So, the ratio -E(Eﬁ)/E(E.?)._P. with L = 0,5 is 2 - 4 for

the collective states and is significantly smaller than the unity for states close

to the two- quasi-particle ones,

In conclusion we express our gratitude to N,N. Bogoiubov for interesting
discussion and to K,M, Zhelesnova, L,\V. Korneichuk and G, Jungklaussen for

help in making numerical calculations,
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TABLE 1

Single~partiocle levels of the average field, proton system

2 I v[Ned) Ew C N
5/2 + 422 0,674
1/2 + 431 0,816
1/2 - 550 0,978
7/2 + 413 0,987
I1/2 + 420 1,06
- 9/2 + 404 1,08
3/2 = 541 I,I0
59 3/2 + 422 1,20 0,124  1I,252
61 5/2 - 532 1,31 0,127  1I,325
63 5/2 + 413 1,36 0,129  1I,39I
65 3/2 + 411 I,42 0,127  I,458
67 7/2 ~ 523 I,48 0,123 1,528
69 I/2 +411 1,5 0,I2I 1,601
71 9/2 - 5I4 1,66 0,123  I,67I
73 7/2 + 404 1,69 0,121  1I,737
75 5/2 + 402 1,76 0,118 1,808
3/2 + 402 1,86
I1/2 + 400 1,90
I1/2 - 541 1,97
11/2 - 505 2,04
3/2 - 532 2,18
5/2 - 523 2,46
7/2 = SI4 2,70
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TABLE 2 TABLE

Single-partiocle levels of the average field,neutron system Single-particle levels of the average field

proton system

N T w[NeAl Ees C. A
2 - S4I 0,405
}/;2 + 404 0,580 Z I w[hA] Ew Co X
I/2 + 400 0,597 7/2 - 523 0,230 ‘
3/2 + 402 0,655 9/2 - 514 0,475
I/2 - 530 0,825 3/2 + 402 0,490
11/2 - 505 0,850 I/2 - 541 0,500
3/2 - 532 0,910 I/2 + 660 0,550
89 I/2 + 660 0,950 0,137 0,968 I1/2 - 505 0,600
91 3/2 + 651 1,00 0,136 1,018 I/2 + 400 0,620
93 3/2 - 521 1,04 0,I31 1,068 3/2 - 532 0,650
95 5/2 + 642 1,08 0,120 1,123 89 3/2 + 651 0,680 0,I4I 0,753
97 5/2 - 523 I,II 0,104 1,195 91 1/2 - 530 0,750 0,I30 0,803
99 7/2 + 633 1,26 0,106 1,273 23 5/2 + 642 0,830 0,120 0,859
I0I I/2 - 521 1,30 0,104 1,341 95 5/2 - 523 0,855 0,110 0,921
103 5/2 - SI2 1,36 0,99 1,419 97 3/2 - 521 0,985 0,109 0,987
105 7/2 - Sl4 I,48 0,111 1,497 29 7/2 + 633 0,990 0,104  I,045
107 9/2 + 624 1,55 0,124 1,559 7/2 - 514 1,07
109 I/2 - 510 1,62 0,135 1,613 1/2 - 521 1,16
111 3/2 - SI2 1,66 0,142 1,660 9/2 + 624 1,17
113 7/2 - 503 1,71 0,146 1,703 5/2 - 512 1,22
9/2 - 505 I,74 I/2 - 510 1,33
3/2 - 50I 1,75 9/2 - 505 1,36
I/2 + 651 1,78 I1/2 + 615 1,48
I/2 + 640 1,79 3/2 - SI2 1,50
1/2 - 770 1,83 7/2 - 503 1,54
II/2 + 615 - 1,97 I/2 + 651 1,59
5/2 - 503 2,15 I3/2 + 606

18




TABLE 4

Single-particle levels of the average field

neutron system

TABLE 5

2
Structure of the states U 34

w, = 0,9 MV, w, = A8 MeV

with Kw = O-

N I v il Ew C. A
9/2 + 624 0,270
1/2 + 651 0,410
3/2 - 501 0,435
5/2 - 503 0,450
11/2 + 615 0,475
1/2 - 770 0,520
1/2 + 640 0,550
1/2 - 50I 0,560
3/2 + 642 0,590
13/2 + 606 0,625
3/2 - 761 0,660
137 3/2 + 631 0,715 0,II9 0,734
139 5/2 - 752 0,725 0,II2 0,778
141 5/2 + 633 0,780 0,I04 0,826
143 7/2 - 3 0,850 0,09 0,880
145 1/2 + 631 0,900 0,097 0,936
147 5/2 + 622 0,970 0,09 0,99
149 7/2 + 624 1,08 0,107 1,048
151 9/2 - 734 1,10 0,II7 1,094
153 1/2 + 620 1,17 0,126 1,33
7/2 + 613 1,I9
3/2 + 622 1,20
I1/2 = 725 1,22
9/2 + 615 1,23
1/2 - 761 1,33
1/2 - 750 1,35
9/2 + 604 1,41
3/2 - 752 1,47

20

Neutron fegg)  epregd XQY W) XSG galeg)
651~ 7614 7,2 6,4 12,8 3,7 13,6 0,08
642t- 7611 3,2 3,0 I,2 1,6 1,7 0,06
6424~ 7524 4,0 6,1 4,0 I,2 4,2 0,03
Q3It- 76It -2,5 2,3 I,7 4,2 3,6 0,3
6334~ 7524 2,3 1,7 4,5 22,9 -48,2 49,4
622t= 7521 2,1 2,2 3,7 10,9 9,9 I,4
6244~ 743t I,6 2,3 I,3 3,4 2,9 0,3
615t~ 725¢ =4,1 5,2 5,1 2,2 5,7 0,05
606t~ 7I6¢ -4,6 5,7 5,9 2,2 6,4 0,05
640t- 750% -5,7 5,6 9,1 3,5 9,9 0,08
Proton
states
660t~ 530% 4,1 2,9 5,5 8,6 8,2 0,4
400t~ 630t -I,5 2,5 I,0 2,3 I,9 0,I
400t- 510t 3,1 5,2 2,9 1,3 3,2 0,03
65It=- 5324 -I,5 2,6 0,7 I,4 I,2 0,08
651t~ 521t -3,1 2,7 6,0 I0,6 9,6 0,5
6424t = 523¢ -I,3 I,8 I,6 6,9 29,7 46,7
624t~ 5I4% -3,0 5,0 2,9 I,4 3,3 0,03
21



TABLE &

TABLE 7
2%
Struoture of the statesafd  with Kme2-

Structure of the states of w™ with Kw=4- &
Wi LM MY, wow FMY

statsa” feeg aeed) X gl Xged) e Wyt ASE MV, @2 T AR MeV
- 0 0 4

222: - ;i;: -g :2 ::s 1:2 0:2 i: 5 3:; Seatedn fegd wprad  Xged) g Kaleg! PCTY)

631t~ 7521 2,6 2,0 4,9 2,6 10,5  I49 31 7521 0.5 8 07 09 8.5 6.2

6334~ 743t -1,8 1,5 24, 83,8 8,7  I4,9 Ciie Ta3h 19 24 3.0 LI 39 0108

622t~ 7431 2,5 19 7,6 #5204 43,4 631t~ 43t 3,0 1,75 37,1 77,7 -87,1 18,2

6154~ 7341 -2,7 b 2,8 0,2 3,0 0,2 €150 505 4 28 s 2.5 01 2. 0,005

633¢~ 761t 1,2 2,1 LI 0,5 2,0 22 624t~ 7161 3,4 8,0 2,3 0,05 2,4 0,002
6I3t- 50I -3,3 52 3,6 0,2 3,7 0,008
6IIt+ 500 -3,5 62 3,1 0,1 3,2 0,005

Proton I

states Proton
states

4004~ 521 4,7 3,0 2,2 0,3 2,6 0,6

4024~ 5234 1,6 3.2 1,2 0,I I4 0,3

633t 5231 0,8 2,5 0,3 0,08 0 0,2

642t~ 5218 3,0 24 5,9 1,6 8,2 4,2 400t- 5I2t 2,8 b4 3,0 0,2 3,2 0,01

65It- 5301 3,1 2,2 8,2 3,1 13,8 12,0 4024= 5144 2,5 4,3 2,5 0,2 2,7 0,01

6601+ 5301 -2,3 2,8 1,9 0,3 2,5 0,0 6334~ 521 3,2 3,0 2,4 0,5 2,8 0,03

400t + 521 ¢ 1,8 s,I 1,3 0,00 I 0, 402~ 510t 2,4 63 1,5 0,05 I,5 0,002

- 642t - 5304 2,0 1,8 II,3 150 1I22,5 75,2

400t+ SI2¢  =5,6 6,2 1,9 0,07 2,0 0,003
65It+ 5301 1,5 2,1 2,3 I4 3,9 0,2

22 23
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TABLE 8 TABLE

Contribution of two-quasi-particle states to the
collective states w,

Structure of the statesdfu.m with Ke=3"
Qg = 4,0 MeV v g F \\8 MeY

Neutron with Xu-0- ( in percemt )

states fueh OB e PR X,ﬂgg‘) },lgg' )
640%- 7534 1,55 2,7 3,8 0,01 2,0 0,02
63I¢~ 7434 0,I 1,6 19,2 99,8 -0,02 0,00I
6424~ 7341 -1,3 3,7 2,1 0,002 1,0 0,004
631t~ 7341% 2,5 3,0 9,8 0,02 4,9 0,04 Neutron Th®® > e
622%- 7254 3,5 4,0 2,4 0,002 I,I 0,004 system
604t~ 50I% 5,4 6,7 16,7 0,005 7,4 0,008 6514~ 761+ 3,4 3,4 4,0
6314+ 7521¢ ~0,4 1,8 0,8 0,0  I5,4 34,6 6424~ 761t 4,0 4,1 0,2
‘ 6424 = 7524 1,1 I,I I,4
631t = 761t 9,7 10,7 0,4
Proton 6334~ 752t 27,4 30,3 I,4
states 622t- 7521 6,0 6,1 9,3
615t~ 7251 2,0 2,0 2,4
4004~ 5034 4,2 645 9,7 0,03 4,3 0,005 606t = 7161 1,9 1,8 2,4
4024~ 505¢ 3,8 6,1 9,2 0,003 4,I 0,005 624k~ 434 1,0 1,0 17,6
6334~ 530% 1,8 2,5 744 0,03 4,2 0,07 640t = 7501t 3,1 3,0 3,8
400%+ 5234 0,5 2,4 0,5 0,002 0,3 0,005 :
6428+ 5304 0,8 1,8 4.4 0,06 48,9 65,2 Proton
system
6601= 530% 13,6 8,1 3,3
400t - 630% 3,3 1,8 0,8
400t - 510t 1,0 I,2 I,5
651t =532+ 2,6 I,2 0,5
651+t - 52I1% 6,6 8,8 13,3
642t - 523 ¢ I,8 4,9 I6,2
6241 = 5I4 1 1,2 1,3 1,5

24 25




ZABLE 10 TABLE 11

Contribution of two~quasi-particle states to the
collective states w, with k=4- ( in percent)

Contribution of two~quasi-particle states to the
colleotive states of Enr%e with 4w=0- and

with ¥rsd- ‘( 'in percent ),
230 240 Neutron
states” ™™ sasten. o o ot
6314~ 761* 0,6 0,06 4004~ 510t L4 6404~ 5211 0,03
642y - 7521 1,8 0,02 660- 7704 13,7 65It- 522¢ 0,05
631t~ 7521 39,0 0,I 65L¢= 541+ 2,7 624t~ 5054 0,02
633+~ 7431 30,4 0,8 640t~ 5304 I4 6334~ 5234 97,6
6224~ 7434 I,7 87,0 4024~ SI2¢, I,5  6334=5I2¢ . 0,9
6154~ 734+ 0,3 0,2 65It- S2It | 4,0 o642t 5214 0,6
633¢~ 761% 3,8 0,02 6424 - 523¢ 34,5 65It- 521+ 0,04
642t= 512+ 15,9 400t+ 52I+ 0,02
4044 5I4¢ I,9 - 660%+ S21¢ 0,03
Proton 6I154= 505} 1,5 6404+ 5414 - 0,00
states ¥
400t=- 52I% 0,6 0,4 Proton Proton
4024~ 5234 04 0.1 systen systen -
22::: ggii i'go 2’3 4314 = S4I4 1,9 C4IIt- 5324 G- 0,I
' ! 41T¢~- S4I¢ 1,4 4124- 5234 0,1
651 4= 5304 13,6 0,9 o 2474 o - 402b- 2234 O
6601+ 5304 I 0,1 It A 3 o
400ts =214 02 o1 4024~ 5324 0,8 - 404t - 505¢ - 0,0I
’ ’ 404 ¢~ 523} 2,7 4I34=- 532¢ - 0,02
4044~ 5T44 642 4024=- 550+ 0,02

26
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TABLE_12

Contribution of two—-quasi-partiocle
states to the ocolleoctive states wy

with %nw- 2- ( in percent)
Neutron 6o e
system Dy Yo ™
400%- 5124 0,3 0,04 4,107
4024 = SI44 0,2 0,1 0,0I
6241= 512t 0,04 90,8 4,3
633t~ 521t 6,3 0,2 0,0I ;
642t - 5301 2,5 0,06_4 10"5
660+ 5214 0,2 2,10 3,107
Proton
system
420t 5324 0,1 10,01 2.1073
410%= 5234 0,02 0,08 0,07
4224— 523t 0,1 8.1073 5,074
4ITh= 5234 87,6 1,9 0,05 ;
4134~ SI4t 0,1 0,2 8.10"

TABLE 13
Contributiocn of two-quas{ggarticle states to the first

28

and second states of Er with War » 3~

( in percent)
Neutron First Second
system state state
400%= 503 % 3,107 4,6,107>
4024~ 5054 3,107 4,2,10°
6I5¢- 5121 1,5.107 2,310
6244t~ 521 ¢ 1,5.1072 2,7.1072
633t~ 5214 99,82 2,0,10°2
6421+ 5214 2,5.10> 8,6.107>
402%+ S0I4 2,3.,107> 3,7,107>
Proton
system
420t = 523} 2,3,107 3,9,10
41T~ 5231 1,1.10°3 99,53
4II%- 514t 0,13° 0,38
402t - 50571 1,0.10> 1,6.107
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0 | 162 164, {6y o 166 , 168 , 170, A 76 1% (T8 100 190 192 18Y_ 186 142
R N R R R T T T S P A

F' i g. 2, Energies of states with Kn=0-
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Fig. 3. Energies of states with K7=0-, (For notations see Fig. 2).
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Fig. 4. Energies of states with Ks=I- ., (For notations see Fig, 2)
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F ig. 5. Energies of states with Ka=1- , (For notations see Fig. 2).
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Fig. 7. Energies of states with Kr= 2—- . ( For notations see Fig. 2).
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Fig. 8. Energies of states with Kn=3- , (For notations see Fig 2)
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Fig. 9. Energies of states with Kr=3~ ., (For notations see Fig, 2),



