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1, I n t r o . d u c t i o n 

After the works on the classification schemes of elementary particles by 

Gell-lVJann and Nishijima, where the isospin invariance ·and hypercharge con

servation hold, there were some attempts in building up the schemes of strong· 

interaction with higher symmetries: the "global symmetry" of Gell- Mann/
1

/ and 

Schwingej 
2

/ , the dublet s~etry of Pais/ 3 / , the cosmic symmetry of Saku

ra/ 
4

/ ; the universal vector theory of stron~ interactions of Sakura/ S/ and 

Kobzarev. and Okun/
6
/, the unitary symmetry (the SU (.3) group) in the triplet 

model ~f Sakata/ 7- 9 / and in the octet model of Gell..:Manr/ 10/ and :t-e'ema~ p/ 
the symmetry group G2 in seven-dimensional charge space of llihrends and 

Sirlin/
12

/, the theory with degeneration in states whose hypercharge equals 

zero of Ba!din and Komarl 
13

/ and other symmetries, The possible experimen-

tal tests of the unitary symmetry and the symmetry group G 
2 

have already 

been discussed in a series of papers, In particular, some relations between 

cross sections of the meson- baryon and the baryon- baryon scattering proces

ses in these two models have been obtained ir/
12

•
14- 18/, 

In the symmetry schemes of strong interactions under discussion all the 

mesons and their antiparticles belong to the same multiplet, If the total cross 

sections of meson- baryon and antimeson- baryon interactions tend to constant 

llmits at s .. "' , then according to the PomeranChuk theorem these limits 

equal each other. This circumstance reduces the number of independent scat

terin~ amplitudes in the models with .higher symmetries/
20

•
21

/, 

As it was shown in/
22

•
23

/ the differential cross sections of crossing 

processes equals each other asYt'nptotically at high energies and fixed momen

tum transfer, and there are some asymptotic relations between the amplitudes 

of these crossing reactions, Since in the models with higher symmetries mesons 

and antimesons belong to the same multiplet and ·as there are crossing proces

ses among the me :son- baryon scattering processes, then the asymptotic relat

ions between amplitudes of crossing processes and also the symmetry propel'

ties of strong interaction lead to subsidiary asymptotic equalities between cross 

sections of processes under considerations. For instance, it was shown in/ 231 
that from the asymptotic relations between scattering amplitudes of "+ -and ;-_ 

mesons on ,proton and from isospin invariance follows the asymptotic equality 
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between the total interaction cross sections of charged and neutral 

with proton. 

11 -mesons 

In the present paper we shall deduce some asymptotic relations between 

cross sections of meson- baryon scattering processes in the triplet and octet mo

dels of unitary symmetry and in the model with symmetry group G with the 

help of the methods given i) 23/ • Comparison of the relations obta~e~ in this 

paper with experimental data might throw light on the symmetry properties at 

high energies 1/ • 

2. Kinematical Considerations 

W.e consider the following meson- baryon scattering processes: 

+ + 11 + p -+ 11 + p 

11 0+ 
+ 

p-+11+n 

K+ + P 
+ 

~ K + P 

Ko+p -+Ko+p 

K o + p 
+ 

-+ K + n 

+ 
11 + 

+ + 
p-+K+::i: 

11 + p !(+ + l: 

11 + p Ko + :£ o 

11-+ p -+ K 0 + A 

110+ p -+ K+ + :£ o 

0 
11 + 

+ 
P -+ K + A 

11°+ p-+ K 0 + :£+ 

Ko+ P-+ K++ :So 

( 1a) • 

( 2a), 

( 3a), 

( 4a), 

( 5a), 

( 6a), 

(7a), 

(8a), 

( 9a), 

( 10a), 

· ( 11a), 

( 12a), 

( 13a), 

11 +p-+11+p 

0 
11 + p ~ rr + n 

K+p-+K+p 

Ko+ p -+ .~o+ p 

-o 
K+p-+K+n 

K + p ... rr-+ I+ 

- + 
K+p-+11+:£ 

-, + 0 
K+p-+11+:£ 

X0 + p -+11++ A 

K-+ P -+ 11o+ :So 

l(-+p-+11°+A 

KO+ p-+ 110 + :£+ 

- 0 0 
K+p-+K+:£ 

+ -
K +p-+K +:£ 

( 14). 

( 1b) • 

. (2b) • 

(3b), 

( 4b), 

( 5b), 

(6bL 

( 7b), 

( 8b), 

(9b), 

(10b) 

( 11b) 

( 12b), 

( 13b). 

Under crossing transformation processes ( j a) 

while process ( 14) goes over to itself. 

go over to processes ( j b) , 

Note that besides processes { 1a,b) - ( 14), there exist processes obtained 

from them by the substitutions 

n.- p, 11+~ 11-, K+..-K :s+f+ :£ _o ';:; 
:::. .... -

1/ Note that the higher symmetries break down at low energies, 
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whose amplitudes coincide with those corresponding to processes ( 1a,b)- ( 14) 

up to a sign. The relations obtained in the following for pro,cesses ( 1a,b)- ( 14) 

hold also for the corresponding processes obtained from them by the above sub

stitution. The exceptional cases are processes involving neutral K -mesons in 

the u;itial states, for instance, processes ( 4a) and ( 4b). Instead. of these two 

processes we shall consider the corresponding mirror processes: 

+ + 
!{ + n -+ K + n ( 4a' ) , and K+n-+K+n ( 4b'), 

whose amplitudes are equal to amplitudes of ( 4a) and ( 4b) respectively, and 

the physical processes 
0 0 

/{2 + P -+ K 2 + P 

and 
0 0 

l(2+p-+Kt+P 

We shall denote . the amplitudes of process ( 4a) - ( 4b) by 

vely. :r-.egrecting the weak interactions, we have 

T 
4c 

r •• + T 4b 

2 
T 

4d 

T - T 
4a 4b 

2i 

{ 4c) 

( 4d) • 

T •• 1.d respecti-

( 15) 

Instead of processes ( 5a), ( 8b), ( 9b), ( 12b) and ( 13b), the corresponding 

physical processes 
K:+p-+K++n 

[{:+ p-+ 11.J;+:£o 

0 
K 2 + p -+ 11+ + A 

0 + 
K2+ P -+ 11o+ :£ 

0 + 0 
K 2 +· P -+ f{ + :£ 

( 5c), 

( 8c), 

( 9c) , 

( 1~~). 

(l3c) 

are the observable ones in experiment, the cross sections of which equal to 

those of the corresponding processes with neutral l{ 0 

the initial state, multiplied by Y. 

or 
-o 

K · mesons in 

In all the models under consideration, all the mesons { 11 , K and 

K ) belong to the same multiplet. In the octet model all baryons also belong 

to the same unitary multiplet. Therefore, the relative parities ( "N ),( !{A .), 

K :£ ) and ( K E. ) are the same in this model, and the matrix elements 

of the processes in question have the form: 

T 
Ja. b 

A A 

'ii (p J[ A
1 

(s,t) + i qz+ q2 B
1 

h (s,t)] u (p1 1 
2 ~b 2 ~ 

( 16) 

where ql andp
1

( q
2 

and p2 are the four- momenta of the meson and 
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the· baryon in . the initial ( final) states, 

s = - ( p 1 + q1 ) 
2 

' t = - ( q 1 - q 2 /. 

In the triplet· model of Sakata the nucleons and A -hyperon belong to the 

same multiplet, 'Therefore, in this model the matrix elements of process 

(ia,b), j = 1,2,.3,4,5,9,11, have also the form (16), In case of the triplet 

model we shall consider only these processes, Analogously, in the model with 

symmetry group G 
2 

, the matrix element of all processes except ( 9a,b) and 

(11 a,b) have also the form (16). As for the last two processes with A

hyperon (which is not included in the multiplet of other baryons) in the final 

. state, the matrix elements have also the form ( 16) · if the relative parities ( 11 N J 

and (KA) are the same, In case of different relative parities, we have: 

T 
Ja,b 

"'+" u(p J[A .(s,t)+ i!fL.....!llB
1 

b (s,t)]y u(p )., 
2 I•·• 2 a, 5 1 

( 17) 

ln the following we ·shall consider the case . of equal relative parities in detail. 

In the other CQ.se all calculations can be made analogously and give the same results • 

'!'he differential cross section. has the form 

du,. b (s, t) 

dt 

1 

64tTsk 1 

F (s,t) 
/a 1 b 

.( 18) 

where k
1 

CM?,. while 

is .the modulus of the three- momenta of the initial particles in the 

Ffa,b (s,t) 
2 ' 2 1 

[(M 1 +!.1
2

) -t]iA1.,bi +..,- !(s 
2 2 2 2 

-u) -(::r.1-m2) -

2 2 2 2 
[t-2(m.1 +m 2 )l£t-(M 1 -M 2 ) lliB 1.,,.1 + 

2 .2 
+[(!.1 1 + M )(u-s)+(ll

1
- !.J )(m -m

1
)]ReA 14 bB* 

Z · 2 2 · • /a,b 

( 19) 

2 2 .2 2 2 2 . 2 
m 1 =-q 1 , U 1 =-p 1 , s+t+u=m

1
+m:+!.I

1
+U

2 

lf .. the initial baryon is unpolarized, then the polarization vector of the final 

baryon is equal to 
Ja,IJ 

~ ll = pfa,b nil (20) 

where nil is the unit space-like four-vector, proportional to the vector 

j £ llafJy qza P 1{JP 2 y and the polarization P /a,b eqtJ<?-1~ 

2s Im A 1 •• :(s, t) 8
1:,b (s, t ) c(s,.t)· 

F (s,rt) 
Ja,b 

( 21) p. 
I••" 

6 

, I where function crs, t) ~v-tas ·s .. - , In case of equal masses m = m = m 

has a simple form / 24/ 
1 2 

M = .II = M , function c (s, t ) 
1 2 

sa - (M 
2

- m 2 1 
2 

J ~. c ( s, t) = [ t 
s2 

Accortiing to the optical theorem, the total cross section of two particle in

teraction is proportional to the imaginary· part of the elastic scattering amplitude 

of these particles averaged over spin, We shall denote the total interaction cross 
. ' . ~~ 

section corresponding to the elastic processes (ja,b) j = 1,14,4, , by·u
1 

(:s) 
A.j~ 

'The total cross section c::an. be expressed in terms of the imaginary parts of the 

)nvariant amplitudes A /a,b ( s, t) and B f•,b ( s, t) in the following way: 

tot 
u,.,J,( s ~Im [2MA1 b(s,O) + 01 2 + m 2 -s)B 1 b (s,O)) 

2k v s •• •• 

m
1

=m
2

=m, J.1
1

=M
2

=M 

( 22). 

· From ( 18 ), ( 19) and ( 22) it is not difficult to see that the total cross section 

and the differential cross section of forward elastic scattering are expressed by 

the same function: 

"R
1 

(s) = 2MA
1 

(s,O) + (!.1
2 + m 2

- ·s )B1 b (s,O) 
a 1 b a,h a, 

in the following way ~ 

du fa,b (s, t) 

dt 

tot 
u (s) 

Ja 1 b 

t= 0 64 1T'Sk; 

. 12 
R [a,b (s) 1 

__L_ Im B · (s) _ }a,b 
2k

1 
..j·s 

3. Relations between Amplitudes 

(23) 

(24) 

( 25) 

lf isospin invariance and other higher symmetries are satisfied, then . the 

amplitudes of the processes under consideration are connected by several equa

lities, For example, the following well known ecqualities can be deduced from isos

pin invariance: 

T ta - T 1 b = - ..j2 12a v 2 1' 
2b (26) 

1' + 7' 
4a,b Sa,b 

T 
3a,b 

( 27) 

( 28), T -T ~.[21' =-y2T 
~.,b 1a.5 8a 1 b 12a,b 

T + 1 
6a,b 1a,b 

ZT 
1 Oa,b 

( 29) 
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T9a,b = \12 T lla,b 

T + T 
13a 13b 

T 
14 

( 30) 

(31) 

Now let us consider the unitary symmetry, 'The group of this symmetry is the uni

tary, unimodular group of rank 2 in three dimensional complex space ( SU ( ,3) ) 

group) f &- 11•2 5- 28/ , Every irreducible representation D (A , A 2 ) of this group 
• 1 

is characterized by two integral numbers A 1 and \ and the dimension n 

of which is equal to 

n ( \ , A 
2 

) = 'h ( 1 + A 
1 

)( 1 + A 
2 

)( 2 + A 
1 

+A 
2

) • 

For instance, n(O,O)= 1 , n(1,0) =3 , n(0,1) =.3 *, n( 1,1) = 8 , n(,3,0)= 10, 

• n (0, .3) = 10* etc. 'The star here is used to denote the inequivalent contra

gradient representations. 'There are altogether eight generators of the group, two 

of which may have diagonal representation simultaneously. One of these operators 

is connected with hypercharge, and the other is the operator of the third compo

nent of isospin. lt is convenient to choose thE eigenvectors of operators Y, 1 z 

and 1 2 as the basic vectors of each irreducible representation. 'The direct 

product of two irreducible representations can be decomposed into direct sums of 

irreducible representations with the help of the Clebsch- .Gordan coefficient of the 

sv ( 3) group: 

D(ll, 1!
2
)€) D(v1 ,v2 ) = ~ €) D(A 1 ,A 2 ) 

1 / 1 0/ A,A2 /ll/ 
'The octet model of Gell- l.VTann and Ne' eman and the triplet model 

of Sakata/ 7/ are· based on the SU{3) group
2
/. 'The difference between these two 

models is that in the first one the eight baryons as well as the eight mesons 

(including the rr 00 -meson) belong to the same multiplets (differing in the ba

ryon number, parity, spin etc. respectively) corresponding to the D ( 1, 1) repre

sentation, while in the second one the nucleons and the A - -hyperons form a 

triplet corresponding to the D ( 1,0) representation, In case of the triplet model 

we shall consider only process in 'which the nucleons and the A -hyperon 

participate, 

'The relations between amplitudes in these ·models can be obtained by using 

the standard method, Let us consider, for instance, the octet model. In this mo

del the wave functions of the initial and the final states in the processes ( 1a,b)-

( 14) 

. 2/ In some papers the triplet model of Sakata is considered as based 
the unitary gro).lp !7 (3 ) , but not on the group SU ( .3) • 'The difference 
between these groups does not change the results obtained in this paper. 

8 

on 

belong to a reducibie representation resulted from the direct product of two 

irreducible representations D ( 1, 1) • 'This reducible re!X'esentation 

can be decomposed into direct sum of irreducible representations in the following 

way: 

D(1,1)(E) D(1,1) D (0, 0) 0 D( 1,1) 0 D( 1,1) }±> D(3,0) (!) D(0,,3) (!) D(42l 
{ 22) 

In this decomposition the representation D ( 1,1) appears twice, .It is convenient 

in the following to choose these two representations in such a way that the wave 

functions of one of which would be symmetric with respect to- the Gell-1\ITann 

R-reflection/
10

/-, while those of the other - antisymmetric. From the invariance 

with respect to the unitary transformations it follows, that the ·matrix elements 

between two states belonging to two inequivalent representations vanish, Since 

the 'R -reflection is not included in the ·:;u(S) group, then the matrix elements. 

between two states, one from which belongs to D( 1,1) s and the other belongs 

to D ( 1, l) 4 , are not equal to zero, 'Thus, the matrix elements of the processes· 

under consideration ca~ be expressed qy seven independent amplitudes3/: 

(00) (11) (11•) (1,1)AS (3,0) (0,3 (:Z2) 
r · , ·r · .. ss ,. r AA , r , r , r , T 

'The coefficients before these independent amplitudes can be calculated with the _ 
. . /14-17 28 29/ help of the Clebsch- Gordan coefficients of the. SU(,J) group ' ' , In 

this way, one can obtain the following relations between the amplitudes of process 

( 1a,b)- ( 14)/ 15- 18/ 

T + T 
la,b 6a 1 b 

T 
3a,b 

(32) 

;; T -v2T = 2( T - T ) 
9a,b · 8a,b 7b 1 a 5 b ,a (33) 

yJ T + y2 T = T 
lla,b •2a,b lOa,b 

T 
Sa,b 

(34) 

T = T (35) 
13-.,b 1a 1 b 

If the subsidary invariance with respect to the R - reflection 4/ is as-
(1,1)As (3,0) (0,3) 

. sumed, then T = 0 , T = T , and we obtain the following rela;_ 

tions/ 1 4- 17/ 

-------------:c"z-;,1;-;)sA C1,1)As 

3/ 'The equality T = T follows from time reflection invarian-
ce. 

4/ 'The R -reflection is defined as: 
0 

n +t E 
+ 

p i-t.- :=. 
+ 

K.,..- K K oft Ko ' 

9 

~ .. '! 
+ 

rr4+" 



! i 

1 
Ja,b 

1 
.fa1 h (36) 

1s., b T 6a,b (37) 

more. 

From the relations (32)-(37) and the isospin relations (26)-(31) follow 

equalities: 

T •• 

1 
Sa 

1 •• 

T 
Bb 

1 •• 

T 
2b 

'1/.3 T 2• 

1 = y3 (1 - T ) , (T + T ) = -
1 

(18 + 1 8 •) 
9b Ba Bb Sla 9b V3 a 

(38) 

(39) 

( 40), 

Analogously, in case of the triplet model of Sakata the matrix elements of 

the processes (ja, b), j = 1,2,3,4,5,9,11, 
(2,1) (0,2) 

independent amplitudes 1 , 1 

equalities can be obtained/ 
14

•
17

•
18

/: 

1 
Za,b 

1 •• 
1 

Sa,b 

in question are expressed by three 

-and 1°'
0> , and for which the following 

= 1 
3a,b 

( 41) 

1 
4b 

( 42) 

T 
9a,b 

( 43) 

At last let us consider the model of Behrends and Sir lin in the seven- di

mensional charge space/ 12/ , The symmetry group of this model is the G 2 

group of rank 2 with 14 parameters/ 
26

/ • The basic irreducible representa-
. 1 'I 14 21 64· 

tion of this group is ·n, (0,0) , D ( 1,0) , D (0,1) , D ( ~0) and D ( 1, 1) • 

In this model the A -hyperon is assigned to a singlet of the one dimensional 
l 

representation D (0, 0) , while the rest seven baryons are assigned to a ·mul-

tiplet corresponding to the irreducible representation D 
7 

( 1,0) this is also the case 

for the seven well established pseudoscalar mesons. Therefore, the matrix ele-

ments of all processes under consideration with participation of the A -hype-

ron are expressed by the same independent amplitude and hence are proportional 

to one another, namely5
/ 

V 2 Tlla 1 •• 1 •• '1/2 1llb (44) 

while the matrix elements of the rest processes are expressed by four indepen-
• (00) (l,O) (O,l) (2 0) • • 

dent amplitudes T , T , ·1 , T • and satisfy the followmg re-
lations/12•16/. 

5/ We remind the readers that the first ar;1d the last equalities in ( 44) fol
low from the isospin invari.ance, 

10 

T 
la,b. 

T ( 45) 
4a,b 

T T ( 46) 
5a,b 6a,b J 

T T (47) 
'1a,b 13a,b 

T T ( 48) 
8a,b 2a,b 

T + T 
Ja,b '1a,b 

T ( 49) 
3b,a 

We would like to point out that the first three relations here coincide with those 

in eq, ( 36 ), ( 37) and ( 35) respectively, and the consequences of the octet 

model differ very little from those of the G 
2 

model, 

4. Relations between Cross Sections 

From· the relations ( 26 )- ( 49) between matrix elements one can obtain ·a 

series of relations between cross sections/ 1 4-
16

•
18

/' We should like to make a 
I 

remark with respect to these relations, As is well known, all the higher symmet-

ries considered above are destroyed at low energies, and they can hold only 

at large values of s and or at least, when one of them is large. 

The relations written down above can be understood as those between invariant 

(scalar) amplitudes A ( s,'t) and B ( s,.t ) , In the following (when the 
Ja,b ja,b 

elastic scattering at zero angle are to be considered) we shall sometimes assu-

me that these relations are correct at t = 0 and large s We note that 

even in this case, due to the presence of a kinematic factor, the relations of 

those processes where the baryons in the initial state and in the final state 

have different mass, for instance ( 7a, b) and ( 13a, b), are not satisfied, ~ver

theless the relations between cross sections of elastic scattering type processes. 

and in particular, relations between total cross sections are satisfied, 

Now let us deduce some relations between cross sections of the processes 

under consideration, We shall consider first the consequences of isospin inva-

riance. The relation ( 26) 

A (s, t) 
Ia 

can be rewritten in the following form: 

A
1

b (s,t) ..;2 A (s,t) 
2b 

B ( s, t) - B (s, t) = v 2 B ( s, t). 
Ia lb 2b 

. (50) 

As it was shown i) 23/ , in the general case, when both invariant ampli-

tudes A ·• ( s, t) and B /a,b ( s, t) contribute to the asymptote of c;oss 

sections 6T, if these amplitudes do not oscilate, but have a definite growth as 
6/ Other special cases can be considered in a similar manner. All con

clusions made in the general case are also correct in these special cases. 
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i 
I 

I. 

s .. 00 then from the crossing symmetry properties and by virtue of the Phrag-

men- Lindelof theorem, the following relations between amplitudes of crossing pro-

cesses ( j a ) and ( j b ) can be proved: 

·lTTa(t) 
A (s,t) = e A*(s,t) 

lb I• 

B ( s, t) = e •ITT a {I) B * (s, t) 
lb I• 

s .... 

where a(t) is a real function of 

By use of (51) relations ( 50) can be rewritten in the form: 

and hence 

A (s, t) 
Ia 

B ( s, t) 
la 

-ma{l) -
e A* .( s, t) = y 2 A (s, t) 

Ja 2b 

e ·!ITa (I) A* ( s, t1 = .[2 B (s, t) 
l• 2b 

r1ra{l)/2 ura(t >h 
·Re [ e A 2b ( s, t)] = Re [ e B (s,t)]=O 

2b 

f1Ta{l)/: - I1Ta{f)/: 
lm r e A (s, t)] = v'h lm [e A (s,tJ] 

ta 2b 

11Ta(l)/ 2 - l!Ta(t)/ 2 
lm [ e B 

1 
( s, t) ] = v'/2 lm [ e · B ( s, t)] 

• 2b 

(51) 

(52) 

From these relations and the expressions for the cross section ( 18) and ( 19) 

it is easy to deduce the following inequalities: 

dtT ( s, t ) 
t •.• - 'h 

dt 

du 
20 

( s, t ) 

dt 
> 0. (53) 

If a ( 0) = l then from relations ( 52) and the expressions for cross sec

tions ( 23 )- ( 25) follow the equality: 

du (s,t) I du (s, t] 
•.LA-- - 'h. 2a 

dt dt 

tot 2 
[u (s)] 

1a,At 

(54) 

1=0 l61T 
1=0 

Analogously, the equality 

du ( s, t) du· (s, t) u... - ~ 14 > 0 
dt dt 

(55) 

can be deduced from relation ( 31). 

12 

Now, let us consider the consequence of relation ( 24) under the assump

tion that· a(O} =1 • From this relation and eq, (15), (23) and (51) it follows 

lm. H ( s) ·- lm H (-s) 
3•,b 4c 

lm H (-s) 
5a,b 

and hence according to ( 24) and ( 25) 

·fol tot 
I a ( s) - u· ( s) I < y 16rr 

3s, b 4c 

du ••·• ( s,t) 

dt 
I t=O 

(56) 

We have shown several asymptotic relations between cross sections in 

case of isospin invariance, It is worth- while to point out that besides these re

lations there are some other well known equalities and inequalities between 

cross sections, which can be obtained from eq. ( 26 )- ( 31) and are correct at 

all energies, 

Let us go over to study the consequences of the unitary symmetry of the 

octet model,. We shall assume R -reflection invariance, In this case relations 

( 32 )- ( 40) hold between amplitudes of the processes under consideration, Rela

tions ( 35 )- ( 3 7) give us three well known equalities between differential cross 
+ + 

sections and an equality between total cross sections of rr- -proton and !{--

neutron interactions/ 14 •15•17(. Ey the procedure explained above and using re-

lations ( 38) and ( 39) we can deduce the following inequalities: 

da (-s, t) drJ· 2b ( s, t) 
Ba,b - ~ > 0 (57) 

dt dt - 1 

du- (s, t) ,3 du-
2

• ( s, t) 
(58) ··-··--- - > o. 

dt 
.4 dt 

Now let us consider the consequence of equality ( 36), According to ( 15) 

and (26), we have 

T 
4c 

T (T 
4d 2i 

then from eq, ( 60) the equalities 

follows immediately. 

da •a ( s, t ) 
dt 

'h(T + T 
1 a 1 b 

1a 
-T 

lb 
) = 

y2i 

'h du2b (s, t) 

dt 

13 

(59) 

T 2• , ( 60) 

( 61) 



By use of eq, ( 51), ( 59) and ( 60) can be rewritten in the following form: 

•IITa(t) 

A 
40

• (s, t) = Y, [•A lo (s, t) + e lA;. (·s, t)} 

. -ura(t) 

B (-s, t) = Y, [B ( s, t) + e B* ('s, t)] ' 
4o Ia t • 

A ('s, t) 
411 

B ( s, t) 
4d 

llra(t) 

Y, .[A (·s,t) + e A* ('s,t)] 
Ja Ia 

.ura(t) 

Y, [Blo(s,t)- e B*to(·s,t)]. 

These relations show that 

2 . 2 2 

I A ('s, t) I = I A ('s, t) I + I A . (s, t) I 
I• 4c 4d 

2 2 2 
I B ('s, t) I · = I B (s, t) I + I B ( s, t) I , 

ta 4c 4d 

ReA ( s, t) B* (s, t) = ReA (s, t) B* ('s, t) + Re•A (s, t) B* ('s, t); 
Ia Ja 4c 4o · 4d 4d · . 

and hence 

du (s, t) 

dt 

du· ('s, t) 

dt 
+ 

du (s, t) 

dt 

( 62) 

( 63) 

( 64) 

Now consider relations ( 40), Using eq, ( S1), we can rewrite these rela

tions in the following form: 

-ura(t) 

-A,. (s, t) - e 

- ura(t) 

B* (s, t) ,. 

·B (·s, t) - e B* ( s, t) 
9a Sla 

A ( s, t) + e •• 
-ma (t) 

A* (s, t) 
9a 

-1rra(t) 

B (·s,t) + e ·B* (s,t) 
9a 9a 

-ma(t) 

y,J [•A
8

• ('s,t)- e A;_<·s, t)] 1 ( 65) 

. • liT a( I) 

- e B* (s,t)l• •• yJ[B (s,t) •• 
-ura(t) 

_1_ [•A (s, t) + e A* (s, t )]J 
yJ •• •• 

1 [ • I rra (t) 
y-;3 B ._<·s, t) + e B* ('s, t) ( 66) 

8a · • 

From these relations and the expressions for differential cross section ( 18) and 

( 19) follows: 

14 

where G 

d a ( s, t) I cit 
Ba,b 

do (s, t)l dt 
9a,b 

is obtained from F ( s, t) 
_9a,b 

1 G 
.J + IJ-r 

G 
1 + £ 

by the substitutions 

.!.!!.E.I1L 
lA (s;t)t

2
+_[lmA (s,t)e 

2 
]

2
, 

9a
1

b 9a,b 
· 1 .-a (t) 

2 -2- 2' 

I s,.,b<s, tJ I .. [lrn n,.,b(s, tJe l 
1~ 1 rra(t) 

ReA · (s, t) B* ('s, t) + lm [A
9 

[s,t) e ]lm [ B (s,t) e 
2 

J ., 
9a,b 9ab a, · 9a 1 b 

( 67) 

while E is obtained from G by the substitution lm -+Re. The ratio GIE 

can very from 0 to. 

1 
T< 

, Therefore from· ( 68) follows: 

( 68) do ('s, t) I dt 
Ba,b < J • 

du ('s, t) I dt 
9a,b 

In the case of the unitary symmetry of the triplet model the amplitudes of 

processes under consideration are related by eq, ( 41 )- ( 43), Several identities 

between cross sections• deduced from these relations were· given in/ 
13

•
17

/, We 

shall deduce some other relations between cross sections and polarizations, It 

is not difficult to see from eq, ( 15) and ( 42) that 

du 40 (s, t) 
= 

do 
48

{ s, t) 
= 

do 4b'•(:s, t) 

dt dt dt 

tot tot lot 
( 69) 

a ( s) = u· , ( s) = a (s) 
40 4• . 4b'· 

du4~ = 0 
dt 

Furthermore, relations ( 42) and (51) show that the amplitudes of processes 

( 4a') and ( 4b') have the following property: 

-lrra(t) 

A 4~ ',b •( s, t) e A*, ,(s,t) 
4a ,b (70) 

-ura(t) 

B , , ( s, t) = e B * , ,( s, t) 
4a 1 b· 4a,·b 

-From eq, ( 70) and ( 21) it follows that the polarization of the recoil neutrons in 

processes ( 4a') and ( 4b') should tend to zero at ·s .. 00 and fixed • not 

depending· on the relative behaviour of the invariant amplitudes. Moreover, re

lation ( 43) gives an equality between cross s'ectio~s of processes ( 5c)and( 9c): 

15 



da
50

(s,t) 

dt 

da •• (-s, t) 

dt ( 73) 

Now let us consider the model with symmetry group G 
2 

• Relation ( 44) 

together with eq. (51) show that the polarization of the A -hyperon in pro-

cesses ( 9a,c) and ( 11a,b) should tend to zero at B .. ~ and fixed • not 

depending on the relative behaviour of. the invariant amplitudes. Such conclusion 

is also correct for processes ( 8a,c) because relation ( 45 )- ( 4 7) coincide with 

( 36 ),( 37) and ( 35 ). 'Iherefore, several relations in case of the octet model, for 

instance, ( 64) and ( 65) hold also in case of the model with the symmetry 

group G2 

At last let us deduce some common asymptotic properties of the meson

baryon scattering amplitudes for all the models under. consideration. 'Ihe asymp

totic relations (51) can be rewritten in the form 

rra (I) 

I -2- A . (-s, t) 
e I• 

rra(t) 

I_,- B ('s, t) 
e I• 

s .. 

[ e 

[ e 

1TQ (t) * 1 
-2-A ( s, t) ] 1 

jb 

rra(t) * 1

~ (s, t}l • 
jb 

( 73) 

from which follows: 

1 
rra(t) 

1 
rra (t) 

'Re [ e 
2 A (·s, t)] Re [ e 

2 
A ( s, t) ] * 

jb I• 
I !!!'!!Q 

Re [ e 2 B ( s,t)] = Re [ e 
I• 

rra(t) 
1---

2 B (s,t) ]*. 
lb 

( 74) 

In all the models with higher symmetries under consideration amplitudes 

A ( s, t) and B ( s, t} are expressed in terms of those between 
ja,b la,b (>r ).2) (). )..J 

states corresponding to irreducible representations .... A ' T s, t) and B 11 Ts, t) 

where A 1 

triplet model 

in terms of 

and A 
1 

characterize the representations. As an example, in the 

of Sakata from the expressions of A ( s, t) and B ( s, t) 
(A ,A,t. · (A ,A

2
J I•·• I•·• 

A 1 ( s, t) and B 1 (s, t) and ( 74), it follows that 

(0,2) ,rra(t) (t,o) '"'1(1)_ (2,1) 

Re[e A (·,.t)] 
1 rra(t) 

'Re[e - 2 - A (s,t)]= Re[e 2 A (s,t)] 

rra (t) ( 2 1) 

Ii'e[e
1
---.-·B ' (s,t)l 

( 75) 

1 rra(t) ro, 2) 1~ (1,0) 

~ Re [ e ---r- B (-s, t}] = 'Re [ e 2 IJ ( s, t)] 

16 

' and therefore for all charge exchange processes, we have 

I~ I !!.S!!1)_ 
Re [ e 2 A (s,t) ] = 'Re [ e 2 B ( s 1 t)] = 0 1 

ja,b Ja,b 
( 76) 

while for the elastic processes, we have 

rra(t) 1Ia(t) 
~~ 

Re [ e 2 A1 a,b ( s,t)] 

1-- 1--

Re[e 2 A (s,t}l= Re[e 
2 

A ("ttJl (77) 
3a,b 4a 1 b 

~~ 11T~(t) ~~ 
Re [ e B ( s, t)] = 'Re[ e B (s,t)] ~ Re [ e 2 B 

la,b 3a,b 4a,b 
(s,t)]. 

Properties ( 76) and ( 77) hold not only in the Sci.kata model, but also in other 

models under consideration. From ( 76) we may deduce that at s .. ~ and fixed 

, the polarization of the final baryon equals zero in the charge exchange 

processes, when the baryon in the initial state is unpolarized, if the strong in

teractions satisfy one of the above discussed symmetries. 

Consider now the elastic forward scattering processes, Suppose a {0) = 1 /-
23

/ 

then 1TU(O) 
1--

Re [ e 
2 

A. Ja,b (s,OJl=-lm.1 (s,O) 
Ja,b 

R [ 
11lfl.PJ-8 ('tO)]=- 1mB ('s,O). e e Ja,b Ja,b ( 7S) 

Eqs. ( 77) together with ( 78) show that the imaginary part of all the elastic 

forward scattering amplitudes equal one another
7
/. From which follows the asymp-

totic equality of all the total meson-baryon 

models under consideration: 

interaction cross sections in the 

tot + tot ± tot 
a (rr- p) =a (K p) = • ., = a (::~B) (79) 

Nevertheless, without subsidiary assumptions concerning the real part of 

amplitudes, no conclusion with respect to the differential cross sections can be 

made. 

We would like to point out that we have written down only the independent 

relations between cross sections, from which some other dependent relations 

could be obtained. Moreover, we have not written down those obvious triangular . 

inequalities, .yhich could be obtained from relations of type ( 32 ), ( 38 ), ( 39) etc. 

between matrix elements. 

/ ~ /'!his result has been also obtained in a recent preprint of Ryder and 
Smith 0 • 

17 



ll 

5, Retsume of Results 

In co'nclusion we shall tabulate all relations obtained in/ 13- 15•17/ and in 

the present paper, The well known isotopic relations, triangular inequalities and 

asymptotic identities between cross sections of crossing processes, will not be 

included in this table, We shall denote, for example, the differential cross sec-
- - + lion of process !{ -. p -+TT +::S at given 

- • + 
by a ( K p -+ rr- ::S ) , the polarization 

of the ::S + - hyper~n in this process while the proton is unpolarized by 
- - + 

P(K p-+rr ::S ) and the total cross section of 1T+ -meson- proton interaction 

by a'"' (rr+ p) •. 

The models in which the given relations hold and whether the Phragmen

Lindelof theorem. (or the Pomeranchuk theorem) is used in the deduction of 

these. relations are listed also in the table. We shall use the following notations ' 

in the table: 
I - isotopic invariance; 

0 - the octet model with R -·reflection invariance; 

T - the triplet model; 

G -
2 

the model with symmetry -group 

PH-L- the Phragmen- Lindelof theorem. 

The authors are indebted to N,N,fugoliubov, l\1.A. l\1arkov, V.I. Ogievetsky, 

Ya.A, Smorodinsky, I. T. Todorov and O.A. Khrustalev for interest in this work 

and valuable discussions. 
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TABLE OF RELATIONS 

R e 1 a o n s Models Reference 

U (IT+ p, -+, 1T + p)- '(, U (IT- p -+ 1T 0 n).?;: 0 /,PH- L 

+ · + - 1 [ lol + ] 2 u(1r p-+IT p)-Y,u(1Tp-+1T 0 n)=--u (1rp) 1, PH- L 
t= 0 161T 

u(X-p ... ·K 0 E 0 )-~u(!Cp-+K+E-)2' 0 1, PH- L 

atot (K+p)-+utot (Ko p) I< y161Tu(Kp -+Kon) I . 
• 2 .- t=o 

1, P.'f- L 

a(lCp ..,[( 0 i::~ =a·(lCp -+IT+~-). 0, G 
2 

[ 15, 16, 18 

a(lCp -+K 0 n) =u(l(-p-+·IT-~+) 0, G 
2 

[ 15, 16, 18 

a(1r-p -+ K 0 ~ 0)- ~a·(1r-p -+1T 0 n) > 0 0, PH -L 

a·(1r-p -+K 0A) -~a(1r-p .. !TOn):': 0 0, Pll -L 

. u(K
0

p -+K 0 p) = ~a (1r-p ->1T 0 n) 
2 1 0, G

2 
,PH-L 

+ + (K o o o o u(1r p ->IT p)=u 
2

p .. [(
2

p)+u(K
2

p-+l(
1

p) 0, G
2

,PH -L 

1 < a (IT- p .. Ko'io) 
J- - < 3 

. a·(" p .. [(
0 A ) 

PO, Pil-L 

a·( 1T +p .. 1T + p)-> u.' ( [( + p -> K+ p) T [ 14.181 

a'(K-p->K 0n) =a(:r-p .. [(
0
A) T [ 14' 18 ] 

0 0 + + 
a·( K 

2
p .. K 

2
p) = a"( [( n .. [{ n ) T 

a(!(op .. l(op) = 0 
2 1 

T 

' 0 + •. 0 + 
a(K

2
p->K n) ""'u(K

2
p -+IT A) T 

ut•t (l{op)= u'•'(K+n) 
2 . 

T 

P(K+n .. f{+n) = 0 T, PH -L 

m ;. n. 
P(~ 1 B 2 -+'m 2 B 2 )=0, B!--1 B!. O,G 21 T,PH-L 

at•t(:r± p) = a·101 (l~p)= ,, =a1• 1 (mB) O,G,T,PH-L 


