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A a R o r a n • • 

RccaeAoaaaa 4-¢ep .. oaKaR •enroaaaa aep .. •a a •ecraBqaou np•Oxaaea••· 

Be~aaaa ~YRXURR a•• AMD••ry~a pacceaaaa •enroaoa onpeAeaeaa OAB03aaqao: 

np0B3BOX.RM8 KORCTa&TU nepeROpMBpOBKR 88 DORBaRDTCR B KOaeqRHX BypaaeHKHX. 

9epUBeacKaa Koacraara caa3B nepeaopKBpyerca xoaeqRUM UBo .. reaeu r1- J ~. 

AunaBryAa pacceaa•a auaaerca q•cro MBBMOK np• Oox.axx aaeprBax. A•~epea

IUIUJ.Roe ceqes•e yOHBaer c aaeprBell, Ynpyroe ceqene yOHBaer xax .-• tot • . 

noay-RBpRRa n•xa anepe~ nocroaaaa. 

J. b s t r a c t 

~he four lepton Yertex function is investigated in the ladder approxima

tion. The Yertex funotion of lepton-lepton scattering amplitude is detereined 

uniquely: Arbitrary renormalisation constants do not appear in the final exprea

sioas. The partial waye amplitude is a meromorphic functlon of the four dimen

sional angular •omentu. in the whole complex plane. The Fermi coupling constant 
2 ~ is renormalized by the finite factor r---.- J • The scattering amplitude is pu-

relT imaginary at high energies. The correction factor to the angular distribu-

tion is a uniTersal function of the yariable 
-I 

• - - lot • ( lol(- t ) ) • 

The differential cross section decreases with energT as -1 ·2 
• ( lot•) . 

The elastic cross section decreases as ·• ·I lot • The balt'-width of the 

forward peak is constant. The contribution of the dtreot channel to the crDea 

section decreases as ·• - • IJ 

' I 
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1 . I n t r o d u c t i o n 

Ever since Heisenberg divided the local int er~ctions in field theory into two 

kindsll-4 1, the theory of interactions of the second kind have been the •enfant terrible" 

of quantum fi eld theory. It seems on t he one hand that they do exist in nature ( in parti

cular weak interactions belong t o t his kind), on the other hand with the development of 

renormalization theory 1t turned out that interac tions of the second kind* a re "nonrenor

malizahle" in the sense that the infinities (more correctly, the arbitrariness) arising in 

a perturbation expansion cannot be removed by renormalizing the constants of the theory 

(i.e. masses and coupling constants) . 

* i.e. those where the coupling cons tant has the dimensions of a positive power of 
length. (Throughout we work in a system of units where r; - c = 1). 

Ac tually, in a perturbative expansion of matrix elements or Green functi ons, there 

arises an infinite number of arbitra ry subtraction constants (See e.g.l 5 1). A mor e physi-

cal aspect of the problem is that interactions of the second kind are expected to "become 

strong" at hi gh energies. In fact, the dimensionles s expansion parame ter in a perturbative 

expansion i s not the coupling constant itself , but the coupling constant times some power 

of a characteristic momentum of the system (total C.M . momentum, momentum tra nsfer, etc.). 

Focussing our a tt ention to Fermi interactions, the coupling constant 

(length)l 2 1
1 

so one expects a dimensionless expansion parameter to be 

has a dimension 

E. ' where E is 

the total C.M. momentum. This shows that f E
2 

.. 1 (i.e. "the weak interaction becomes 

strong") a t I E I •· JOO GeV. This circumstanc e has g iven rise to many specula tions about 

high energy lepton physics and higher order corrections to weak interactions ; a s urvey of 

them with a pr act ically complete bibliography ca n be found in the recent work of Markov l6 1, 

This s ituation is to be confronted with the following observation of Pais 17 1. If-

as follow s fr omthe previous co ns idera tions- higher order corrections to weak interactions 

were large, we s hould get a l a rge K; - K•, mass difference in striking contradiction with 

exper imental r esults. 

In the fra mework of the • -meson theory, Feinberg and PaisiS-9 1, by applying a s pe

cial proc ed ure to r emove the dangerous divergences, s ucceeded in summing ladder diagr ams 

their result i s tha t ' higher order corrections do play a non- negligible role; in pa rt lc u-

J 



lar, they obtai ned that the coupling constant is renormalized by a fa~tor of )/4. 

The aim of t he present work is to investigate the behaviour of the four-lepton ver

tex ( or eq uivalent ly , the two-lepton propagator) at high energies. Instead of assuming an 

intermediate bos on theory, we assume the existence of an elementary Fermi interaction of 

the V-A type. To calculate the vertex, we apply t he ladder approximation: we consider two 

fermions propagating with the successive exchange of a fermion loop. The Bethe-Salpeter 

equation with singular interaction kernel arising thereby is treated by a method, proposed 

in ref.llOI. The essence of that method consisted in transforming the BS equation into 

a non-Fushsian differential equation, which can be inv es tigated by known methodsllll, 

In Sec. 2 after a brief general discussion of the properties of the four-fermion ver

tex, we derive the differential equation mentioned above. Sec. ) i s devoted to the descrip

tion of the approximatio n method used to solve the equation. Sec. 4 contains the main re

sult of t he paper: We show that subtraction terms do not contribute to t he amplitude and 

we obtain an asymptotic expression for the scattering amplitude of two leptons; we fi~d 

that the leading term is purely imaginary and decreases with energy. The fifth section 

deals with the calculation of the asymptotic behaviour of the scattering amplitude in the 

direct channel by the application of the wKB method. In the last sixth section we 

discuss some physical consequences of the results obtained; further we point out the pro-

bable limitations of our approximation and pos s ible improvements. 

2. Derivation of the different ial equa tion 

Cons ider a four-fermion interaction of the V -A type with charged currents only. As 

an interaction kernel for the os equation, we choose the diagram drawn on Fig. 1. If the 

diagram on Fig. 1 is to describe the interaction between two charged leptons ( ~·· ), the 

loop in the intermediate state contains two neutrinos while if we consider the scattering 

of a charged lepton on a ne utrino, there is a charged lepton and a neutrino exchanged, How

ever, in what follows, we neglect all the lepton masses, thus, obtaining an "asymptotic equ

a tion• in the sense, explained in ref.llOI; in this approximation all the lepton-lepton 

( I 1 ) and antilepton-antilepton ) amplitudes equal each other, while the lepton-

antilepton ( r • ) amplitudes differ from them by sign. Instead of going through the 

usual f ormal argument to show this, we prefer the following elementary argument. The two

fermion propagator can be conceived a s the infinite iteration of the interaction kern~l of 

Fig. 1. A glance at Fig. 2 shows that if we change the orientation of an internal fermion 

loop, we obtain the same expression*; going from II to Ia amplitude means reversing 

the orientation of the "last•, open fermion line, which obviously results in a change of 

4 

the sign of the amplitude; fc 

two open lines. 

* Like in quantum electr 

By the same argument we 

sufficient . to calculate the 1 

Denoting tho two-lenton 

kernel by /( , the BS 

G 

where the quantit ies involved 

In eq. (2 .2) 

G
0 

( p, q; E ) • 5 ( 1 

f( ( p,q) • y(I J(J+i 
p 

G ( p, <t E) - r"' (, 
p 

E is the tota 

t1ve momenta; the superscript 

pectively. The scalar functio 

Here ' l • (p - q ) 

K - K I (Q + /( 

st 

subtraction cons t a nts. The sy 

and the s ubtraction polynomia 

tion in the expression of 

four-lepton interaction and t 

the invariant function 

( P'-

Following the procedure descr 

called G, i.e. that obe 

and expand G, according t 

Finally we perform a Hankel t 

operations we are left with t 
tion c,r•, 'J, 



i by a favtor of J/4. 

lour of the four-lepton ver

~gies. Instead of assuming an 

Jentary Fermi interaction of 

>proximation: we consider two 

>n loop. The Bethe-Salpeter 

treated by a method, proposed 

·ming the 8S equation into 

ed by known methodsllll, 

·ties of the four-fermion ver-

• J is devoted to the desorip

Sec. 4 contains the main re-

ribute to t he amplitude and 

de of two leptons; we find 

energy. The fifth section 

scattering amplitude in the 

he last sixth section we 

urther we point out the pro-

nts. 

th charged currents only. As 

~gram drawn on Fig. 1. If the 

:harged leptons ( "• • ), the 

we consider the scattering 

1d a neutrino exchanged. How

obtaining an "asymptotic equ-

lon all the lepton-lepton 

:h other, while the lepton

lad of going through the 

•mentary argument. The two-

tf the interaction kern~l of 

;ion of an internal fermion 

amplitude means reversing 

1ly results in a change of 

I 
1 
1 

. I 

the sign of the amplitude; for an ( ) amplitude we have to change the orientation of 

two open lines. 

* Like in quantum electrodynamics for a loop with four external photon lines, 

By the same argument we see that instead of treating a multichanne l problem, it is 

sufficient .to calculate the ladder diagram with one definite orientation of the lines onl~. 

Denoting the two-lenten propagator by G , the free one by a. the interaction 

kernel by K , the ss equation in operator form reads: 

G • G
0

+ G
0
KG (2.1) 

where the quantiti9S involved have the following expressions in momentum re pres enta tion : 

K ( p, q) .. y(IJ( 1 + i y ld) yP f1J ( 1 + i y C1J ) • j( 

(2 .2) 

p ' 

In eq. (2 .2) E is the total c 11 four momentum of the leptons, p, q are their r ela-

tive momenta; the superscripts (1) and (2) refer to the "first" and •second" lepton, re s -

pectively. The scalar function K is given by the following expressions : 

Here ' , _ (p - q ) 

K - K 
1 

(Q + IC 
2 

( t) - f 't 
2 

( 2•) 4 i 
( 2• 

J .... dt ; 

! t ' (t' - - t ) 
+ ~ + ~ t 

' ' 

stands for the Fermi coupling constant, 

(2.J) 

and A, are 

subtraction constants. The symbols K,(t) a nd K ,(t) sta nd for the spectra l int egra l 

and the subtraction polynomial, respectively. (Notice that we have only one i nvariant func-

tion in the expression of G ; this is the consequence of the V-A character of the 

four-lepton interaction and the vanishing of the lepton masses). The B. !;. equR. t1on f or 

the invariant function G can be derived in a straightforward way. The res u l t i s : 

(p' - \4 E ') G (p,q ;E) •S (p- q ) + 
(2 . 4 ) 

16 I 

( 2, ) • ; 
dkK { p,k) G(k, q;E) . 

Following the procedure described in ref ,llO I we now s eparate the "analytic part• of 

called G' i.e. that obeyin_r. eq. (2.4) with K I only), go over to Euclidean metric 

and expand G I according to four-dimensional spherical harmonics, (See, however, Sec.& ) , 

Finally we perform a Hankel transformation on the resulting radial equation. After these 

operations we are left with the followiag differential equation for the radial Green func
tion G

1
(<,'J, 



' [ _d_ +~ d n!.. 1 z 

d•' ' dl 
---;-r + A: ] G1(1; r') • 

' ... G /'• r') + (rr''.) ·J../2B(r-r'J, 
(2.5) 

->. ' 

where A:' • 1,4 E' >.' - .32 rt -I f 2 n' is the square of the !our dimensional orbi-

tal momentum, defined as in ref. 10 ( i.e. its physical values being 1,2,J ••• ). Alternati

vely, we can write the equation !or the wave !unction, .p !•! . ,-"'ur•!' 

l~ 
dT l 

' n'- '/. + } - ---;-r- >. ' 
7 

] . u (l) - 0 (2.6) 

Eq. (2.6) has exactly the form of a radial Schr~dinger equation with a repulsive potential 

' -· >. ' • Therefore, in order to find the scattering amplitude, we can apply the 

procedure, familiar in non rela tivistic quantum mechanics. Eq. ( 2 .6) cannot be integrated 

in terms of known transcendental !unctions, so we are going to develop an approximation 

procedure, valid for small values of •' and potentials more singular than o (•"' J 
/12/ 

at the origin (A usual effective range expansion would diverge, c!. Landau-Li!schiz ). 

J. Approximate Solution of the Differential Equation 

We start !rom the observation that i! we drop either the kinetic energy term or the 

potential !rom eq. (2 .6), it can be integrated exactly in terms of Bessel !unctions. 

In !act, the equation: 

(~ 2 n ' - ~ 
k- ~ ) v

0 
(r) • 0 

has the following two independent solutions: 

v: (t) • r'"II~1 )(kr), 

v: (t) • r"" H~') ( k r ) , 
with the boundary conditions: 

Putting ' k - 0 

v: {t) -. ., I i [h - . -- "-
2 

v 2 (r) • f!I JP I - i [ lr - _ • _ n 
• 2 

we arrive at the equation · : 

d' ' >. 

. 
4 . 

.4 

[_ 
d•' 

with the•independent solutions: 

n'- 1.' 
--.-,- """? 

V/ t) • 0 , 

6 

(J.l) 

(J.2) 

I' 
(J,J) 

l I 

(J.4) 

v '( . 
I 

' .I 

and the bounda ry conditions: 

.I 

I 

' . 
I 
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(J . l) 

() . 2) 
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(). 4) 

v 1 ( r) • r M K ,. (~ ) , 
I """"i" 2 r" 

' v1 (r) • 

and the boundary conditions: 

•
1

1 (r) • 0 ( r" Lp 1- _A_ I ) 
2 • ' 

, .. 0 • (J.6) 

v
1

2
( r ) • 0 ( r"2 e%f' I __A_ I) , 

2r' 

We cons truct the approximate solution of eq. (2.6) fromthe functions (J.2) and (J.5), by 

neglecting the kinetic energy term if is less than some conveniently chosen value, 

'• and neglecting the potential for r > ' • • It is intuitively clear that such an ap -

proximation procedure should work well if the potential is very large at small distanceb 

while decreases sufficiently rapidly as 

We choose for ' • the distance at which the kinetic and potential energy terms are 

equal in magnitude, i.e. '" r
0

• (A / k ) • (If k ' < , which is the domain •• .are 

interested in, when going over to the crossed channel, the coefficients of eq . ( 2 .6) are 

even continuous at Il l 
'• .. ( i .\ I .t J 

We look for a solution of eq. (2.6), vanishing at •· 0 a nd being a combination of 

ingoing and outgoing waves at infinity. 

therefore we choose 

u ( r) • I 
v

1

1 
( t ) ( r < '• 

F
1 

v! ( t) + F
2 

V
0

2
( r) ( r> 'o ) 

(J.7) 

Matching the logarithmic derivatives at , we obtain for the scattering matrix 

element: 

,~~; . . (J.8) 

In eq. (J.8) primes mean derivatives with respect to the arguments of the cylindrical 
2 1/ J 

functions, and ' • r k 1 ) 

The approximation procedure described above can be considered as a zeroth order 

term of a perturbation series to the differential equation: 

4 2 
+ 0 (r-r)t2 - 0 (t-t )~ -~ 

dr :z 0 0 r• r' 
u(t) • 

(J.9) 

7 



O(x) being the unit step function and the perturbation operator ~(t) has the follow-

ing expression! 
' 

lt'(r} ,.. _ k 2 0 ( r
0
-r

0
J + ~ O( t - r0 ) (J.lO) 

Let us s ketch the proof of the convergence of the perturbation expansion for 12 < 0 . 

In order to simplifr matters, let us split off the factor ~ 
r 

and (J.6): v(r) • t ""'•(rJ and multip!r the equation for •(r) 

obtain with 1
2 

• - K.
2 

( K
2 > o ) : 

from 

by 

,z--tl.!_ 
dt' 

d ., __ - ' ' O( r-r•)IC r- ~ 6 (r- r)- n
2

] •(r) • 
r' • 

With 

dt 

- v(t) "( r), 

V (r) • K r 9 ( r - r ) + ~ 0 ( r- t ) 
r 

in eqs . (J.2 ) 

• Thus we 

(J .11) 

Considering eq. (J.ll) as an eigenYalue problem for 

., (O) • •(-) - o, the unperturbed solution is: 

with the boundarr condition 

"~O) ( r ) • 0 ( r - r ) KJ:.... (..;...,) K v ( " t) + 
0 2 2 t 

' A +8 ( r0 -r) Kf (~) _l(.v("' r ), 

(J . 12 ) 

while the unperturbed eigenvalue satisfies the usual determinantal equation 

f( vJ • rc (• r J _:!_ 'S.J~ J -K_,J2- J ....'!..__ Kv ( « J- 0 . (J.lJ) 
v 0 d r 2r 2 , 2 t 2 dr 0 

In the standard wayllJI we find ttuo~ the soluti~ns of eq. (J.lJ) are pure imaginarr so 

that the functions w ~~J are real. The .functions w;o> are orthogonal: 

dt •c:;(r) .,.,:~~ ( r ) • .'.
11 

814',, 

( "'• being a norn,...lill;ation coefficient). The perturbed eigenvalue, 

giVen b.r: 

n • v + Yw ~ 
v 

V , I' , 
+ •• , • 

v 2 - v" 2 

, is of course 

(J.H) 

where v... are the matrix elements of v taken between the normalized functions (J.l2). 

It i s easy to see that 
l Yvv , I<(K t

0
)

2
11 (K 2A ).2 / J 

( which is really small for small values of , as we have expected). 

Making use of the familiar expression for the number of roots 

circle with r adius l nl• R 

N ( R) 

I ~ d:r: •h Io 1 I f r R e " " J I d¢ - lot it (0) I , 
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~a t or ~( <) has the follow-

(J .lO) 

con expansion for lr.2 < 0 . 

,. "' from i n eqs . (J .2) 

• ( <) by • Thus we 

) - n' I • ( <) • ( J. ll) 

:h the boundary condition 

~ (~J .l(..,(l( r ), 

leterminantal equation 

(J.l2) 

)• 0. (J.lJ) 

l.lJ ) are pure imaginary so 

· t hogo na l : 

tnvalue, , is of course 

( J.l4) 

te normal ized functions ( J . l2). 

expected). 

roots N(R) inside a 

1¢ - 1o~ I t (OJ I • 

we obta in 
N ( R ) < C R lo~ R 

where c i s some cons tant. 

Hence , for the eigenvalue "r we have the lower bound: 

' > C ' · 
r' 

" I ( lo~ f J' 
where C' iS again some cons tant. So we obtain that the s er ie s ( J .l4) c onv er ges . In a 

simila r way one can demonstrat e t he convergence of the series for the perturbed eigenfunc 

tions as well. 

We ca n check by inspection t hat our s -matr1x e lement i s a mer omor phic f uncti on 

of in the whole complex n -plane; it satisfies the symmetry relation, c haracteris -

tic of potentials with a ha rd core 114 1: 

S ( - :1, It 2 ) • e., , ,,. S ( n, k 2 ) • (J.l 5) 

Finally we quote the ex pression for the transition matrix element, defined by t he r e l a

tion: 

T ( n, l 2 ) • __ 1_ ( S ( n, 1
2

) - I 1 , 
i " J: ' 

' -1 
1·( n, l ) - -;;--t' 

.!._.!_•}!(j,_ ( !..._)+ ] ' (d K~(+_i_ 

«:>rd tq-ft) + n<: >(t) K-t-(+ 
(J .l6) 

One can check by direct calculation that the expression (J .l6 ) giv es t he correct continua-

tion of the transition matrix element for t ' < o, l t' A 1 « 1 . 

4. Subtraction Terms and Asymptotic Behaviour of the Scattering 

Amplitude 

All the expre s sions derived up to now are originally valid for Ren > 2 (as we had 

two subtractions in the kernel ( 2 . J)). However, a s explained in ref.llOI, we can continue 

them even for Ren < 2 , if only we take into acc ount that at the subtra ction points , 

n = 1,2, the expression for the transition amplitude i s not given by ( J .l6 ) but by a 

suitably modified expression, derivable from eq. ( 2.5) of re f . l lOI. To formula te the con

tent of that equation in an intuitive way, the s ubtra ction polynomial of t he kernel can be 

conceived as a set of new local interaction Lagrangians. The transition amplitude a t the 

subtraction points is given by the infinite chain diagrams formed with t hese a dditional 

interaotions., taking into account the vertex - and propagator corrections caus ed by the 

analytic part of the transition amplitude, r. 

9 



In !act, at the subtraction points, according to eq. (2.,) o! re!.llO\ the Green 

!unction G iS giTen b,r: 

G•G+GK.G 
I I > 

(4.1) 

Taking into account the relation between the Green !unction and the transition amplitude 

of! the mass shell: 
'G

1 
• 'C. + 'G0 1 G 0 (4.2) 

and defining at the subtraction points 

G • ~ + G0 U G0 

with the help o! eq. (4.1) we obtain the correction to the anal,rtic part o! the amplitudei 

W( o,1 3 ) •[ I- ( I + 1 G0 ) K
2
(n) G 0 ]:

1 

(4 .J) 

x( I + 1 ·G
0

) K,(a)(I + G,T) 

where w ( n. 1 • J • 1 ( a, 1 • J - u ( "• 1 • J 

It is clear that w (o,1') can differ !rom zero !or K, (a) onl.r, because o! the proper-

ties of n • I (c!. eq. (2.J)). I! we write out the operator equatioa (4.J) in momentum 

representation, we arrive at an integral equation with degenerate kernel; its solution 

reads e .g. for 

where 

<pI w (1, 1'•Jip·>- sl F(l',p) F (1
2

, p'} 

I- 8
1 

</> ( 1 ) 

F ( i 2
, p) • 1 + 

q"'dq"·.<P I T ( l,k 2 11 q"> 

q' l - k 2 

F (l',p) •I+ j q.'dq' ·< q 11( 41
2

) I p > 

q' ·' - t 2 

</> (1) -
q'.ldq' + f q"~ d q ' · q''do'' .<q'j1(I,1'J io ·' ' > 

(q ' ~ -1:' X q ... ':?- t' J q"' - t ' 

(4.4) 

(4 .5) 

(The first integral in the expression o! ¢ (1 ) is divergent as it stands; it could be de-

fined in the usual wa,r by means of subtractions; however, we shall see in what follows 

that we can operate formally with such divergent integrals). 

Let us now obserTe that the expressions (4.5) can be expressed with the help of the 

Green functions in coordinate apace. In !act, remembering that 
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~-') of ref.llOI the Green 

(4.1) 

and the transition amplitude 

(4.2) 
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only, because of the proper
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nerate kernel; ita solution 
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(4 .5) 

t as it stands; it could be de

e shall see in what follows 
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hat 
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one immediately recognizes (of. eq. (4.2)) that 

¢(1) • lim G
1

(r
1

,r
2

} • G
1

(0,0) 

't .. 0 . ~ . 
For small values of one chn immediately write down the expression of the Green func-

tion of eq. (2.,). 

+ 9 ( r '- r ) I~ ( _>._) K ~ (_>._) J 
2 r' ·2 2r 2 

Now, the value of G ,ro,oJ depends on the order of the limits: if r' > ' or r> r' 

then G,(O.OJ • o if the limit is taken along the line r'- r G 
1 

(0,0) is a finite 

constant. However, aa one can easily check, F(k',p J - F (t',pJ - o. Thus we 

see that and the same result is obtained for w ( 2,1 
2

) Hence, the transi-

tion amplitude is determined by its analytic part everywhere. Let us immediately remark 

that this remarkable prop~rty is a consequence of the strong singularity of the Green 

function at the origin. Bad we to do with a •regular• theory (the interaction at small 

distances is weaker than the centrifugal term), the Green function at small distances 

would behave as , thus allowing a nonvanishing contribution from the Rubtraction 

terms at n - 1 We can now turn to the determination of the total scattering amplitude 

from the partial amplitudes (J.l6). Remembering the addition theorem for four dimensional 

spherical harmonics (ref.llOI, Appendix) and the well-known identity: 

C"~; (autO)- ·~=~0 
being a Gegenbauer function), we obtain the scattering amplitude in the form of 

a Fourier series: 

T(~l') • (-; (
11 

( ·lin 0 f ' i sinnO 1 ( n, "') (4. ) 

Here cos 6 or expressed in Mandel-stam•s variables, z - 1 + ...!.;--, t - 4-
1

K
2 

It is convenient to transform the series (4.6) into a contour integral: 

(4.6) 

x sin n 8 T ( n, K 
2 

) , 

the contour G being shown on Fig. Ja. We have already remarked that T(n, ~t 2 ) is a 

meromorphic function of 

on the imaginary axis. 

in the whole complex plane, its poles lying for l' < o 
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A s imple inv es tigation shows that if we put n • R e.wpli ¢ then for R·-

1 ( n1 I k 1) - 0 ( e Jp (- R lo~ R a:ta ¢ ) ) 

Thus for • ' < o t he contour c can be deformed almost to the imag inary axis ( c' J (an 

infinitesimal s ector being excluded) as shown on Fig. )b. 

Let us now obtain an approximate expression for small values of k' and nonintegral 

values of • Making use of the familiar expansions of the cylindrical function, after 

s ome rearrangements we arrive at the expression: 

where 

T(n,t) _ .,. sinn11 

y -

y - I 

l~ (l+n) f"(l+-TJ 

I ' ( 1-n) 1"(1-.!!.) 
2 

-·· (_,. __ )"" 
6.4 

To find the poles of the amplitude we put n ... ir then 

where 

l(l+n) f(l+T) _ erpii/J 

r (1-n) 1"(1-fJ 

.p •-J cr+O(r 1
) 

c is the Euler-Mascheroni constant. 

(4.7) 

(4.8) 

T ( n, t) obviously has poles in the n -plane determined by the equation: 

or, approximately, 

' ... 
1/J - r lo~ _•_ • 211 N 

6.4 

N - o, ~ 1. :!:. 2 I ••• 

2rd N 
3 C + lo~ te -lti' 

64 

( 4.9) 

(4.10) 

Thus, we have an infinite number of poles; all of them have a common trajectory in the 

-plane, as sketched on Fig. •· For t • O the poles fill the whole imag inary axis, g i-

ving a continuous spectrum, as can be directly checked e.g. from eq. (2.6). 

These cons iderations show that the concept of Regge poles to determine the behaviour 

of the amplitude in the crossed channel is not a useful one in our case ) , because we have 

no "leading pole". 

Nevertheless , the contour integral representation of the scattering amplitude (4.6) 

can be used to determine the asymptotic behaviour for large positive values of and 

small negative values of 

thod of steepest descents. 

• The integral in (4.6) can be evaluated by means of the me-

12 

The calculation is a bit 

asymptotic expression of the 

where 
-log 

log(·t 

The func~on (II(•JJ' is 
·1 

in units of 1 • The form• 

We can immediately indica 

T ( .. I) • As the infinite 

pression with a v- A kinemat 

corrected with the higher orde 

sion for the amplitude in que• 

Closing this section, we 

k One expects that for 

multiple of the Fermi couplinE 

thus at the physical thresholc 

with a renormalized cougling c 

In fact, a gla nce at eq. 

li . .. 

li 

k' 

Thus the original Fermi const• 

amusing to remark that the nm 

is rather close to that obtai• 

faotor of the w -meson couJ 

5 . Soa· 

In the preceding chapter< 

tons in the region of • > o, 

Nevertheless, the same • 

namely a < O, t > 0 ' gives a 



t hen for 

IJ) 

he i magina ry axis ( c ' J (an 

va lues of k ' and nonintegral 

t he cylindrica l function , a fter 

(4 .7 ) 
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( 4 . 9) 

(4.10) 

a c ommo n t ra j ect ory in the 
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Le s to determine t he behaviour 

i n our cas e ) , becaus e we have 

1e scattering ampli t ude ( 4.6) 

positive va lues of and 

! eval ua ted by means of the me-

( 

The calcula tion i s a bit t edious but quite eleme ntary ; we s i mply quote t he r es ul t i ng 

asymptotic expres s ion of the sca ttering a mplitude, as a function of 

where 

\I 
n .. rJ - r _l_ J i . . 16 f 

·.s loA ·a 
II (•) 

~ 
log(-t ) 

M(:r. )•:r. l 1'e,(- + loS• J 

The f unc t4on ( M( • !!' is plotted on Fig. ~. The quant ities a nd 
· I 

a nd r ·: 

( 4 .11) 

ar e meas ured 

in units of I • The formula (4. 11) is va lid f or s» t a nd I t l «I 

We can immediat ely indicate t he • rule of thumb" 2 for the us e of the expre s s i on 

T ( s, t ) • As the infinite itera tion of our mas s less v- A bubble gave again an ex-

pression wtth a v - A kinematic structure 1 t he expr ession for a ny transit i on ampl itude, 

corrected with the higher order contributions is obtained, if i n t he lowest order expr es-

sion for the amplitude in question, the coupling cons t a nt is r epl a ced by our T( ·., t) 

Closing this section, we mention a low energy theorem for ·our ampli tude 

One expects that for .t' .. + 0 , the partial amplitude 

multiple of the Fermi coupling constant, , while ' T ( n,i ) 

T ( 1, k 21 tends to a 

> 1 , tends to zer o; 

thus a t the physical threshold the original v - A interaction would be reproduced ( per haps 

with a renorma l ized cou;ling constant ) . 

In fact, a glance at eq. (J.l6) shows that 

lim 1(1,1 2) -r{- JY. t , 
k~O 

lim 1 (n , k 2 ) ... 0 , ( n > l) . 

k 2 .. o 

Thus the original Fermi constant i s renormalized by a f a ct or ( 41 • J ¥. 

(4. 12 ) 

It is perhaps 

amusing to remark tha t the numerical val ue of our re nor malization fac t or (( 41•! \1 . o,x J 

is r a ther close to that obtaine d by Feinberg and Pa i s ( lee. c it. ) for the r e norma l i za t ion 

factor of the w -mes on coupling constan t l~ ) . 
'· Scattering Amplitude in Direct Channel 

In the preceding chapters we described the •weak di ffra ction s ca tt er ing" of tw o lep-

tons in the region of • > o, t < o. 

Nevertheles s, the same diagram, considered in the physical domain in a not her c ha nnel , 

namely s < ~ t > o , gives a non diffractional contribution to the scattering a mpl itude, 

lJ 



Which decreases slower than the expression (4.11). To calculate the transition ~~trix 

element for large positive values of k ' , we apply a •·.u 
Thus the leading term in 1 _, for the phase shift reads: 

A' 
8 (b,kl - - 21 dr r·' r r 2 - b 2 ) ...,., .. i J( k ., ) 

where we have introduced the "relativistic impact parameter" 

approximation to eq. (2.6). 

(5.1) 

_, 
b • n 1 After an ele-

mentary calculation we find !rom (5.1) with an accuracy up to O(t"' J 

8 (b,k)~ -3 1 2 b"'t"' (~.2) 

The partial wave amplitude can be easily found if we remark:l 5 : that to the same order in 
_, 

k • 8 (b,l) • ljf 6 (b,k) so that the partial wave amplitude is 

t(b,k) - k' 
- 3 1 2 ,_., b., 

1 + 3 il k •! b•$ 

(~.J) 

The scattering amplitude is given in terms of the partial wave amplitudes by eq. (4.6). 

Going over to integrating over instead of summation over we arrive at the !ol-

lowing quasiclassical approximation to eq. (4.6): 

~ -T(x,k) - (2) k 2 x·l f db.nbzt(b,k) (5.4) 

where (- s )~ ... k 8 Let us insert eq. (5 •. J) into (~.4) and introduce the variable 

b . - 1 then we get: 

T(-, k) • ( 2.__ ) ~ 3" 1 1 x , •. , f ely sin r 
1 I + i Y x 1 (5.5) 

where the notation .3 12k •l - y has been introduced. To evaluate (5.5) we split the in-

tegration interval into two parts: 0 So 1 <;_1 and 1 ~ 1 < - • In the integral taken 

from 0 to 1, •• 1 can be ex~anded into a Taylor series, the leading contribution for 

small va lues of being obtained !rom the linear term. In the second integral the de-

norninator ca n be expanded in power s of . -· y X 1 the leading contribution being again 

g iven by the zero order term. The integrals arising after this can be evalu~ted in a fa

miliar way. We quote the resulting expression for the inYariatnt amplitude, inserting nu-

merical values for the coefficients: 

1( ._ I) • ~ \(.l,65 - ~497 ~) ... 
t i i S tl / 10 

.. i ( 0,62- 4, ."FJ - x_'_ ))+O(.aJ), 
t J / 10 

:r · f- • P~. 
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Late the transition ~~trix 

approximation to eq, (2,6), 

Lds: 

(5.1) 

b • n k • J After an ele-

(,,2) 

' 15 ' that to the same order in 

le is 

•ve amplitudes by eq. (4.6). 

•r we arrive at the fol-
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:5.4) and introduce the variable 
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•luate (,,5) we split the in-

1 < - • In the integral taken 

• leading contribution for 

1 the second integral the de

lading contribution being again 

l is oan be evalu~ted in a fa-

Latnt amplitude, inserting nu-

(5.6) 

.... ,. 
I 

In eq, (5 . 6) the quantities s, I are measured in units of 
-1 

I . 

r.y using our recipe, formulated at the end of chapter IY and of the optica l t hee-

rem, we s ee that eq. (5.6) gives a total cross section, decreasing as t ·I I J • The cross 

section as calcula ted from eq, (5.6) is equal to the total cross section, calculated fro~ 

the low ener gy approximation of the preceding chapter (which is almost equal to the 

lowest order contribution in ) at approximately the •critical energy" t• 1. 

Thus, assuming that this approximation is at least qualitatively correct, we find 

that the elast ic s cattering cross section of leptons rises practically as till I • 1 

afterwards decreases roughly as The total cross sec tion contains inelas tic c on-

t~ibutions a s well; however, they seem to lie out rapidly at high energies. 

6. Discussion 

In our opinion, t he foregoing calculations yielded twa results which are in a ra

ther striking contrast with common belief. The first one is that we got a compl ete ly 

well- determined expression for the four-lepton vertex, without any arbitrary renormali

zation constants. As we have already pointed out, this is a consequence of the s ingular 

nature of the Fermi interaction. If the present result would bold ge nera lly ( inde pende nt

ly of our approximation scheme) this would mean that •unrenormalizable" interacti ons are 

even "better• than renormalizable ones. 

In this respect the low-energy theorem ( 4,12) is far from being trivial, because, 

as one can see, the expression for the four fermion vertex is in general s ingular in the 

coupling constant at 1- o. 

The second surprise is that weak interactions do not "become strong" at high ener

gies. In fact, the scattering amplitude becomes imaginary at high energies and decreases 

with energy. As to the correction to the angular distribution, given by the function 

( M( •)) one s ees that the forward peak does not become narrower with energy. (In order 

to avoid the "infrared" infinity at I • 0 , one should put -l +m ' in t he final formu-

las instead of - 1 where is some lepton mass). According to our •rule of thumb" the 

differential cross section would be roughly given by 

du ( ll( •))' 

dO log 2 ·a 

for unpolarized leptons, near forward direction 1--'-- I « 1 If we tentatively define the .. 
elas~ic cross section to be proportional to the differential cross section, integrated 

over the width of the forward peak, this quantity would show an energy dependence 

15 



o • ··J lot s , tor The contribution from the non-diffractional s catter ing is 

also decreasing with energr, namely, like 
s •1/$ 

as shown in section Y. At a first 

glance the experimental verification of the above statements seems rather hopeless in the 

near future, as IIIOSt d ou1'formulas are asymptotic expressions. rlevertheless, there are two cir

cumstances which allow one to be more optimistic in this respect. First of all, apart fro~ 

neglecting an infinite number of diagrams usually believed to be unimportant at hi~h 

energies and or low momentum tra nsfers, there is actually only one asymptotic approxima

tion in our calculation. We took namely the leading term of the saddle-point expression 

for the scattering amplitude. However, for a great number of functions the leading term 

of the saddle-point expression is known to give very reasonable estimates even for mo

derate values of the argument, 

Secondly, one can be encouraged by the- at least partial -success of the one- Regge

pole expressions in interpreting the results of scattering experiments in strong interac

tion physics. The one- pole formulae are just as asymptotic expressions, as our ones. 

In view of this it would be perhaps not quite unreasonable to test the predictions 

of the present theory at lepton energies of the order of some tens of GeV-s (In this res-

pect one thinks of course in the first line of ve -• scattering, because of the absence 

of Coulomb scattering). 

17e want to make a remark which may be of some interest. Put in a Lagrangian language, 

we investiga te here the two-body Green function starting !rom the following Lagrangian: 

- " - 2 
t - .p a ,;., + t r .p r Jl r 1 +; y $ J .p J + h. c. 

This Lagrangian is identical in its appearence to Heisenberg's one in his unified field 

theory . However, we quantized the theory in a completely •conserva tive• way and still 

arrived at finite and uniquely determined results. One could speculate whether would it 

be really impoc ,ible to construct a finite theory without introducing indefinite metric 

in Hil bert s pace, non-canonical quantization etc. 

One has t o make an important remark at this place concerning the transit ion to 

Euclidean metric. 

One can prove that in the case of a renormalizable theory, the ns equations written 

either in Eucl idean or Minkowskian metric are completely equivalent to each other in the 

sense that in eq. (2 .4 ) the integration over k can be performed both along the imagi-

na ry or real axes. In our case, however, the situation is com~letely different. The Green 

function has a n es sential s ingularity in k " at I t "l • - (This can be i~~ed iately 

seen from the behaviour of the s olution in coordinate representation at , . o 
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Thus the s olution constructed by means of our procedure does not sa tisfy eq. ( 2 .4) 

in Minkowskia n metric. (It is even possible that the Mi nkows kia n equation bas no phys ical

ly r easonable s olutions at all). 

Nevertheless we be l ieve t hat our procedure may s erve as a reas onable definition of 

nonrenormalizabl e Gr.een func tions . 

First, as it is well known1 15 1 the existence of a Euclidean theory is a neces sary 

oondition for the existence of a Minkowskian one. Second, all . the physically i nteresting 

quantities (sca tter i ng amplitudes etc.) constructed in the framework of the Euclidean 

theory, when c ontinued in the kinematic invariants to the ·domain, corresponding to Min

kowsk ian t heory, give functions possessing familiar ana lyt i c properties. 

One c ould , of course , object that the ladder approximation is not a justified one, 

one must not neglec t masses etc. As to the first objection, at the moment we can give a 

practical answer only: a lthough the ladder approximation has been blamed several times -

a nd with good reason- it is at pres ent practically the only approximation for Green func

tions of field theory, where one can push the calculations till numerical es timations. 

Still more, we feel that the vanishing of the renormalization terms is a consequence of the 

singular na ture of the int erac tion .and not of the ladder approximation and thus i s more 

general tban 1t would be seen from the present calculation. Concerning the second objection, 

we can say a bit more. According to our preliminary calculations, the inclusion of lepton 

masses induced other inva riant functions ( s , 1, p ) but the latter are probably s mall 

(they are proportional to the produc t of the mass es of propagating leptons). 

The resulting equations for the invariant functions are s omewhat less singula r than 

tha t we dealt with in the present paper, but s till with an essential s ingularity at 

' - 0 • The results of t he calculations concerning the role of lepton mass es and other 

physical consequences of the p~esent approach to the tbeory of Fermi interactions will be 

published in subsequent papers. 
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