D-71

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ LABORATORY OF THEORETICAL PHYSICS
G. Domokos, P. Suranyi and A. Vancura

$$
E-1512
$$

FERMI INTERACTIONS AT HIGH ENERGIES huch, Plys., 1964, 660, n1, 1-16.

Дубна 1984

 Полу-аррияа пива вперед постоявна.

Abstract

The four lepton vertex function is investigated in the ladder approximation. The vertex funotion of lepton-lepton soattering anplitude is determined uniquely: Arbitrary renormalisation oonstants do not appear in the finel expresslons. The partial wave amplitude is a meromorphio function of the fonf dimensional angular momentum in the whole complex plane. The Fermi ooupling constant is renormalised by the finite factor $\left(\frac{2}{5}\right)^{1 / 2}$. The soattering amplitude is purely imaginary at high energies. The correotion faotor to the angular distribution is a universal function of the variable $x=-\operatorname{lod}(b,(-1))^{-1}$. The differential cross section decreases with energy as $0^{-1}(\log =)^{-2}$. The elastio cross section deoreases as $\quad \quad^{-1}$ boge The hali-idith of the forward peak is oonstant. The contribution of the direot channel to the orsea section decreases as $\underbrace{-1 / 4}$.

Ever since Heisenberg divided the looal interactions in field theory into two kinds |l-4|, the theory of interactions of the second kind have been the menfant terrible" of quantum field theory. It seems on the one hand that they do exist in nature (in partioular weak interactions belong to this kind), on the other hand with the development of renormalization theory it turned out that interactions of the second kind" are "nonrenormalizahle" in the sense that the infinities (more oorrectly, the arbitrariness) arising in a perturbation expansion cannot be removed by renormalizing the constants of the theory (1.0. masses and coupling oonstants).

[^0]Actually, in a perturbative expansion of s matrix elements or Green funotions, there arises an infinite number of arbitrary subtraotion constants (See e.g. $\mathrm{f}^{5 /}$). A more physical aspect of the problem 18 that interactions of the seoond kind are expected to become strong" at high energies. In fact, the dimensionless expension parameter in a perturbative expansion is not the ooupling constant itself, but the coupling oonstant times some power of a characteristio momentum of the system (total C.M. momentum, momentum transfer, eto.). Focussing our attention to Fermi interaotions, the coupling constant i has a dimension (length) $|2|$, so one expects a dimensionless expansion parameter to be $f E^{2}$ where E is the total C.M. momentum. This shows that $f E^{3}=1$ (1.e. Whe weak interaction becomes stróng") at $|E|=300$ GeV. This circumstance has given rise to many speoulations about high energy lepton physios end higher order eorrections to weak interaotions; a survey of them with a practically complete bibliography can be found in the recent work of Markov 16$\}$

This situation is to be oonfronted with the following observation of pais $|7|$. If as Iollows Irom the previous considerations - higher order corrections to weak interaotions were large, we should get a large $H_{i}^{\circ}-K_{j}^{\circ}$ mass differenoe in striking oontradiotion $\begin{aligned} & \text { with }\end{aligned}$ experimental results.

In the Iramework of the -meson theory, Feinberg and Paisl8-9|, by applying a special procedure to remove the dangerous divergenoes, succeeded in sumping ladder diagrams their result is that'higher order correotions do play a non - negligible role; in perticu-
lar, they obtained that the ooupling constant $1 s$ renormalized by a fautor of $3 / 4$.
The aim of the present work is to investigate the behaviour of the four-lepton vertex (or equivalently, the two-lepton propagator) at high energies. Instead of assuming an intermediate boson theory, we assume the existence of an elementary Fermi interaotion of the V-A type. To calculate the vertex, we apply the ladder approximation: we consider two fermions propagating with the successive exchange of a fermion loop. The Bethe-Salpeter equation with singular interaotion kernel arising thereby is treated by a method, proposed in ref. |lol. The essence of that method oonsisted in transforming the bs equation into a non-Fushsian differential equation, which can be investigated by known methods|ll|.

In Sec. 2 after a brief general disoussion of the properties of the four-fermion vertex, we derive the differential equation mentioned above. Sec. 3 is devoted to the desoription of the approximation method used to solve the equation. Sec. 4 contains the main result of the paper: We show that subtraction terms do not oontribute to the amplitude and we obtain an asymptotic expression for the scattering amplitude of two leptons; we find that the leading term is purely imaginary and deoreases with energy. The fifth section deals with the oalculation of the asymptotic behaviour of the scattering amplitude in the direot channel by the appication of the $w \mathrm{~m}_{\mathrm{B}}$ method. In the last sixth seotion we discuss some physioal oonsequences of the results obtained; further we point out the probable limitations of our approximation and possible improvements.

2. Derivation of the differential equation

Consider a four-fermion interaction of the $V-A$ type with charged currents only. As an interaotion kernel for the $b S$ quation, we ohoose the diagram drawn on Fig. 1. If the diagram on Pig. 1 is to describe the interaction between two charged leptons ($\mu, 0$), the loop in the intermediate state contains two neutrinos while if we oonsider the scattering of a charged lepton on a neutrino, there is a charged lepton and a neutrino exchanged. Howover, in what follows, we negleot all the lepton masses, thus, obtaining an "asymptotio equation in the sense, explained in ref. ${ }^{\prime \prime} 10 \mid$; in this approximation all the lepton-lepton ((ℓ) and antilepton-antilepton (a) amplitudes equal each other, while the leptonantilepton ($t a$) amplitudes differ from them by sign. Instead of going through the usual formal argument to show this, we prefer the following elomentary argument. The twoformion propagator oan be conceived as the infinite iteration of the interaction kernel of Fig. 1. A glanoe at Pig. 2 shows that if we ohange the orientation of an internal fermion loop, we obtain the same expression*; going from ℓt to t a amplitude means reversing the orientation of the "last", open fermion line, which obviously results in a change of
the sign of the amplitude; for an (a a ampitude we have to change the orientation of two open IInes.

* Like in quantum eleotrodynamios for a loop with four external photon lines.

By the same argurent we see that instead of treating a multichannel problem, it is sufficient to oalculate the ladder diagram with one definite orientation of the ines onlg.

Denoting the two-lepton propagator by G, the free one $b y \quad a_{0}$ the interaction kernel bJ π, the $B S$ equation 10 operator form reads:

$$
\begin{equation*}
\boldsymbol{G}=\theta_{0}+G_{0} R G \tag{2.1}
\end{equation*}
$$

where the quantitiss involved have the following expressions in momentum representation:

$$
\begin{aligned}
& G_{o}(A q ; E)=\delta(p-q) \quad\left[1 / E^{(1)}-p^{(1)^{-1}}\left[1 / 2 \mathbb{E}^{(2)}-p^{(2)}\right]^{-1},\right. \\
& S(p, q)=\gamma_{\rho}^{(1)}\left(t+i y_{s}^{(s)}\right) y^{\rho(2)}\left(1+i \gamma_{s}^{(s)}\right), K, \\
& G(B, \Phi E)=y_{\rho}^{(1)}\left(1-i y_{s}^{(1)}\right) y^{\rho(2)}\left(l-i Y_{s}^{(1)}\right) G .
\end{aligned}
$$

In eq. (2.2) E is the total $C H$ four monentum of the leptons, p,q are their relative momenta; the supersoripts (1) and (2) refer to the wirst" and seoond" lepton, respeotively. The scalar funotion K is given by the following expressions:

$$
\begin{equation*}
K=K_{i}\left(\theta+K_{g}(t)=\frac{f^{2} t^{2}}{(2 \pi)^{d} i}(2 \pi)^{3} \int_{0}^{\infty} \frac{d t^{\prime}}{t^{\prime}\left(t^{2}-t\right)}+8_{t}+E_{2}^{t} .\right. \tag{2.3}
\end{equation*}
$$

Here $\quad t=(p-q)^{2}, \quad$ stands for the Fermi ooupling constant, s_{1} and $\&_{2}$ are subtraction constants. The symbols $K_{t}(t)$ and $K,(i)$ stand for the spectral integrai and the subtraotion polynomial, respectively. (Notice that we have only one invariant function in the expression of \quad; this is the consequenoe of the $V-A$ character of the four-lepton intersotion and the vanishing of the lepton messes). The Bos, equation for the invariant function G can be derived in a straightiormard way. The result is:

$$
\begin{align*}
& \left(p^{2}-y E^{2}\right) G(B q ; E)=\delta(p-q)+ \tag{2.4}\\
& \\
& +\frac{16 f^{2}}{(2 \pi)^{4} i} \quad(d E K(p, k) G(t, q ; E) .
\end{align*}
$$

Following the procedure described in ref. $110 \mid$ we now separate the "analytio part" of G, oalled G_{1} (1.e. that obevingeq. (2.4)with K_{i} only), go over to guclidean metric and expand G, according to four-dimensional spherical harmonios. (See, however, Seo.6), Pinally Te perform a Hankel transformation on the resulting radial equation. After these operations we are left with the following differential equation for the radial Green function G, $\left(55^{\prime}\right)$:

$$
\begin{align*}
{\left[\frac{d^{2}}{d r^{2}}+\right.} & \frac{3}{r} \quad \frac{d}{d r}-\frac{\left.n^{2}-\frac{1}{2}+k^{2}\right] \quad G_{R}\left(r r^{0}\right)}{r^{\prime}}= \\
& =\lambda^{3} \quad G_{i}\left(r, r^{\prime}\right)+\left(r r^{\prime}\right)^{-s / 2} \delta\left(r-r^{\prime}\right) \tag{2.5}
\end{align*}
$$

Where $k^{2}=4 E^{3}, \quad \lambda^{2}=32 \pi^{-2} f^{2} ; \quad n^{2}$ is the square of the four dimensional orbital momentum, defined as in ref. 10 (1.e. its physioal values being l,2,3...). Alternatively, we can write the equation for the wave function, $\psi(r)=r-9 / q(r)$:

$$
\begin{equation*}
\left[\frac{d^{3}}{d r^{2}}+k^{2}-\frac{n^{2}-y_{0}}{r}-\frac{\lambda^{2}}{r^{2}} \quad\right] \cdot \square(r)=0 \tag{2.6}
\end{equation*}
$$

Eq. (2.6) has exactly the form of a radial Schrodinger equation with a repulsive potential $\lambda^{2}{ }_{r}^{\text {.4 }}$. Therefore, in order to find the scattering amplitude, we can apply the procedure, familiar in non relativistic quantum mechanics. Eq. (2.6) cannot be integrated in terms of known transcendental functions, so we are going to develop an approximation procedure, ralid for smell values of k^{2} and potentials more singular than $0(r)^{-2}$) at the origin (A usual ffeotire range expansion would diverge, of. Landau-lifsohiv/12/).

3. Approximate Solution of the Differential Bquation

We start from the observation that if we drop either the kinetic energy term or the potential trom eq. (2.6), it oan be integrated exactly in terms of bessel functions.

In faot, the equation:

$$
\begin{equation*}
\left(\frac{d^{2}}{d r^{3}}+k^{2}-\frac{n^{2}-\psi}{r^{2}}\right) v_{0}(r)=0 \tag{3.1}
\end{equation*}
$$

has the following two independent solutions:

$$
\begin{align*}
& v_{0}^{2}(r)=r^{k} H_{n}^{(1)}(k r) \tag{3.2}\\
& v_{0}^{2}(r)=r^{k} H_{n}^{(a)}(k r),
\end{align*}
$$

With the boundary conditions:

$$
\begin{align*}
& \nabla_{0}^{2}(r)=\text { oxp }\left\{i\left\{k r-\frac{\pi}{2} n-\frac{\pi}{4} 1\right\},\right. \\
& \nabla_{0}^{2}(r)=\text { oxp }\left\{-i\left\{k r-\frac{\pi}{2} \pi-\frac{\pi}{4}\right\}\right\}, \tag{3.3}
\end{align*}
$$

Putting $x^{2}=0$ we arrive at the equation:

$$
\begin{equation*}
\left[\frac{d^{2}}{d r^{2}}-\frac{n^{3}-3 / 4}{t^{2}}-\frac{\lambda^{2}}{r^{0}}\right] v_{2}(r)=0 \tag{3.4}
\end{equation*}
$$

with the independent solutions:

$$
\begin{align*}
& v_{t}^{1}(r)=r^{k} K_{\frac{n}{2}}\left(\frac{\lambda}{2 r^{2}}\right), \tag{3.5}\\
& v_{1}^{2}(r)=r^{k} \frac{I_{n}}{z}\left(-\frac{\lambda}{2 r}\right),
\end{align*}
$$

and the boundary conditions:

$$
\begin{aligned}
& \left.\left.v_{t}^{1}(r)=o\left(r^{3 / 2 x p}\right)-\frac{\lambda}{2 r^{2}} \right\rvert\,\right), \\
& v_{t}^{2}(r)=o\left(r^{3 / 2} \exp \left(\frac{\lambda}{2 r^{2}}\right),\right.
\end{aligned}
$$

We construct the approximate solution of eq. (2.6) from the funotions (3.2) and (3.5), by neglecting the kinetic energy term if \quad is less than some conveniently chosen value,
r_{0} and neglecting the potential for $>_{0}$ 。 . It is intuitively clear that such an ap proximation procedure should work well if the potential is very large at small diatances while decreases sufficiently rapidiy as $r+\infty$.

Wie ohoose for r. the distance at whioh the kinetio and potential energy terms are equal in magnitude, i.e. $r_{0}=(\lambda / k)^{\prime \prime \prime}$. (If $k^{2}<0$, which is the domain we are interested in, when going over to the crossed channel, the coefficients of eq. (2.6) are even continuous at $r=r_{0}$ with $r_{0}=(i \lambda / k)^{\prime / J}$.

We look for a solution of eq. (2.6), vanishing at $r=0$ and being a combination of ingoing and outgoing waves at infinity.
therefore we choose

$$
u(r)=\left\{\begin{array}{l}
v_{1}^{1}(r) \quad\left(r<r_{0}\right) \tag{3.7}\\
F_{1} v_{0}^{\prime}(r)+F_{2} v_{0}^{2}(r) \quad\left(r>r_{0}\right),
\end{array}\right.
$$

Matching the logarithmic derivatives at $\quad=r_{0}$, we obtain for the scattering matrix element:

$$
\begin{equation*}
S\left(n, k^{2}\right) \equiv e^{2 \kappa_{n}}=\frac{F_{1}}{F_{2}}=-\frac{H_{n}^{(2)}(0) K_{a / 2}^{\prime}\left(\frac{\sigma}{2}\right)+H_{n}^{(2)^{\prime}}(\epsilon) K_{n(2}\left(\frac{\epsilon}{2}\right)}{H_{n}^{(1)}(\epsilon) K_{N / 2}^{\prime}\left(\frac{\epsilon}{2}\right)+H_{n}^{(2)^{\prime}}(\theta) K_{\alpha, 2}\left(\frac{\epsilon}{2}\right)} \tag{3.8}
\end{equation*}
$$

In eq. (3.8) primes mean derivatives with respect to the arguments of the cylindrical functions, and $c=\left(k^{2}\right)^{1 / s}$

The approximation procedure desoribed above can be considered as a zeroth order term of a perturbation series to the differential equation:

$$
\begin{gather*}
\left\{\frac{d^{2}}{d r^{2}}+\theta\left(r-r_{0}\right) t^{2}-\theta\left(r_{0}-r\right) \frac{\lambda^{2}}{r^{4}}-\frac{z^{2}-y}{r^{2}} \quad\right] u(r)= \tag{3.9}\\
=\|(r) u(r),
\end{gather*}
$$

o(x) being the unit step function and the perturbation operator w(r) has the following expression

$$
\begin{equation*}
\theta(r)=-k^{2} \theta\left(r_{0}-r_{0}\right)+\frac{\lambda^{2}}{r^{0}} \theta\left(r-x_{0}\right) \tag{3.10}
\end{equation*}
$$

Let us sketch the proof of the oonvergence of the perturbation expansion for $k^{2}<0$. In order to simplify matters, let us split off the factor $\mathrm{s}^{\text {N }}$ from p in eqs. (3.2) and (3.6): $v(r)=r^{M} w(r)$ and multiply the equation for $\quad(r)$ by r^{2}. Thus we obtain with $k^{2}=-\kappa^{2} \quad\left(x^{2}>0\right)$:

$$
\begin{align*}
{\left[r^{2} \frac{d^{2}}{d r^{2}}+r \frac{d}{d r}\right.} & \left.=\theta\left(r-r_{0}\right) k^{2} r^{2}-\frac{\lambda^{2}}{r^{2}} \theta\left(r_{0}-r\right)-n^{2}\right]-(r)= \tag{3.11}\\
& =v(r)=(r) .
\end{align*}
$$

with

$$
V(r)=x P \theta(r-r)+\frac{\lambda}{r} \theta(r-t)
$$

Considering eq. (3.11) as an eigenvalue problem for n with the boundary oondition $w(0)=(\infty)=0$, the unperturbed solution is:

$$
\begin{align*}
& \mathcal{q}^{(0)}(r)=\theta\left(r-r_{0}\right) K_{\nu}^{z}\left(\frac{\lambda}{\partial r_{0}^{2}}\right) K_{\nu}(\kappa r)+ \tag{3.12}\\
& +\theta\left(r_{0}-r\right) K \frac{\nu}{z}\left(\frac{\lambda}{2 r^{2}}\right) K_{\nu}(\kappa r) \text {. }
\end{align*}
$$

While the unperturbed eigenvalue v satisfies the usual determinantal equation

$$
\begin{equation*}
K_{\nu}\left(=K_{\nu}\left(K r_{0}\right) \frac{d}{d r_{0}} \frac{K_{\nu}}{2}\left(\frac{\lambda}{2 r_{0}^{2}}\right)-\frac{K_{\nu}}{2}\left(\frac{\lambda}{2 r^{2}}\right) \frac{d}{d r_{0}} K_{v}\left(K r_{0}\right)=0 .\right. \tag{3.13}
\end{equation*}
$$

ence

In the standard way $113 \mid$ we find that the solutions of eq. (3.13) are pure imaginary so thet the functions $w_{b}^{(0)}$ are raal. The functions $w_{v}^{(0)}$ are orthogonal:

$$
\int_{0}^{\infty} \frac{d r}{r} \quad w_{v}^{(0)}(r) w_{v^{\prime}}^{(0)}(r)=N_{v} \delta_{\nu v^{\prime}}
$$

(N_{ν} being a normalication ooeffioient). The perturbed eigenvalue, $n, i s$ of course given by:

$$
\begin{equation*}
n=v+v_{v}+\sum_{v} \frac{v_{v v^{\prime}} v_{v_{v}^{\prime}}}{v^{2}-v^{\prime 2}}+\ldots p \tag{3.14}
\end{equation*}
$$

where v_{m} are the matrix elements of v taken between the normalized functions (3.12).
It $1 s$ easy to see that

$$
\left|V_{w}\right|<\left(k f_{0}\right)^{2}=\left(x^{2} \lambda\right)^{2 / 3}
$$

(which is really small for small values of κ^{*}, as we have expected).
Making use of the familiar expression for the number of roots $N(R)$ inside a circle with radius $|n|=R_{R}$

$$
\int_{0}^{R} \frac{N(x)}{z} d E=\frac{1}{2 \pi} \int_{0}^{i \pi} \log \left|f\left(R e^{t \phi}\right)\right| d \phi-\log |f(0)|
$$

we obtain

$$
N(R)<C R \log R
$$

Where c is some constant.

Hence, for the $?$ eigenvalue v_{p} we have the lower bound:

$$
\nu_{p}^{2}>c^{\prime} \cdot \frac{p^{2}}{\left(\log _{g}()^{2}\right.}
$$

Where C^{\prime} is agein some constant. So we obtain that the serieg (3.14) converges. In a similar way one can demonstrate the convergence of the series for the perturbed eigenfunc tions as well.

We can oheck by inspection that our s-matrix element is a meromorphic function of n in the whole complex n plane; it satisfies the symmetry relation, characteristic of potentials with a hard core $|14|$:

$$
\begin{equation*}
S\left(-\pi, k^{2}\right)=e^{-2 \pi / n} \quad S\left(n, k^{3}\right) . \tag{3.15}
\end{equation*}
$$

Finally we quote the expression for the transition matrix element, defined by the relation:

$$
\begin{gather*}
T\left(n_{n}^{2}\right)=\frac{1}{i \pi k^{3}}\left[S\left(n, k^{2}\right)-1\right], \\
\left.T\left(n_{n} k^{2}\right)=\frac{-1}{\pi k^{2}} \quad \frac{J_{n}(c) K \frac{K_{n}}{2}\left(\frac{t}{2}\right)+J_{n}^{(t)}(c)(c) K_{n}(\epsilon)+H_{n}^{(t)}(c) K_{n}^{2}\left(\frac{c}{2}\right)}{K_{n}}\right) \tag{3.16}
\end{gather*}
$$

One oan check by direct calculation that the expression (3.16) gives the correct continuation of the transition matrix element for $k^{2}<0,\left|k^{2} \lambda\right| \ll t$.

4. Subtraction Terms and Asymptotic Behaviour of the Scattering
 Amplitude

All the expressions derived up to now are originally valid for R en >2 (as we had two subtraotions in the kernel (2.3)). However, as explained in ref. $10 \mid$, we can oontinue them even for $R e n<2$, if only we take into aocount that at the subtraction points, $n=1,2$, the expression for the transition amplitude is not given by (3.16) but by a suitably modified expression, derivable from eq. (2.5) of ref. ilol. To formulate the content of that equation in an intuitive way, the subtraction polynomial of the kernel can be conceived as a set of new locel interaction Lagrangians. The transition amplitude at the subtraction points is given by the infinite chain diagrams formed with these additional interaotions, taking into account the vertex - and propagator corrections caused by the analytic part of the transition amplitude, T.

In fact, at the subtraction points, according to eq. (2.5) of ref. $|10|$ the Green function G is given by:

$$
\begin{equation*}
G=G_{2}+G_{i} K_{2} G \tag{4.1}
\end{equation*}
$$

Taking into account the relation between the Green funotion and the transition amplitude off the mass shell:

$$
\begin{equation*}
G_{1}=G_{4}+G_{0} T G_{0} \tag{4.2}
\end{equation*}
$$

and defining at the subtraotion points

$$
G=G_{0}+G_{0} v G_{0}
$$

with the help of eq. (4.1) we obtain the correction to the analptic part of the amplitude:

$$
\begin{gather*}
g\left(0, k^{2}\right)-\left[1-\left(1+T G_{0}\right) K_{2}(n) G_{0}\right]^{-1} \times \tag{4.3}\\
\times\left(1+T G_{0}\right) K_{2}(n)\left(1+G_{0} T\right)
\end{gather*}
$$

Where $\quad\left(n_{0} k^{2}\right)=T\left(n, k^{2}\right)-v\left(n, k^{2}\right)$
It is clear that $w\left(n_{1} k^{2}\right)$ can differ from zero for $K_{2}(a)$ only, beoause of the properties of $n=1$ (cf. eq. (2.3)). If we write out the operator equation (4.3) in momentum representation, we arrive at an integral equation with degenerate kernel; ite solution reads e.g. for

$$
\begin{equation*}
\langle p| W\left(1, k^{2}\right)\left|p^{0}\right\rangle=\varepsilon_{j} \frac{F\left(k^{2}, p\right) \stackrel{F}{F}\left(k^{2}, p^{2}\right)}{1-\varepsilon_{1} \phi(k)} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{align*}
& F\left(k^{2}, p\right)=1+\int_{0}^{\infty} \frac{q^{-3} d q^{\prime}\langle p| T\left(L_{1} k^{2}\right)\left|q^{\prime}\right\rangle}{q^{2}-k^{2}}, \\
& \vec{F}\left(k^{2}, p\right)=1+\int_{0}^{\infty} \frac{q^{3} d q^{n} \cdot\left\langle q^{\prime}\right| T\left(L k^{2}\right)|p\rangle}{q^{-2}-k^{2}} \tag{4.5}
\end{align*}
$$

(The first integral in the expression of $\phi(k)$ is divergent as it stands; it could be defined in the usual way by means of subtraotions; however, we shall see in what follows that we can operate formally with such divergent integrals).

Let us now observe that the expressions (4.5) can be expresssd with the help of the Green functions in coordinate space. In fact, remembering that

$$
\lim _{r \rightarrow 0} \frac{J_{1}(p r)}{p r}=4
$$

one irmediately recognizes (of. eq. (4.2)) that

$$
\phi(k)=\lim G_{2}\left(r_{1}, r_{2}\right)=G_{2}(0,0)
$$

$r_{t}+0$
Por small values of r one can immediately write down the expression of the Green function of eq. (2.5).

$$
\begin{aligned}
G_{1}\left(5 r^{\circ}\right)= & 4\left(r r^{\prime}\right)^{-1}\left[\theta\left(r-r^{\prime}\right) I_{k}\left(\frac{\lambda}{2 r^{2}}\right) K_{H}\left(\frac{\lambda}{2 r^{2}}\right)+\right. \\
& \left.+\theta\left(r^{\prime} \rightarrow r\right) I_{y}\left(\frac{\lambda}{2 r^{\prime} \cdot 2}\right) K_{y}\left(\frac{\lambda}{2 r^{2}}\right)\right]
\end{aligned}
$$

Now, the value of $G,(0,0)$ depends on the order of the limits: if $r^{\prime}>r$ or $r>r^{\prime}$ then $\quad G_{i}(0,0)=0$ if the limit is taken along the line $r^{\prime}=r \quad, \quad G,(0,0)$ is a finite constant. However, as one can easily oheck, $F\left(k^{2}, p\right)=\tilde{F}\left(k^{2}, p\right)=0$.

Thus we see that $\quad\left(1, k^{2}\right)=0$ and the same result is obtained for w(2, Hence, the transition amplitude 18 determined by its analytic part everywhere. Let us immediately remark that this remarkable property is a consequence of the strong singularity of the Green function at the origic. Had we to do with a regular" theory (the interaction at small distances is weaker than the centrifugal term), the Green function at amall distances would behave as r^{n-1}, thus allowing a nonvanishing contribution from the subtraction terma at $n=1$. We oan now turn to the determination of the total soattering amplitude from the partial amplitudes (3.16). Remembering the addition theorem for four dimensional spherical harmonics (ref. $110 \mid$, Appendix) and the well-known identity:

$$
C_{n-2}^{1}(\cos \theta)=\frac{\sin n \theta}{\sin \frac{1}{\theta}}
$$

(c_{ν}^{λ} being a Gegenbauer function), we obtain the scattering amplitude in the form of a Fourier series:

$$
T\left(z, k^{2}\right)=\left(\frac{\pi}{2}\right)^{-k}(\sin \theta)^{-i} \sum_{n=1}^{\infty} \sin \theta \quad T\left(n, \kappa^{2}\right)
$$

Here $z=$ cos θ or expressed in Mandelstan's variables, $z=1+\frac{2 s, t}{t}=4^{-1} \kappa^{2}$
It is convenient to transform the series (4.6) into a oontour integral:

$$
\begin{gather*}
T\left(3 \kappa^{2}\right)=\left(\frac{2}{\eta}\right)^{k}(\sin \theta)^{-L} \int_{c} d n \operatorname{ctg} \pi n \times \tag{4.6}\\
x \sin \pi \theta \quad T\left(\pi, k^{2}\right)
\end{gather*}
$$

the oontour G being shown on Pig. 3 a . Fe have already remarked that $\quad T\left(n, \kappa^{2}\right) \quad$ is a meromorphic function of $\quad a \quad 1 n$ the whole complex n - plane, its poles lying for $k<0$ on the imaginary axis.

A simple investigation shows that if we put $n=R \operatorname{mop}\{i \phi\} \quad$ then for $R \rightarrow \infty$

$$
T\left(n_{1}!k^{2}\right)=0(\exp (-R \log R \cos \phi))
$$

Thus for $k^{2}<0$ the contour c can be deformed almost to the imaginary axis $\left(C^{\prime}\right.$) (an infinitesimel seotor being exoluded) as shown on Fig. 3b.

Let us now obtain an approximate expression for small values of k^{2} and nonintegral values of n. Making use of the familiar expansions of the oylindrical function, after some rearrangements we arrive at the oxpression:

$$
\begin{equation*}
T(n, t)-\frac{e^{\prime n \pi} \sin \pi}{Y-I}, \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
Y=\frac{\Gamma(1+\pi) \Gamma\left(1+\frac{n}{2}\right)}{\Gamma(1-\pi) \Gamma\left(1-\frac{\pi}{2}\right)}\left(\frac{10^{-\pi}}{64}\right)^{m} \tag{4.8}
\end{equation*}
$$

To find the poles of the amplitude we put $n=i r$ then

$$
\begin{aligned}
& \frac{\Gamma(1+a) \Gamma\left(1+\frac{n}{2}\right)}{\Gamma(1-n) \Gamma\left(1-\frac{n}{2}\right)}=\exp i \psi, \\
& \psi=-3 c 8+O\left(r^{2}\right)
\end{aligned}
$$

Where C is the Euler-Masoheroni constant.
$T(n, t)$ obviousiy has poles in the n-plane determined by the equation:

$$
\begin{gather*}
\psi-3 \log \frac{\operatorname{te}^{-4 \pi}}{\theta}=2 \pi N, \tag{4.9}\\
N=0 \pm \pm \pm \pm \ldots .
\end{gather*}
$$

or, approximately,

$$
\begin{equation*}
n=\frac{2 w i n}{3 C+\log \frac{t 0^{-1 \pi}}{64}} \tag{4.10}
\end{equation*}
$$

Thus, we have an infinite number of poles; all of them have a common trajectory in the n-plane, as sketohed on Fig. 4. For $t=0$ the poles fill the whole imaginary axis, giring a continuous spectrum, as can be direotiy cheoked e.g. iromeq. (2.6).

These oonsiderations show that the conoept of Regge poles to determine the behaviour of the amplitude in the orossed obannel is not a useful one in our oase), because we have no "leading pole".

Nevertbeless, the oontour integral representation of the scattering amplitude (4.6) can be used to determine the asymptotic behaviour for large positive values of s and small negative values of t. The integral in (4.6) can be evaluated by means of the method of steepest descents.

The calculation is a bit tedious but quite elementary; we simply quote the resulting asymptotic expression of the scattering amplitude, as a function of s and f

$$
\begin{equation*}
T(s, t)-\left(\frac{2}{\pi}\right)^{1 / 2}-\frac{i \cdot 16 t}{s \log s} M(x) \tag{4,11}
\end{equation*}
$$

where

$$
x=\frac{-\log s}{\log (-t)}, \quad H(x)=x^{3 / 2} \exp \left(-\frac{i}{x} \log x\right)
$$

The functson $(H(x))^{2}$ is plotted on Fig. 5. The quantities s and t are measured in units of f. The Pormula (4.11) is valid for s>> and $|t| \ll 1$

We can immediately indicate the "rule of thumb" 2 for the use of the expression $T(s, t$. As the infinite iteration of our massiess $V-A$ bubble gave again an expression with a $V-A$ kinematic struoture, the expression for any transition amplitude, corrected with the higher order contributions is obtained, if in the lowest order expression for the amplitude in question, the coupling constant f is replaced by our $T(s, t$

Closing this section, we mention a low energy theorem for our amplitude T.
One expects that for $k^{2} \rightarrow+0$, the partial amplitude $T\left(1, k^{2}\right.$ tends to a
 thus at the physical threshold the original $v-A$ interaotion would be reproduced (perhaps with a renormalized cougling constant).

In fact, a glance at eq. (3.16) shows that

$$
\begin{aligned}
& \lim _{\substack{3 \\
m^{2}}} T\left(1, k^{2}\right)=\left(\frac{2}{\pi}\right)^{\frac{14}{} f,} \\
& \lim _{k^{3} \rightarrow 0} T\left(n, k^{2}\right)=0,(n>1) .
\end{aligned}
$$

Thus the original Fermi constant is renormalized by a factor $(2 / a)^{1 / 2}$ It is perhaps
 is rather close to that obtained by Feinberg and Pais (loc. cit.) Ior the renormalization faotor of the $\quad w$-meson coupling constant $3 / 4$).

5. Soattering Amplitude in Direct Channel

In the preceding chapters we desoribed the meak difiraction scattering" of tio leptons in the region of $s>0, t<0$.

Nevertheless, the same diagram, considered in the physical domain in another channel, namely $s<0, i>0$, gives a non diffractional contribution to the scattering amplitude,

Whioh decreases slower than the expression (4.11). To oalculate the transition matrix element for large positive values of k^{2}, we apply a w K approximation to eq. (2.6).

Thus the leading term in $*^{-1}$ for the phase shift reads:

$$
\begin{equation*}
\delta(b, k)=-\frac{\lambda^{2}}{2 k} \int_{0}^{\infty} d r r^{-3}\left(r^{2}-b^{2}\right)^{*}+O\left(k^{-2}\right) \tag{5.1}
\end{equation*}
$$

where we have introduced the "relativistio impact parameter" $b=n^{-1}$. After an elementary caloulation we find from (5.1) with an accuracy up to $o\left(k^{-2}\right)$:

$$
\begin{equation*}
\delta(b, k) \neq-3 t^{2} b^{-5} k^{-1} \tag{5.2}
\end{equation*}
$$

The partial wave amplitude oan be easily found if we remark: ${ }^{\text {a }}$: that to the same order in A^{*}. $\delta(B, k)=\sharp \delta(B, k)$ so that the partial wave amplitude is

$$
\begin{equation*}
t(b, k)-\frac{\pi}{k^{3}} \frac{-3 f^{2} k^{-1} b^{-8}}{1+3 i f k^{-3} b^{-5}} . \tag{5.3}
\end{equation*}
$$

The soattering amplitude is given in terms of the partial wave amplitudes by eq. (4.6). Going over to integrating over b instead of sumation over n we arrive at the following quasiclassical approximation to eq. (4.6):

$$
\begin{equation*}
T(x, t)-\left(-\frac{2}{\pi}\right)^{x} k^{2} z+\int_{0}^{\infty} d b \cdot \operatorname{cin} b z t(b, k) \tag{5.4}
\end{equation*}
$$

where $x=(-x)^{y}+\theta \quad$ Let us insert eq. (5.3) into (5.4) and introduce the variable $b \mathrm{~B}=\mathrm{y}$; then we get:

$$
\begin{equation*}
T(x, k)=\left(\frac{2}{x}\right)^{k} 3 \pi f^{2} x^{3} k^{-1} f^{\infty} \text { ds } \frac{\sin y}{y^{i}+i y x^{z}} \text {, } \tag{5.5}
\end{equation*}
$$

Where the notation $s^{1_{k}-1}=\gamma$ has been introduced. To ovaluate (5.5) we split the integration interval into two parts: $0 \leq y \leq 1$ and $1 \leq y \leqslant m$. In the integral taken from 0 to 1 , ain can be expanded into a Taylor series, the leading oontribution for small values of $:$ being obtained from the inear term. In the second integral the denominator can be expanded in powers of $\quad \gamma x^{s} y^{-3} \quad$ the leading contribution being again given by the zero order term. The integrals arising after this oan be evalueted in a familiar way. We quote the resulting expression for the invariatnt amplitude, inserting nunerical values for the coefficients:

$$
\begin{gather*}
T(4,1)=\frac{1,05}{t^{1 / 3}}\left(\left(365-1497 \frac{x^{3}}{t^{3 / 1}}\right)+\right. \tag{5.6}\\
+i\left(0,52-4,5 \frac{x^{3}}{i^{3 / 40}}\right) 1+0\left(z^{5}\right), \\
x=(-a)^{4} .
\end{gather*}
$$

In eq. (5.6) the quantities s, t are measured in units of t^{-1}.

Iy using our recipe, formulated at the end of chapter $I Y$ and of the optical theorem, we see that eq. (5.6) gives a total cross section, decreasing as the $\boldsymbol{t}^{-1 / 5}$. The cross section as calculated from eq. (5.6) is equal to the total cross section, calculated from the low energy approximation of the preceding chapter (which is almost equal to the lowest order contribution in \mid at approximately the "critical energy" $t=1$.

Thus, assuming that this approximation is at least qualitatively correct, we find that the elastic scattering cross section of leptons rises practically as \quad till $t=1$ afterwards decreases roughly as $t^{-1 / s}$. The total cross section contains inelastic contributions as well; however, they seem to lie out rapidly at high energies.

6. Discussion

In our opinion, the foregoing calculations yielded two results which are in a rather striking contrast with comon beifef. The ifirt one is that we got a completely well- determined expression for the four-lepton vertex, without any arbitrary renormalization constants. As we have already pointed out, this is a consequence of the singular nature of the Fermi interaction. If the present result would hold generally (independently of our approximation scheme) this would mean that unrenormalizablem interactions are even "better" than renormalizable ones.

In this respeot the low-energy theorem (4.12) is far from being trivial, because, as one can see, the expression for the four fermion vertex is in general singular in the coupling constant f at $f=0$.

The second surprise is that weak interactions do not mecome strong" at high energies. In fact, the scattering amplitude becomes imaginary at high energies and decreases with energy. As to the correction to the angular distribution, given by the function ($H(x))^{2}$ one sees that the forward peak does not become narrower with energj. (In order to avoid the infraredn infinity at $t=0$, one should put $-i+m^{2}$ in the final formulas instead of $-t$ where m is some lepton mass). According to our "rule of thumb" the differential cross section would be roughly given by

$$
\frac{d a}{d \Omega}=\frac{(U(x))^{2}}{S \log ^{2} s}
$$

for unpolarized leptons, near forward direction $\left|\frac{t}{s}\right| \ll I$ If we tentatively define the elastic cross seotion to be proportional to the differential cross section, integrated over the width of the forward peak, this quantity would show an energy dependence
$\theta=s^{-1} \log :$. for \rightarrow The contribution from the non-diffractional scattering is also decreasing with energy, namely, like $s^{-1 / 4}$ as shown in section Y. At a flrst glance the experimental verification of the above statements seems rather hopeless in the par future, as most of ourformulas are asymptotio expressions. Nevertheless, there are two circumstances whioh allow one to be more optimistic in this respect. Pirst of all, apart from negleoting an infinite number of diagrams usually bolieved to be unimportant at high energies and or low momentum transfers, there is actually only one asymptotic approximation in our oalculation. We took namely the leading term of the saddle-point expression for the scattering amplitude. However, for a great number of funotions the leading term of the saddle-point expression is known to give very reasonable estimates even for mom derate values of the argument.

Secondly, one can be encouraged by the- at least partial -success of the one- Reggepole expressions in interpreting the results of scattering experiments in strong interaotion phyics. The one- pole formulae are just as asymptotic expressions, as our ones.

In view of this it would be perhaps not quite unreasonable to test the predictions of the present theory at lepton energies of the order of some tens of Gev-s (In this respect one thinks of course in the first line of wo soattering, because of the absence of Coulomb scattaring).

We want to make a remark which may be of some interest. Put in a Lagrangian language, we investigate here the two body Green function starting from the following Lagrangian:

$$
L=\tilde{\psi} \hat{d} \psi+!\left(\bar{\psi} \gamma_{\mu}\left(1+i \gamma_{s}\right) \psi\right)^{2}+h G G
$$

This Lagrangian is identical in its appearence to Heisenberg's one in his unified field theory. However, we quantized the theory in a completely "oonservative" way and still arrived at finite and uniquely ietermined results. One could speculate whether would it be really imporible to construct a inite theory without introducing indefinite metric in Hilbert space, non-canonical quantization etc.

One has to make an important remark at this place concerning the transition to Bucildean metric.

One can prove that in the case of a renormalizable theory, the B s equations written either in Euclidean or Minkowskian metric are completely equivaient to each other in the sense that in eq. (2.4) the integration over k^{*} can be performed both along the imaginary or real axes. In our case, however, the situation is completely different. The Green function has an essential singularity in k° at $\left|k^{\circ}\right| \rightarrow \infty \quad$ (This can be immediately seen from the behaviour of the solution in coordinate representation at $r \rightarrow 0$).

Thus the solution oonstruoted by means of our procedure does not satisfy eq. (2.4) in Minkowskian metric. (It is even possible that the Minkowskian equation hes no physicaliy reasonable solutions at all).

Nevertheless we believe that our procedure may serve as a reasonable definition of nonrenorwalizable Green functions.

First, as it is well known $|15|$ the existence of a Euclidean theory is a necessary oondition for the existence of a Minkowskian one. Second, all the physioally interesting quantities (scattering amplitudes etc.) constructed in the framework of the Buolidean theory, when continued in the kinematic invariante to the domain, corresponding to Minkowskian theory, give functions possessing familiar analytic properties.

One oould, of course, object that the ladder approximetion is not a justified one, one must not negleot masses etc. As to the first objeotion, at the moment we can give a practical answer onlj: although the ladder approximation has been blamed several times and with good reason- it is at present practioally the only approximation for Green functions of field theory, where one can push the caloulations till numerioal estimations. Still more, we feel that the ranishing of the renormalization terms is a consequence of the singular nature of the interaction and not of the lader approximation and thus is wore general than it would be seen from the present calculation. Concerning the second objeotion, we can say a bit more. hocording to our preliainary oalculations, the inolusion of lepton masses induoed other invariant functions ($S, 7, P$) but the latter are probably small (they are proportional to the product of the masses of propagating leptons).

The resulting equations for the invariant funotions are somewhat less singular than that we dealt with in the present paper, but still with an essential singularity at
$r=0$. The results of the oaloulations concerning the role of lepton masses and other physioal consequences of the present approach to the theory of Fermi interaotions will be published in subsequent papers.

Referenos

2. W. Heisenberg. Z. Phys., 101 (2936), 533.
3. W. Helsenberg. 2. Phys., 120 (1938), 251.
4. W. Heisenberg. 2. Phys, 113 (1939), 61.
5. J.R. Oppenheimer, H. Sayder and R, Serber. Phys. Rev., 57 (1949), 75.
6. N.N. Bogolyubor, D.V. Shirkov. Introduction to the Theory of Quantized Pielde. New York, 1959. Interscienoe Publishers.
7. M.A. Markov. Heutrino. Preprint D-1269, Dubna, 1963.
8. A. Pais. Weak Interactions at High Energies- in "Theoratical Physics", IAEA, Vienna, 1962.
9. G. Peinberg, A. Pais. Phys. Rev., 131 (1963), 2724.
10. G. Peinberg, A. Pais. Preprint "Field Theory of Weak Interactions, II", 1963.
11. G. Domokos, P. Surany1. Preprint B-1400, Dubra, 1963.
12. See e.g. F.G. Triocmi, Differential Equations, Blachie and Son, London, 1961.
13. L. Landau, E. Lifshite. Juantum mechanics, Fizmatgiz, Moscow, 1948.
14. A. Gratzer, F. Frant. Transtendente Function, Akademisohe Verlagsgeaellsohaft, Leipeig, 1960.
15. E. Predazz1, T. Regge. Nuovo Cime, 24 (1963), 518.
16. R. Blankenbecler, M.I. Qoldberger. Phys.Rev., 126 (1962), 766.
17. X. Symanzik. Lecture at the Conference on Function Spaces, M.I.T. (1963).

Received by Publishing Department on December, 27.

Fig. 1 . Diagram of the interactions kernel. Particles meeting in one small circle belong to the same current. The arrow indicates the direction of sumation.

Fig. 2. Scheme of iterated diagrams.

Fig. 3. a. Contour of integration in the n-plane b. Deformed contour of integration in the n-plane.

Pig. 4. Sketoh of the trajectory of poles in the n-plane.

Pig. 5. Plot of the oorrection factor to angular distribution in lepton-lepton scattering.

Ванчура А., Домокош Г., Шурани П. ФЕРМИ-ВЗАИМОДЕИСТВИЕ ПРН ВЫСОКИХ ЭНЕРГИЯХ

Работа издается только на английском языке.

Препринт Объединенного института ядерных исследований.

Дубна. 1964.

Domokos G., Suranyi P., Vančura A.
Fermi Interactions at High Energies

E-1512

Preprint. Joint Institute for Nuclear Research. Dubna. 1964.

[^0]: * 1.e. those where the ooupling constant has the dimensions of a positive power of length. (Throughout we work in a system of units where $\bar{\sigma}=c=1$).

