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1. Introduction 

In a previous work/ 1/ we have shown that the Bethe- Salpeter equation for 

the two- particle Green function can be solved even if the kernel in momentum 

representation does not belong to the Fredholm class. 

'l'he method proposed in ref./
1

/ contained the following essential steps: 

1) Put E the total energy equal to zero. 

2) Go over to Euclidean metric in the space of relative momenta. 

3) Expand the Green function according to four dimensional spherical har

monics. 

4) Perfortl) a Hankel transform on the radial Green function. 

As a result of these operations we arrived at a local differential equation for 

the radial part of the Green function, provided the BS kernel was a generalized 

one, as specified in ref/ 
1

/. 

We have shown that in this manner the energy- independent singularities o f 

the scattering amplitude can be found in a comparatively simple way, the latter 

being determined by the most singular part of the "potential" ( the Hankel trans

form of the kernel) at r .. 0 , where was the corresponding radial c o

ordinate. 

In particular, we have found that the two- pion Green function possesses an 

infinite series of energy- independent cuts as a function of the angular momentum 

' f , provided, we take the lowest, nonvanishing approximation to the kernel 

(Example 3 of ref/ 
1

/ ). In the present work we want to investigate the problem 

of bound states in the case of singular interactions, confining ourselves to the 

pion- pion interaction, in the approximation mentioned above. 

Our method consists in the following. Taking the solutions of the radia l B S 

equation for the singular part of the potential, we expand the total Green function 

according to these functions rather than the free ones. 

In this way we arrive at a n integral equation for the Green function, which 

is already of the Fredholm type, and so familiar methods can be a pplied for find-

ing the bound state poles. 

Sec. 2 is devoted to the d e rivation of the integral equation just mentioned, 

while in Sec. 3 we investigate the positions of the roots of the Fredholm determin-

nant in the weak coupling approximation. We find that for E = 0 a nd w eak 

coupling there are no poles on the physical sheet of the a ngular m omentum plane, 
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while on the first unphysical sheet we find a pair of poles. 

The .possible physical implications of this situation are discussed in sec. 4 • 

Throughout the present work extensive use will be made of the notations 

and results of ref./ J/. 

2. Derivation o f the Integ ral Equation for the Green Function 

In ref./ 
1

/ we have found that the radial part of the two-pi on Green-function 

a t E = 0 satisfies the following e quation: 

[~ + 3 
dr 2 

_d_ -m '- n'-1 ]
2 

G ( r, r} 
clr r 2 

I'J( r - r') + V(r) G ( r, r ') 
t3 

( 2.1) 

where the "po tentia:!" V(r) has been given by the following expression: 

V(r) = :A
2 f 

lm 

dllll
3 

( 
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10. - 4rr.' ;"'' 
ll 2 
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The potential can be split into a " sin g ular" and a "regular" part: 

where 

2 

v. = >..' f d ll ll' K (ll r) = 21.. --
0 ll r r • 

and .,. 
v, = l f dll [ 8 (ll -2m )(~2 >""-1 ) X 

. ll' 

xll 3 K 1 (/lr) 

ll 

( 2 .2) 

Y=V. +Vr, 

( 2.3) 

( 2.4) 

Equation ( 2.1) with V • only can be solved exactly. We found for the wave 

function rfi ( r) 

d 2 

d r 2 

3 
+--

d 

dr 

2 2 
_ m 2 _ n - 1_ ] .p (r) 

r ' 

with the four independe nt solutions: 

rfi./ ( r ) = 
p.._ 

(mr) 

rfi ~ (tJ = K (m r) 
p-!:. 

V • (r) 1/t(r) 

( p +) - = 1 + n 2± ( 4n 2 + 2 >.. 2 ) 'h 
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The Green function w ith the s ing ula r· p a rt o f the potential, can be c on s tructed in 

the u sual way; we o btain: 

-1 'G• (r, r') = i~> (r-rnK (mr)1 (mr')-
P + p+ 

- K. •- ( mr) 1 P (mr') ] + 
( 2.7) 

+ e ( r'- r) [ K. • ( m t) 1 ( m r) -
+ p+ 

(mr)] 

Now w e make use o f the oper a tor identity, already used in ref/ 1/ in a different 

context. 

Assuming that we have to solve the linear operator equation: 

G - G + 'G ( K + K ) 'G 
0 0 • , 

and the oper a tor satisfying the e quatio n 

is known, we find that G satisfies the e quation: 

• G = G + 'GK. G 
( 2 .8 ) 

, 

IY) the present case, if G is the solutio n vanishing a t r .. 0 a nd r' .. o the 

e quation ( 2.8) is a n integ r a l e quatio n with a L kernel in mo mentum represent

ation. 

Tran sforming back to mome ntum representation, we find : 

< p I ·G I p' > - I r 3 dr I r' , dr ' ·x 

0 ( 2 .9) 

n (p r ) ' ') 
X G: ( r,r')~ 

pr P 'r' 

a nd 

< P I G" 
.. 

r' 3 dr' :x l{ I p' > =I r • dr I , ( 2 .10) 
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X 
J n ( pt) J n (pr'} 

( 2,10) V (rJcf•>(r.r'> 
t n ----

p, -r' pr 

where the expressions of v, and 'G are to be taken from eqs, ( 2,4) and 

( 2,7), respectively. 

Thus <PIG I p"> satisfie s the integral equation: 

<pI G I p')> - <PI 'G • I p' '> + 
n n 

( 2,11) 

+f q,dq <PI a· K iq >< q I G_lp' '> 

In order to find the positions of the bound state poles of Gh we have to find 

the roots of the Fredholm determinant: 

D ft - 8.1p f dp P , <p I l<41(1-G• V Ji p> ( 2,12) n t 

0 

-
- 1- f dpp 3 .<1=! G • v IP > + •• , 

0 

3, Poles of the Green Function 

The Fredholm determinant ( 2,12) being independent o f the r epresentation, we 

need not go throug h the steps outlined in eqs, ( 2.9) - ( 2.11) but can Insert 

the matrix elements in the r -representation directly. 

Thus the Fre dholm determinant ( 2 ,10) takes the form: 

• D a = 1 - f r "dr V, (t) G ( r, r ') + 0 (A ) ( 3,1) 

Inserting the expr essions ( 2,4) and ( 2 ,7), we find to an accuracy up to A 2 

where 

• II "" 
D n ~ 1 - \1, A 2 

( .4n 2 + 2A 2 
) f r 2dr F (r) 

F (r) = f p. 2 dp. ( 8 ( p.- 2m) ( 11 
2

- 4n: 2 ) II- 1 ] X 

p. 2 
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( 3 .2) 
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x K (flr) [ K (m r) I (mr) 
1 ,_ p-

( 3 .3) 

-K (m.r)l (mr) ]. 
p+ p+ 

2 
One h a s to bea r in mind that the Fre dholm p a rameter o f eq'. ( 2 .11) i s the A 

sta nding before v • ; therefo re one mus t n o t e xpand the expres sions p + 

and ( 4 n 2 + 2A 
2 

) _.,. in p o wers o f A 
2 

• ( By e xpa nding these expressio n s , -;;ne 

would just loose w e wer e attempting a t, n a me l y , to build in e xplicity th e " d anger

ous" sing ularities into the solution). 

It is clear that for sma ll A 2 , the r ig ht hand s ide of e q. ( 3.2) can 

v a nish in the n e ig hbourhood o f a p o l e o f f r 2dr F (r) in the n - p lan e . As 

the Bessel functions in e q . ( 3.3 ) are integ r ;;._1 functio ns of their indices, a pole 

can arise if the integral over r begins to diverge for some v alue o f n 

T aking into account the w ell- known asymptotic expressi o n s o f the B e ssel 

functions, we find tha t the integ r a l o v e r r a t the u pper limit converges i n depen

d e ntly o f the v a lue of n : 

F ( r) Q 0 ( r ·> ) ( r ... .. ) 

Therefore, poles can ·a rise fro m the beha viour o f F(rj a t r ... o o nly , Her e v..e 

find: 

where 

a = max I 1, q-:;p , 1 - 2 p + I 

Thus the integral in ( 3,2) beg ins t o dive r g e at r = 0 if a~ ,3 . 

Thusapol e of f
00

r 2F(r)dr w ill a rise a t Rep + = ;- 1 
0 

If w e choose the positive sig n o f the s qua r e r o ot in the exp r e s s i o n o f p+ 

from e q, ( 2,6) the latter c o n d itio n can n eve r be satis fied, H ence o n the shee t of 

the n - pla ne w h e r e p t. is define d w ith the positive s ig n, in the weak coupl-

ing limit the r e a r e n o poles a t a ll ( at lea s t fo r Ren > 0 ) • On the o ther 

sheet v..e h a v e p o les , situa ted a t the poin ts: 

n = +2\o\[1+ y' 1- x• ]1-1 
2 

( 3 .4) 

We a r e thus face d with the pro blem o f te lling which is the "phy s ical s h eet" o f the 

7 



\ I 

n -pla n e , We know that for sufficiently large values of n , the iteration 

solution of e q, ( 2 .11) must exist. This happens only in the case if we choose 

the positive sign in p+ . ( This result can be made plausible by the following 

argument as well. p plays the role of a "modified four dimensional angular 

mome ntum" just as the quantity e = - % + ..; If + y, J'+ J in the nonrelativistic 

Schr&iinger equation with a potential 

vanishes, p- should go over to n -1 

g r · 2 , Thus , if the coupling constant 

and n o t 1 - n ) • 

Hen ce we con clude that in the weak coupling limit there a re no poles o n 

the physical sheet of the n - p lane, for E =0 • 

4. Discu ssion 

In a superrenormalizable field theory, where the lowest o rder kernel of the 

BS e qua tion is square integrable/ 
2

/ , one finds a res ul/ 3 / , familiar from non

relativistic qua ntum mechanics/ 4 / : the scattering amplitude as a function of the 

angular momentum has no other sing ularities but poles- and in view of the 

classical theorem of Schmidt, it has at least one pole. In our case, which is an 

example of a renormalizable ( but not s uper- r e normalizable ) interaction, we 

came to a qualitatively d iffe r e nt conclu sion. The a ng ula r momentum plane has 

s e veral sheets, and we have fo und that the physical sheet does not contain 

pole s at all, Nevertheless, ,e have to bear in mind that o ur result has been 

found in the weak coupling limit and for E = 0 , At present we cannot tell any

thing about the behaviour of the poles as the coupling constant increases or the 

e nerg y is var ied. 
2 

One can, however, imagine tha t with increasing )\ or some values of the 

energy the poles would move towards the c ut and c ross it, thus appearing on the 

physical sheet. If this happened, we would encounter the s tra nge situation that 

a composite state ( in the g eneral sense) could be fo rmed above a minimal 

value of the coupling constant o r energy o nly. 

An example for a similar behaviour of bound states has been indeed given 

in a recent paper of Bastai et alJ s/ . 
The authors would like to express their sin cere thanks to Prof, N.N.Bogo

lubov, for his c onsta nt interest in the present research. 
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