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1. Introduction 

The investigation of the· problem of the relativistic theory of composite states and its interrelation to analytic 

properties of Green functions in angular momentum in quantum field theory has produced several interesting re­

sults in last years. 

Bound states app~ar as singular surface:; of the S -.matrix elements or Green functions, considered as func­

tions of the total angular momentum and energy of the syst~m. The actual calculation of singular surfaces in 

question, however, meets with several serious difficulties. Strictly speaking, the Green functions satisfy an 

infinite system of coupled integral equations, or- in an alternative but equivalent formulation-equations in func­

tional derivatives. 

Even the question as to the existence of solutions of such equations or finding practical methods to handle 

them in relatistic field theories is alritost completely unsolved. 

Practically tractable has proved to be so far the Bethe-Salpeter (BS) equation only. The essence of. the BS 

method consists in finding a linear integral equation containing one Green function only , all the higher and 

lower order Green functions being lumped together into the kernel of the equation, and conside~ed as known ones. 

In practice one approximates the kernel by the contribution of a firiite number of Feynman diagrams and tries to 

solve the resulting integral equation. It turns out, however, that in realistic field theories, at least in the simp' 

lest approximations for the BS kernel, the integral equations do not belong to the Fredholm class, because the 

fundamental domain of the integration variables is an infinite orie and the kernel does not decrease rapidly enough 

at infinity. "( The simplest examples for such a phenomenon are the pion-pion Green function in the g cb 
4 

theory_ 

with a simple "bubble-kernel" and the scattering of spinless particles with the exchange of vector mesons in the 

ladder approximation/!/). 

The cases mentioned above have been treated either by summing the most singular terms of the iterated 

diagrams/!/ or by solving the "asymptotic integral equation/1,2/, i.e. the BS equation with a kernel, reproduc­

ing the asymptotic behaviour of the original one for large relative momenta. 

As a result-it turned out that the two particle Green function contains singularities not corresponding to 

bound states. (For the cases mentioned above, these were energy independent cuts, in· the angular momentum 

plane). 

In the present work we develop a method for handling such "singular" Green fun~tions, for a certain class 

of kernels, to be specified later. ( The class of the kernels considered, although rather special, comprises. 

es all the kernels practically treated so far). The method to he presented consists in converting the original 

BS equation into an ordinary differential equation for the coyariant radial wave function. The energy-independent 

singularities can then be immediately found by examining the behaviour of the wave function for small dist~ces. 
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The solutions of the eqtiation are then classified according t~ the nature of the singularity of th~ kernel at the 

origin. It turns out, thatforany power-like singularity of the kernel there exist "no collapse" solutions of the 

differential equation. The positions of the energy independent singularities of the Green function in the angular 

momentum are then found exactly for the cases mentioned_ above in a surpri~ingly simple manner. 

Further it is shown that the bound states described by Regge trajectories, can be classified on a simple group 

theoretical basi!j, independently of the singularity of the wave function at the origin. Throughout the paper we 

treat the interactio~ of spinless particles. AU our considerations, however, can be extended to ·the case of par­

tides with spin. Examples of this kind are defferred to a future publication. 

While this research was in progress, we learnt that several authors have found results, which either partly 

' 'd . h · I . f ( S · /3,4/ ) comet e wtt , or are spec1a cases o our ones. ee e.g. • 

Despite of possible overlaps we should like to present this pap~r in this self-contained form. 

2 • Separation of renormalization terms and classification of 

hound states 

In order to simplify kinematics, we consider the interaction of particles of equal mass, m. We define the nor­

malized two-particle Green function by the following relation: 
... 

+ 
G (x 1 , .... , x4 )=<0IT(cb(x1 ) ... c/>(x4 )S) S I 0 > 

where cb(x 1 are asymptotic fields and S is the adiabatic. S -operator 

S = T exp i f g(x) L(x] dx, 

as defined by Bogoluhov and Shirko/5/. . ... 
Because of translation invariance, G depends on three coordinate differences only; we define its 

~ourier transform by .. 
G(x 1 , .. ,x 4 )=(2~) 6 (dp dq dE G(p,qjE)x 

E 
x exp [ -ip(x1 - x2 ) + iq( x3 - x4 J + i --( x3 +·x 4 - x 1 - x 2 )]. 2 . 

The Fourier transform G satisfies the BS equation/61: 

[(p+~EJ 2 -m2][(P-V1.E) 2-nt] G(p,qlE )= 

:1 
/211 

Here 

=8(p-q) +(2rr)4i r dp'K ( p, p'l E) G (p', q IE) 

K (p, p'l E) is the BS kernel, consisting f>f the contribution of the Feynman diagrams not possesing 

two particle cuts in E 

We treat kernels which possess a simple spectral representation in the nomentum transfer, (p -p'l, 

of the form: 
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(2.2) 

P is a polynomial of ( N -1) th degree in (p-p')l ; _its coefficients being-finite-renonnalization con-
N·1 

stants of K • The spectral density u{ 14 
2 , E) may contain [; - functions • 

. We now split the kernel K into two parts: 

where . K 
1 

means the spectral integral, K 2 the polynomial. First of all, we show that there is a corresponding 

splitting of the. Green function G • In fact, the BS equation written in operator fonn, reads: 

G and G
0 

are the Green operators with and without interaction, respecth•ely ) •. 

A simple algebra shows that if G 1 is the solution of the equation: 

• G1 = Go + Go K 1 G 1 

then (2.3) can be rewritten with the help of G1 as follow~ 

(2.3) 

(2.4) 

Equations (2.4) and (2.5) tell us that first one can solve the BS equati~n with K 1 - the spectral integral only­

as if the substraction polynomial were not there at all, afterwards the complete Green function can be found by 

solving another BS equa~on with K 2 on~y, but with another "free" Green function. 

The point in such a separation is that by expanding 'G into partial waves, the contribution of K 2 dif­

fers from zero for the first N - 1 physical partial waves only, while G1 is an analytic function of the angu-

lar momenta. G coincides with G 1 except for the few discrete points, where K 2 differs from zero. There-

fore, in order to study analytic properties of 

the renonnali:za tion terms at all. 

G in the angular momentum, one can ignore the contribution of 

A second point connected with the separation of renonnalization tenns is a natural classification of 

bound ( or quasistationary) states into two classes. 

I. We call regular bound states those corresponding to the poles of G 1 • They are characterized by the 

fact that there is an analytic function connecting their masses and spins. ( The "Regge trajectory" or .its inverse 

functio~) • 
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II. We call ~ingular bound states those which correspond to poles of G but not of Gz • Their spin 

can take on discr.ete values only, corresponding to the subtracted partial-waves. 

Remarks. 1. In order to simplify the terminology we call "regular'' bound states" the whole singular surface 

of the Green function, corresp~nding to co~plex energies and angular momenta or one Regge trajectory, corres­

ponding to real energies, or sometimes one point on the Regge trajectory, corresponding to a physical angular 

momentum value. The sense of the term will be always clear from the contexL 

2. The appe~ence of sin~lar bound siates seems to be characteristic of relativistic field theory. 

Whether a singular bound state appears or not, depends on the theory considered, while in a nontrivial theory 

there is at least one regular bound state ( not necessarily a physical one). We demonstrate at present this latter 

assertion with an example. Consider the 8 c/J 3 theory in the ladder approximation. The BS kernel needs no. sub-

struction, it belongs to the Fredholm class/7/, One can symmetrize the kernel by introducing g~ GY. !{ Gy. 
0 0 

instead of g 2 
G 

0 
K • Then by Schmidt's theorem there exists at least one eigenvalue g2 ( e, s ) giving 

an inplicit relation for the Regge trajectory. Because of the absence of subtraction terms, certainly no singular 

bound states appear. 

In mat follows, we study the analytic part of G ( i.e. Gz ) ignoring the subtraction terms in K • We 

can therefore omit the index "1" from K1 and G 1 without the danger of confusion. 

3. Expansion into partial waves. 

Following Wick/8< in eq. (2.1) we restrict the value of E ~ to 0 < E 2< 4m .2 and go over to Euclidean 

variables by turning the integration path in po' tothe imaginary axis. For a kernel given by eq. (2.2) no singu-

larities are crossed thereby. 

The symmetry group of eq. (2.1) becomes then R 
4 

instead of L • Actually, for Ell .f 0 fixed, eq. 

(2.1) is invariant under the sub~up of rotations, around the direction of E only (which is isomorphic to 

R 3 ), nevertheless, we fi~d it convenient to expand G according to a basis of R
4 

• Choosing the 

coordinate system such as to have E = E 
0 

E .. o we have the usual representation of 

Thus we expand the equation accodring to four dimensional spherical harmonics: 

m 1 - . e 
Z n ( 1/J, fJ, c/J ) = -- ( Sm .,P ) X 

nL Nne 

(of. Appendix ). 

f+z 
X Cnt-z 

m m 

(cos 1/J J Ye (0;¢) =P,e (1/JJYe (8, c/J) 

where 1/J, fJ , c/J mean the polar coordinates of a unit vector: 
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e9 =··cos 1/J , 

e3 = sin t/J cos () , 

(3.2) 

e 2 = sin t/J sin () sin 9 , 

c f+l 
n-e -l 

is a Gegenbauer polynomial, the three dimensional spherical harmonic, nor-

malized to unity on the surface of the three dimensional unit sphere. The function 
P. nf 

lized to unity: 
1T 

f (sin t/J)2r:.e(t/J)pn'f (1/J) dl/J.=Bnn' 
0 

·-(£±.~) 
Nne- 2 v'...zt.rCn+f+ll 

- r re ± 1) n r ( n - e ) 

( Because t:>f the compactness of K , both n and f are discrete indices). 
4 

The four dimensional volume element is given by 

dV= r3drsin2t/J dt/J ·sin() d() dc/J 
1 

so we have the representation:: 

8(p- q) = ..§i.JL=-a} ~ znme .(p) z:e· (clJ 
(p qfJ/ 2 nLn 

(t/J) is norma-

(3.3) 

(Note that on the left hand side of eq. (3 3) we have a four dimensional -on the r.h.s. - a one dimensional 8 

function. Denoting a four vector and it's radial. coordinate by the same letter may cause no confusion. f' stands 

f~r the unit vector in the direction of the· four-vector 5l ). 

In what follows, we choose the 0-axis of the coordinate system in the direction of E ( c.m. system) and 

characterize G by the independent variables: p2, q2 , E 2 , p , q' . 

Thus we have the following expansion: 

G (p, q I E)=~ 
n n fm 

(3.4) 

and similarly for K and the operator F = U% E + p ) 2-m 2][% E - p) 2 - m 2
] • 

(Notice that G is not diagonal in n! ). In order to find the matrix elements of K ( eq. (2 2) ) in the 

n e representation, we first choose n > N , and expand in the angle between p and p 1 
• Denot-

2 "l 
ing this angle by IU , we expand the denominator [ /.L 2 

- ( P - P ') ] • In Euclidean metri·c we 

have: 
00 
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Choosing p =(p, 0) we have p x =· p r cos ifJ ruid we can integrate over the three dimensional 

solid angle to.find: 

00 

__.1__ = 411 ( r 3 dr G (r) F ( p t), 
I-L2 +p 2 

0 

where 

11. • 2 lprcos!/1 
F ( p r) = ( d 1/J srn 1/J e = _!!_ J ( p r) 

o pr 

and 11 (x) .is the Bessel function of the firsl kind of index one. Hence, by a well-known integral fonnula 

( ref./9~ p. 686): 

1 
G(r) = _}!:_ K

1
(J.Lr) C./ 

• /, 2 .., 11 r 

!{1 (x) being MacDonalds's function of index one. 

(3.5) 

In a similar-way, noting that (p-q} 2=-p 2 + q 2-2pq cos w 

rem of Bessel functions: ( GR, p. 993) 

and making use of the addition theo-

DO 

~ rrl P- ql J 
r 1-P- q I 

= 2 :t n _[g_(Pt}_}!!L~) __ I 
Cn •I (cos"') ... 

"" = 2-~ I 
n=t 

n=t 

ln(Pt] 
pt 

pt • qt 

0 _}n ( q t) n zn 0 

qt 
( cos "'J 

Expressing cos "' in tenns of the unit vectors p' and " q by means of the four dimensional cosi-

ne theorem and making use of the addition theorem of four dimensional spherical fUnctions, we arrive at the ex-

pansion: 

with 

K (p, P 'IE J .. X. z:e_• (p'J x · 
n e D1 

x Kn (p~ p'21 E2) Zne (p'') 

00 

K
11 

(p 2,p'~ E 2J=f r 3dt 
0 

]II (prJ V (t) J 11 ( qt) 

00 

v rr; = r 
1-Lo 

pr 

duJ.Lsu·(J.L) _Kz(ut) 
J.Lf-

qt 

( We omitted the variable E 2 
). 

({ 

Strictly speaking we have established the fonnula (3.7) for n >:N only, where in the expansion 
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the coefficients can be expressed in terms of Legendre functions of the second kind. 

.. H~wever, the radial equation to be obtained can be c;ntinued in n beyond the line Ren = N 

( For.the analogous case in three dimensions see. e.g. Domoko/
101

) Thus; in what follow~, we relax the res-

triction 
Ren > N 

The matrix elements of the operator 

can be easily found. .We have: 

F = (-P2'+ ¥.1 E 2_m2)2 + P2 E 2 cos (p,E) 

So the matrix elements in the n, f representati~~ 't~~on th~dorm: 

'· 

(3.8) 

where 

= --=--1- f dx C ~J 1 
, 

N N -1 n " 1 
nf nf 

(3.9) 

As x'· is a-reducible- tensor of second rank, the matrix elements f f , will be different from zero 
nn 

f f , , one has to apply the for 
, 

n = n n '= n :_ 2 only. In order to find. the explicit expression of 
nn 

recursion formula ( GR, p. 1044): 

>.. 
(n+2)C 

. n+:l 
(x) = 2( A+ n +1) C A 

'· n+ 1 

A 
(x) -( 2A+z:J ) C (x) 

. . ~· n . . 

twice. As a result, we find the non vanishing matrix elements: 

1 f -1 ere+1J ·:~'h = (n-l)(n+IJ-ere+JJ, 
"" = 2 rn-IHn+IJ 2(n-IJ(n+IJ y 
e 

f 
n+ 2, n 

_....___ J (n+f)(n+f -l)(n -f-l)(n -e-2) 
4(n-1) n (n-2) 

9 
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Inserting the expansions .(3.4), (3.6) and the corresponding one for F into eq. (2.1) ( with the sub~litution 
' . . . 

rf o ... i p ' 0
• ), 'Ye find the BS equatio~ in the BS - representation': 

[f-p 2+~E 2 
-rtf/+ p 2 E 

2 
In!]< n, p

2 l G (fmE 
2

) In' q 2> 
e ~ 

Q .... p 2 E 
2 

I · · < n - 2, p 2 I G ( f, E 2 
} In', q 2 > 

, n,n-2 . · 

fl -p2 E 2
/ <n+2,p2l G(e, E 2

) In'·, q 2 > 
n, n+2 · 

= 15 , 
nn 
~-qJ 
( p q)--;;-;--

<t 2 "" 
' g f ' 3 d ' K ( 2 ", 2 E :.~ _, --- P P n P ' P , I X 
(2rr) 4 o 

x<n P,:z!G(f,E 2 Jin'(q 2 > 

Fonnula (3.11) gives an infinite system of c"oupled equations for the matrix elemens 

(3.11) 

<np 2 l G(p,E 2Jinl> 

We note immediately that for E2 .. 0 ( which in our case means E .. 0 
IJ. 

, as the direction of E 

is kept fixed), the system is decoupled and G becomes diagonal in n as well. This corresponds to the 

fact ·that the little group of the Poincare group, corresponding to a null-momentum, is isomorphic to L , not 

to R 3 • 

4. The differential equation for the wave function and its solutions for E = 0 

The representation (3. 7) for the kernel suggests to go over to a new representation by the substitution: 

<p 2nl G(f, E 2
) lq 2 n'> ... ~ 

00 

f "'-'- 3 .dr, ],. (pr) G f ( , E 2) = r-ur r --~-- , r ,r ; 
pr nn 

0 

ln(gr') 
----qrr-

(4.1) 

In fact, this transformation converts our equations (3.11) into a system of local differential equations. With the 

help of the Bessel differential equation one verifies immediately that P 2 corresponds to the differential 

operaror: 

2 2 
p2 .. - [ _5!._ + _!_ _:!_ + __J..=.E_ 

dr2 r dr r 2 . (4.2) 

in the new representation. We write out the r~sulting differential equation for E
2
= 0 

. 2 . • . 
[_L + ·.;_3_ ..!1 -·( n2-1 + m2 ) ] 

2 G ( r, r') = 
dO r dr r n f 

B(r-r') + __L V (r) G (r,r'). 
(r,r') s; 2 t(2tr) 4_ 

(4.3) 
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We go over to' the equation for the wave function instead; which reads 

[-a:z >i __!!... -·( n
2-:1 + m1] :zl/1 (r)"' ~' V(r) 1/J (r) 

d r :2 · r dr r:2 n ( 27T) 4 n (4.4) 

This equation is by definition sufficient to investigate the energy-independent singtilarities of the Green func­

tions. It is obvious. from (4:4) that the solutions with the correct behaviour at infinity are those which behave as: 

1/J (r) = ¢(r) e 
•m r 

(4.5) 

where .p (r) . has at most a pole at infinity. 

In order to study the behaviour of the solutions at the origin, we assume that the spectral density in (3. 7) 

has the following asymptotic behaviour for IL-+"" 

(4.6) 

which is the behaviour to be exf>ected at least if K is approximated by tlie contribution of a finite number pf 

diagrams. Correspondingly, the "potential" V (t) behaves at t -+ 0 

with 

( lo~J r ) f3 
v (t) "' ~ ---;:-;+~------

00 

v =-a r dx 
0 0 

0 

2+a 
X !{ 1 (x) 

Introd~cing a new ind~pendent variable: 

.~ ) 

2 

as follows: 

(4. 7) . 

u = log r"
1 

(4.8) 

and keeping in (4.4) the leading terms only, we arrive at the following asymptotic equation for ¢ · 

IV {3 
¢(u) -4n2 ¢"(u) +[(n2-JJLG 2 eau (-u) ]¢(u)=0 (4.9) 

where 

2 g2 V 
G~ ~ 

-r27T) 4 

u-+ "" 

The solutions of eq. (4.8) can be classified.according to the signs of a and 8 

the following classes: 

I. a <I"J' or a=·O, (:3<0, 

II. a = 0 , f3 = 0 , 

III. a = 0 , f3 > 0 , 

IV. a> 0. 

11 
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• 
The leading tenn in the asymptotic expansion. of can be found comparatively easily for all the cltlsses. 

Class J. The "potential" tenn vanishes with respect to the "centrifu~al" one, so the solution for r ... 0 . . 

behaves as the free one. 

Class II. The potential tenn equals in magnitude to the centrifugal one, .so the solution behav~s essentially . ~ 

. as a free on~, with a modified centrifugal tenn; (.This class will be treated in. detail in connection with the 

examples). 

For the remainingtwo classes the potential tenn predomirtates over the centrifugal one at small distances. 

Class III. Eq. (4. 9) can be satisfied asymptotically by the Ansatz: 

c/J(u) .. exp y ua 
(4.10) 

Inserting into (4.9), we find: 

8=1+{3:/4, (4.U) 

while y is given by the solution of a quartic equation: 

-JG · . . a 
Y"'·-- exp JJL (N + {3.N + ~) 

1 + f3; 4 2 l 2 2 
(4.12) 

( N 
l 

N -integers). 
2 

For integral {3 , one finds four different solutions. H 8 is non integral, then there are four different 

solutions for each branch of the power uf3 • Going back to the variable r , we find of course: 

1+8/4 
c/J ( r) - exp y ( - log r ) ' 

"Class IV. ·W~ make the Ausatz 

c/J (u).;. izP. exp u·.e hu 

Inserting into ( 4.9), we find: 

o={3 h .. a/4, 

while u is given once again as the solution of a quartic· equation: 

a"' ~ exp .Dr_ ( N· + B-· N +'...d.) 
a 2 t 2 2 

so in u r we have 

(/J (r) - ( log r ) {3 exp u r -{--

12 
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(4.14) 

(4.15) 

. 

""'· •, 
..... 



'There is an important feature of the solutions belonging to singular kernels. Unlike the notirelativistic case, ac­

cording to (4.12) and (4.,15), there can be found always at least one solution such that the wave function vanishes 

sufficie~tly rapidly at the origin, irrespective of the sign of the interaction. Obviously, the condition for such a · 

solution is Re y < 0 or Rea< 0 , respectively. This is fulfilled, if 1 < ( N + {3/2 + N f3 )<3. 
1 2 

1£ is an integ~r, there is one solution, otherwise two. This means that a relativistic system 

does not "colhtpse", even for singular interactions. 

'lhe physical meaning of this phenomenon can be understood by considering a one-particle wave equation in 

an external field. Eg. a Klein-Gordon particle in a scalar field is described by the equation 

Going over to the nonrelativistic limit, .one can see that the effective potential contains a term proportional to 

• '!his term is always repulsive and more singular then V (r) ; thus the system i~:~ preven-

ted from collapsing by the relativistic effects. · 

Let us now link up our results just found with the analytic properties of the scattering amplitude in the angu-

lar momentum plane. To this end we first of all remind that with the quantum number n , the square of the 

four dimensional angular momentum in the basis chosen, can be expressed as follows: 
j' ' : ' 

II L Lfl.V Z "' ( Z m 1~ e ='h n-1) (n+ 1) 
. fl.V n nf 

with the restriction: 

e <.. n- 1 ( e integral) 

For a given, still int~gral, e , one can. write: 

(4.16) 

with 
nr = 0, 1, .4 ••• . 

Form~la (4.16) already shows, how we should continue our expressions in f • ( The circumstance that our 

wave function depends o~ n only and not on n and e separately, is the consequence of the local charac· 

ter of our kernel (2.2) and is analogous to the "hydrogen -like" degeneracy in nonrelativistic quantum mecha .:..· 

nic/11,12/. We have consciously borrowed our notation from atomic spectroscopr ). Now, the scattering matrix 

element is given by th~'hsual formula: 

"" 
T = f r 3dt 1/J (r) V (r) 1/f(r) 
e o o 

(4.17) 

where 1/1 ( r) 
0 

is the wave function in the absence of interaction. 'lhe possibility of analytic continuation 
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of Te towards the left half of the e -plane is governed by the behaviour of the integral for r --. 0 . Wave ; 

functims · 1/.t (r) .belonging to classes I and II do not give anything essentially new. The-regular-free solutions 

behave as tC+y, for r--. 0 , so,' if th,e·potential is less singular then the centrifugal.tenn (class I) the 

,integrand in (4.17) behaves as . r ;£-a · (logr)f3 · for r.--. 0 . So , Te can he continued 

analytically for Re e > 'h (a-· 1 ). Class II - as already mentioned will he considered separately; 

here we anticipate the result, namely that there appear energy independent branch cuts in the C -plan~. 

Tum now to class III. As has been mentioned, there exists-at least -one solution; for which the interacting 

wave function vanishes at the origin, and the behaviour of 1/.t (t) 

respon.d to such a "good" solution, i.e. 

is independent of ' n . Let y, cor-
o 

Re y
0 
< 0 

The integrand of T e in fonnula (4.17) behaves like 

e '1 f3 - z+/3!4 
r + 12 (log r) exp Y, ( log 1/t) 

0 

This function vanishes for r --. 0 independently of the value of C • Hence, for E 2 = 0 . , T is analy-
e . 

tic in the whole C - plane. One verifies immediately that the same is true for class IV. We go a step furth~r 

and show that this result holds not only for E 2 
= 0 hut for any-finite en~rgy, for which the kernel belongs to' 

class III or IV. 

In fact, for the classes III and IV one can see at once that the tenns, proportional to f/J , ¢ ', ... ,_ ¢ 111 do .not 

contribute to the leading tenn of the asymptotic expansion at r = 0 . A glance at eq. (3.11) show:s that the 

operators proportional to E 2 cont~ibute to the coefficients of ¢, ... , ¢ 111 
, hut not to cf}V • Thus for 

~y erte~gy, 'forwh.ich either a> 0 or a = 0 , {3 > 0 holds, the wave function behaves at r--. 0 

as described by eqs. ( 4.10)- ( 4.12) or ( 4.13) - ( 4.15) respectively and Te ( E 2) is analytic in the whole 

e -plane. 

5. Invariant classification of Regge trajectories 

Eq. (4.4) can he used to detennine the "regular hound states" at E 
2 

= 0 , i.e. the points of R~gge tra -

jectories. In the foregoing section we have proven that there exists at least one solution with a correct behaviour 

at .the origin. 

Rewrite eq. (4.4) in tenns of the quantum numbers e nr instead of n • ( Following the speetrosco-

pie tenninology, we call n the "radial quantum number" and n the "principal quantum number"). r .. 

Taking eq. (4,16) into account, we have: 

[ d
2 

3 d li1+fl'n + e + 2)' 2) ]
2 

.1. ( ' -- + _ _ - ( -r-- .1-!!cr---,---- --~ + m VJ t) = 
dt 

2 
r dr r 2 

::lv(r) 1/.t(r), with )..2 = g2 
- (211)4 

(4.4) 
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Suppose now that we'h~ve found a solution of eq. (4.4) (or equivalently (4.4) ). Then we can write: 

... 
* a' .3_ a ' ' [ r

3
dr 1/Jn (r) [=;;;;-r + r a;;--( !1-;:f + m') ] 1/!n (rt 

CQ 

( r 3 dr t/J* (r} V(r) t/J (r) 
n n 

The integral in the 
0 

numerator is positive and so is 

00 

( r3 dr ifi * (r) V(r) 1/J (r) >. 0 
0 

for a hound state at E'•· o. 
n n 

• Hence we find that 

Penoting the r.h.s. of eq. (5.1) by F (n, ~:J ) we find the implicit equation: 

(5.1) 

(5. 2) 

. (5.3) 

fo~ the points of the Regge trajec.tories at E' • 0 

a power. series in ~ :J 

. Suppose, we have found the solution in the form of 

Taking into account that 

We find: 

F ( n, 0 ) .. _i!.!_ I ,, 
0 

= 0 
a A' " = 

So that actually the equation for the determination of the trajectory looks: 

where already 

Explicitly : 

00 

l=~'F1 (n .~') 

F ( n, .)!.. ') (:.· 0 • 
l 

:J . 

F- _ ( r3dr ~·(r) [_d_ + E_ d -(.E!:..l.+ m:J) ]~l(r) 
l - - oo ~ dr:J . r ""iff"" r :J + 0 ()1.4) 

( r 3 dr 1/J.o*(r) V (r) I/J 0 (r) 
0 

( we omitted the index n ) or taking into account the self-adjointness of L 

However, from 

F 
l 

00 

( r 3dr L.f/1* (r) L 1/J 1(r) 
00 

( r 3 dr l/! 0 *(r) V (r) I/J 0 (r) 
0 

U ( 1/I 
0 

+ ~:J 1/J l + ..• ) "' ~:J V (r) ( 1/1° + V 1/J 1 + •.• ) , 

• 15 

(5.4) 
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• 

so that 

~ ~ 2 
f r3dr I L ( V(r) 0°(r) ) l 
~ ,_ ~ +0(,\6) 

r r 3 dr 0° (r) v (r) 0° (r)· (5.5) 

'!he Green function of the o~erator L can. be constrJcted by the ~tandard procedure • 

. Solutions of the equation L ~ = 0 are cylindrical functions of imaginary argtiment: 

<l>(r} = ,.-z Z (imr) 
n 

We choose cf!O(r'=r·l 1 (mr), <1>(2Jcr) =·r"1 K. (mr), 
I n . n 

so we write the Green function: 

L
-z ( , -z 

( r, r') ,., r, r ) 

v W(rJ W (~'J 
[ 1 ( mr') 1{ ( m r'} 0 ( r - r') -n n 

{5.6) 

-1 (mr') K (mr) O(r-r')] 
n n 

where W (r) is the Wronskian of the solutions <I>(l) 
<I> (2) ~ Inserting (5.6) into (5.5) one can 

see that F is regular for ti > 0 
l 

; at n = 0 it has a simple pole: 

solution of eq. (5.4) in the weak coupling ap~roximation reads: 

· or with (4.16): 

n = f ,\2 + 0 ( ,\4) 
1 

e "' .... 1 - n + f • ',\2 + 0. ( ,\ 4) • 
r 1 

F .. J. 
"' .:....J... . Hence the 

n 

(5.7) 

Eq. (5.7) shows .that the Regge trajectories at >. 2= 0 differ by integer numbers. Our considerations so far apply 

to keme!s of class I and II only, since the solutions of class III and IV are singular at ,\
2 = 0 · Nevertheless, 

if a F =I 0 an 
in eq. (5.3), we can solve for n , to obtain: 

e = -.1 - n r + f ( ~ 2 
) (5.8) 

So our results ju~i found remains true. The .essential difference between {5. 7) and (5.8) is that for classes I and . 

II in the limit ,\2
-o 0 the trajectories retreat to negative integers: lim C = - 1- n, 

. • ,\2 ... 0 
just like in the case of ordinary Yukawa potentials 'in nonrelativistic quantum mechanics while for classes III and 

· IV this is not necessarily true. 

To show that the classification of Regge trajectories we have found for zero energy is valid in general, we 

carry out a perturbation calculation in E 2 
• 

Introducing a symbolic notation for the Hankel transform of eq. (3.11) for the wave function ( cf. eq. (4.1) ), we 

write: 

< n I H I n > < n I 0 (r) > + 
r o r .r 

+ s I , 
n , 

<n 
r 

I h In' 1 r 
> < n' 

r 

16 
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+s 2 l: <n lh In' :>.<n' 11/J(r} > 
, r 2 r r 

n 
B (5.9) 

= )..2 (s} V (r} < n I 1/1 (r) > 
. r 

We have introduced the notatio~ E 
2 

= s , otherwise the notation is self-explaining. 

The "unperturbed" equation, we were investigatingso far, can be written as 

< n I H I n >< n I t/1. (r} = r o r r o (5.10) 

= )..2 V (r) < n 11/1 (r} > 
0 r o 

We look for the solution of (5.9) in the fonn of a power series. 

, 2 \2 1 ,2 1 2 \2 
" (s) = " + -, s "' + - 1 s "' + ••. 

. 0 1· 1 2· 2 (5.11) 

<n, I 1/f(r)>=<n,l 1/1 (tj 1!>+. 
1
1

1 
s < n, I 1/1~ (r) > + 

0 • 
. . S1 

+ --,;,- < n , I 1/1 2 (r) > + .. . . .· . . 
Inserting (5.11) into (5.9) and comp~ring powers ofS on both sides ofthe equation, one finds the fami>liary expres• 

sions, e.g.: 

"" };n , n, .f r 3 dr < 1/J (r} In,> <n, I h; In,'> <n; 11/JofrJ > (5.12> 

r r 3 ar < 1/1~ (rJ 1 n, > v (rJ < n, I 1/10 (rJ > 
0 

etc. 

( All the quantities depend on f of course). 

Equating ).. 2 ( s) to one finds the implicit equation for Regge trajectories. The 

trajectory can again be found in the fonn of a power series: 

e (s} =· e + _j_ e s + _L e s 2 + 
0 1! 1 21 2 

Making repeatedly use of the theorem on the differentiation of implicit functions, one finds: 

e =-~ 
1 ~ 

e 

e 
2 2 

"" - __b._ + _2..a._ 
l1 )..2e . <1 )2 

,2 ( ,2 ., 2 - >! ).. 
+ "s "sf 1\ e ~e 8 

( )..2 ) 3 .... . e 
where we have used the notation: 

(1) 

(2) 

(5.14) 

(5.15) 



A.2 = a A.2 · 
e - _a_e_ l f=e , s=O 

0 

A.
2 "'...QL I 
B as e=eo,,s=O etc. 

Comparing (5.15) with (5.11), one finds that 

),.2 = ),.2 
• I 

2 

A. 2 = __Q_}u_ I 
e. ae e=e 

0 

and ),. 2 
' ),. 

2 
are given by the perturbation expressions (4; 12) and alike. 

I 2 "' 

On noting that (5.13) (0) is identical with our previous eq. (5. 3}, one sees that the classification found for 

zero energy labels indeed the whole trajectory, if only the formal power series defines an analytic function. This 

• h • . ' . f . h · 1 • b • I 41 H h I · f' · f · . 1s owever true m VIrtue. o. at eorem on ana yt1c pertur attons . ence our statement on t e c ass1 1catwn o 

Regge trajectories by the radial quantum number n is proved. 
r 

The question as to the completeness of the above classification remain~ still open. iVe have seen e.g. that if 

the asymptotic expression of the potential contains (log r) {3 and we are on a branch, where 

{3(N2+%) 

IV for each 

is not equal to an integer, then there are two ''good" hound state solutions in classes III and 
\ 

n 
r 

• Hence, for the complete classification of the trajectories there is at least one more 

quantum number necessary, e.g., the value of N 
1 

in eq .. (4.12) or (4.15}, respectively. In classes I and II 

the trajectories seem to he nondegenerate with respect to n , although we would not prove this so far. 
r 

6. Examples 

We begin this short section by listing some simple BS kernels and stating the class to which they belong. 

The reader can verify for himself these statements. The results are summarized in Table I. For the simplest 

kernels there is a direct connection between the renormalizahility of the theory and the class of the kernel: 

renormalizahle theories give kernels of class I or II in the lowest approximation. ·Iteration of the lowest order 

kernel may shift it to another class- as shown by the last example- but how far is it justified to iterate a given 

kernel in one direction, without taking into account other diagrams of the same order in unclear. 

We are going now to investigate the kernel N2 of Table 1 in some more detail. The spectral function a(Jl.) . 
is given by 

(1 (Jl.) = ( g2 - 4:n 2 ) 'h 
IL2 

it tends to unity for IL -+ oo i.e. a=/3-= 0. 

The asymptotic equation, describing the BS wave function as 

actly. In fact, by eq. (4.4), it re~ds: 

18 

• In what follows, we put 4m2:: 1 · 
. 2 

t-+ O, E =· 0 can he solved ex-
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3. 

5. 

6. 

where 

Setting 

Description of 
the kernel 

Table 1 

Scalar theory, direct 
coupling ladder approx 

Scalar theory, vector 
meson exchange ladder 
approx. 

PS pion theory, direct 
coupling, bubble approx. 

PS pion theory derivative 
coupling, bubble approx. 

PS pions interacting with 
fermions via V.A coupling, 
bubble approx. 

PS pion theory, direct coupling , 
iterated bubble approx. 

Diagram 

t ---- --t 

f:X···:x:t 

[ ~ + ....J._ _A_- ( n.:l.=.L+ nil)] .:1 q, (r) = 
dr 2 r dr r 2 

oQ 

V =f dx x 2K (x}, v'=·(2rr)4 g 2 
0 l 

0 

cP. (r) =·r'f (r} equation (6.1) can be written as follows: 

[1+ _5. ....s!...+ 
dr:Z r dr 

3-rr+(.4n 2 +y 2 V0 Jy, -m.:l]x 
, r:l 

The four solutions are: 

+ 
I-=1 (mr) 

l p+ 

l!:=K (mr) 
:z p± 

where 

Class 

I 

II 

III 

IV 

IV 

I 

(6.1) 
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"" . I . . h . I I f d b 1 h / 1•2•3/ · · b ~ne smgu artty m t e angu ar momentum pane, oun y severa aut ors : IS given y p 
• + 

The branch points lie at n = :!:: ( 1 :.. y v:) 'Ia or expressed in terms of. e 

f =-1-n+ J1+yVY• 
.t- . - 0 

Besides that, there are branch points at copmlex angular momentum values, given by 

or 

¥2 
n =+ ¥2 i y V 

0 

e =- 1- n + ¥2 y y'h 
t 0 

0 

The interestin~ point is tliat with the help of our method, the branch points can be found exactly, without making 

a weak coupling approximation or alike. 

7. Conclusions 

We believe that the main results we have found will hold true e~en by relaxing the restriction imposed by 

eq. (2 2) on the kernel. In ·our opinion these are: 

a) the classification of bound states into "regular" and "singular" ones , 

b) the qualitative classification of theories into classes IJV, giving rise to qualitatively different analytic 

properties in angular momentum, and 

c) the labeling of Regge trajectories according to the representations of the four dimensional rotation group. 

As to the first point, this distinction may have a deep physical meaning. Singular bound states may correspond 

to what we used to call now "elementary particles", regular bound states to "composite" ones. It is of course 
I 

another question; whether singular bound states really exist in nature; we do not know the answer by now. 

Point b) seems to be interesting because it shows that nonrenormalizable interactions, such as weak interac­

tions, could influence the qualitative properties of familiar strong interactions even at moderate energies. Un­

fortunately, we know about the behaviour at small distances of such nonrenormalizable interactions even less 

than about strongones, and the authors do not feel bold eno~gh to draw far-reaching conclusions concerning the 

possible role o1 weak ·interactions in manufacturing "maxi~al analyticity" in the angular· momentum or alike, 

although similar speculations would be very tempting. 

We want to mention only that such a possibility has been mentioned about a year ago by Predazzi and Regg/14/ 

in the framework of nonrelativistic quantum mechanics by assuming a potential, strongly singular at the origin. 

We would like to believe that the classification of regular bound states mentioned in c) is in fact a general 

one. Could one prove for a general kernel that the integration path in 
0 

p can be turned round to the imaginary 

axis at least in some interval of the total energy, this property would tum out a consequence of the assumptions of a local 

field theory. At any rate, to classify discrete energy levels (or, which is much the same,litegge trajectories} according to the 
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representation of a compact group is a very attra"ctive idea -and not new at all. The four dimensional rotation group 

seems to he a natural candidate in relativistic field theories, because of it connection with the Lorentz group. 

The interplay of analytic-properties -~f Green functions and compact groups to produce a labeling of_bound states 

by quantum numbers, which are not conserved for the system as a whole -would then he a beautiful property of 

local field theories. 

As a last comment, let us mention that in our opinion the application of an x - representation, although 

so far practical for a special class of kernels only ( eq. (2. 2) ), may prove useful at least in finding out some 

properties of Green functions, which afterwards could he proved by more sophisticated methods. 

The authors express their sincere thanks to Prof. A.A.Logunov and J,A.Smorodinski for stimulating discus-

sions. 

The valuable help of Mrs. S.A.Gamzaeva in the calculations is gratefully acknowledged. 

APPENDIX 

We list here some elementary properties of four-dimensional spherical functions used in the main texL ·Stan­

dard references are: the first two volumes of HTF/IS/, the booklet of Kratzer and Fran/
161 

and GR. In a cano-

nical basis, the components of the four dimensional angular momentum act as differential operators: 

.-t 
~ "' I ( X IJ. all - XI/ i ) 

We are lo~king for the simultaneous eigenfunctions of 

~L L 
' jJ.'V j.!'V 

and 

where L 2 • is the three dimensional angular momentum. On separating the four dimensional Laplacean 

in polar coordinates: x0
z r oost/J 

x != r sin ./I cosO 

x1 = r sin t/1 sin 0 cos if, 

x2 =·r sin t/J sin 0 sin rp 

the angular part of the operator reads: 

L 2 ~ ;;!! I~ + 2 ctg t/J ~ + _1_ [ __L + 
a t/1 2 a t/1 sin 21/J a 0 2 

2 
+ ct~ o _a_ + 1 _a_ l I ~ =- ( n 2

- 1 ) ~ 
a o sin2 o a cb 2 
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( t2 • · 1;2,3 ·~·;in introducing ir as starting from 1 instead of zero, .we follow.Frock
1141

), The Ansatz 

... . 
~. Ye (8, 4> 1 y(t/IJ 

... 
where Yf ( ~ rb) are thr~e dimensional spherical functions, normalizedto unity on the surface of the 

three dimensional unit sphere, transforms (A.1) into: 

tl_+2dg 1/J ~- f(e+Jl y+(n 2 ._1)y=O· 
d I/J 2 dt/J sin 2 t/l ( A.2) 

Introducing the new variable: 

we get a Legendre equation: 

X "'COS 1/J and a new function by y = ( 1 - x2) "'>' u (x) 

( 1-x2)u'~-•2xu'+[n:Z-~ 
2 ' (f+Yl)]u=O 

1- X 2 

The regular solution of( A.3) is 

u (x) ,. p ·(f+:>n) 
n+:>n (.x) 

or expressed with the help of the original variable: 

. • "'h -(f+in) 
y(t/1) a·( sen 1/J ) P (cos 1/J) ' .. . n+)h . 

Another, convenient form of ( A,4) is in terms of Gegenbauer functions: 

· f+:z -
y(t/J) =(sin 1/J )f Cn-f-t: (cost/!) 

The normalized functions are: 

They satisfy: 

.Z n~ ( t/1 8 rP ) a 2f+ 'h (nr (n -fL 
rrr(n+f+l) 

)Yl X 

x r Cf+ 11 r sint/!Jec f+ z 
· n -f~t 

( cos t/1) Ye"' (8, fb) s 

e Pnf ( 1/J J ye"' ( 8, rb ) 

f 7T 27T 

sin:Z 1/J dt/J f sin 8 d(;J f dfb 
m· m';. 

z e z '" , .. 8 , 8 "", 8 , n n l. n n u. mm 
0 

i.e. the I Z"'l 
nf 

0 0 

form an orthonormal system on the surface of the four dimensional unit sphere. • 

<A. a) 

(A.4) 

<As> 

(A.6) 

The system of· Z ·s is complete. The addition theorem follows immediately from those of the Gegenbauer 

functions and of the three dimensional spherical functions: 

n•Z 
2rr l: z 0 (y, • ' • )• nJ2 e .. o no 

e 
l: 

m ... e z:e (1/11 81 rb1 1 _)z:e rl/1 2 82 rb 2 J 
(A.7) 
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,• 

if 

cos y = cos r/J cos r/J _,sin r/J sin r/J ·cos w 
1 2 1 2 1 

cos cu = cos () cos () - sin () sin () cos ( ·r/J - r/J ) 
1 2 1 2 1 2 

( The dots in the argument of 

dependent of them ) 

zo 
no mean that the corresponding angies are _arbitrary, as the function is in-

Finally, we notice the obvious, but important property: 
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