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1. Introduction’

‘ The inivestigation of the problem of the relativistic theory of composite states and its interrelation to analytic
. proptqrties of Green functions in angular momentum in quantum field theory has produced several interesting re-
sults in last years. .

: B)ound states appear as singular surféées of the S - matrix elements or Green functions,Aconsidered as .func-
tions of the total angular momentum and energy of the system. ‘The actual calculation of singular surfaces in a
question, however, meets with several serious difficulties. Strictly speaking, the Green functions satisfy an
infinite system of coupled integral equations, or - in an alternative but equivalent formulation-equations in func-
tional derivatives. . »

Even the question as to the existence of solutions of such equat—ions or finding practical methods to handle
them in relatistic field theories is almost completely unsolved.

Practically tractable has proved to be so far the Bethe-Salpeter (BS) equation only. The essence of the BS
m'ethod consists in finding a linear integral equation contéining one Green function only , all the higher and -
lower order Green functions. being lumped together into the kemel of.the e%quati‘on, and Qonsidelied as known ones.
In practice one approximates the kernel by the contribution of a finite number of Feynman diagrams and ﬁes to
solve the resulting integral equation. It tums‘ou’t, however, that in realistic field theories, at least in the simp*

lest approximatiéns for the BS kemél, the integral equations do not belong to the Fredholm class, because the
fundamental domain of the integration variables is an infinite one and thekemel does not decrease rapidly enough

at infinity. { The simplest examples for such a phenomenon are the pion-pion Green function in the g¢ * theory.
with a simple *‘bubble-kernel” and the svcattering of spinlekss’ particles with the exchange of vector mesons in the
ladder approximation/ 1/ ). |

The cases mentioned above have been treated either by summing the most singular terms of the iterated
diagrams/l/ or by solving the “‘asymptotic integral equation/l'z/, i.e. the BS equation with a kernel, reproduc-
ing the asymptotic behaviour of the original one for large relative momenta.

As a result it turned out that the two particle Green function contains singularities not corresponding to
bound states. { For the cases mentioned above, these were <enerygy independent cuts, in the angular momentum
plane). v

In the present work we develop a method for handling such “singular’’ Green functions, for a certain class
of kernels, to be specified later. ( The class of the kernels considered, although rather special, comprises.
es all the kemels practically treated so far), The method to be presented consists in converting the original
BS equation into an ordinary differential equation for the covariant radial wave function. The energy-independent

singularities can then be immediately found by examining the behaviour of the wave function for small distances.



The solutions of the equation are then classified according to the nature of the singularity of the kemel at the
origin. It turns out, that forany power-like singularity of the kemel there exist ‘'no collapse’ solutions of the
differential equation. The positions of the energy independent singularities of the Green function in the angular
momentum are then found exaétly fof the cases mentioned above in a surprisingly simple manner.

Further it is shown that the bound states described by Regge trajectories, can be classi.fied on a simple group
theoretical basis, independently of the singulakrity of the wave function at the origin. Throughout the paper we
* treat the interaction of spinless pafticles. All our considerations, however, can be extended tothe case of par-
tlcles with spin. Examples of this kind are defferred to a future publication..

Whlle this research was in progress, we learnt that several authors have found results, which either partly
comcnde with, or are special cases of our ones. ( See e.g: /3,4/ ).

Despite of possible overlaps we should like o present this paper in this self-contained form.

2 . Separation of renormalization terms and classification of

bound states

In order to simplify kinematics, we consider the interaction of particles of equal mass, m. We define the nor-

malized two-particle Green function by the following relation:

) . - . +
G (xy i, X, )=<0lT(S(x). b(x,35) S |0>,
where: @( X, ) - are asymptotic fieldsand S isthe adiabatic. § -operator

S=Tew i [ g(x)L(xdx,
as defined by Bogolubov and Shirkov/s/-

-8
Because of translation invariance, G depends on three coordinate differences only; we define its

Fourier transform by

G(x,,.., x4)=(251)6 fdp dg dE G (p, q|E} x

N .‘.' _‘. R . N . .Ev . .
Xexp[—Ip(x,~x,)+iq( X3 X,)+1 —2—(x3+‘x4—x,_ x,)].

/6/,

The Fourier transform G satisfies the BS equation

((p+% E)*~m®1[(p-%E)’~af] G(p, -
_ LE) ~a’)[(p-%E) ~afl G(p,qlE) Iy

‘ —b‘(p q)+(—-—)—;—f dp’K(p,p’|E)G(p"ql E)
Here K (p, p’lE) isthe BS kemel, conmstmg f the contribution of the Feynman diagrams not possesing

two particle cuts in E
We treat kemels which possess a simple spectral representation in the. nomentum transfer, (P =P},

of the form:



. . N m
K(pplE)=(2=P) ¢ mﬁo(“z’E )
: 7 u? u’ (u?~(p=p'}? ]

2 (2.2
+Py .y ((p=p) S E). -

. PN_, . is a polynomial of ( N = 1) th degree in (p—-p)2 ; its coefficients being-finite-renonnalizatio.n con-
stants of K . The spectral density o(pu?, E) may contain & - functions.

" We now split the kernel K into two parts:
// o Lo . K=&+K,

where . K means the spectral integral, K, the polynomial. First of.all, we show that there is a corresponding

splitting of the Green function G -, In fact, the BS equation written in operator form, reads:

G =G + G (K;+ K;)G

(2.3)
( G and Go are the Green opérators with and without interaction, respectively ). .
A simple algebra shows that if AG, is the solution of the equation:
“G=G +G K, G, ’ (2.4)
then (2. 3) can be rewritten with the help of G, asfollows :
G = Gl + Gl KZG ' . (2.5)

Equations (2.4) and (2.5) tell us that first one can solve the BS equation with K, . the spectral integral only -
as if the substraction polynomial were not there at all, afterwards the complete Green function can be found by‘

solving another BS equation with . K, .only, but with another ¢“free’” Green function.
8 quatic 2 -only, bul ,

The point in such a separation is that by expanding 'G into partial waves, the contribution of K, dit
fers from zero for the first ¥ — I physical partial waves only, while G, is an analytic function of the angu-
lar momenta. G  coincides with G, except for the few discrete points, where K, differs from zero. There- -
fore, in order to study analytic properties of G in the angular momentum, one can ignore the contribution of

the renormalization terms at all.

A second point connected with the separation of renormalization terms is a natural classification of

bound ( or quasistationary’ states into two classes.

1. We call regular bound states those corresponding to the poles of G, . They are characterized by the

“ fact that there is an analytic function conneycting their masses and spins. ( The ‘“Begge trajectory’’ or its inverse

+ function) .



II, We call singular beund states those which correspond to peles of G ~ but not of G; . Their spin
can take on discrete values only, corresponding to the subtracted partial waves.

Remarks. 1. In order to simplify the terminology we call *‘regular’’ bound states’’ the whole singular surface
of the Green functwn, correspondmg to complex energles and angular momenta or one Regge trajectory, corres-
pondmg to real energxes, or sometimes one pomt on the Regge trajectory, correspondmg to a physiecal angular
momentum value. The sense of the term will be always clear from the context.

A The appearence of smgular bound states seems to be characteristic of relativistic field theory.
- Whether a smgulm‘ bound state appears or not, depends on the theory considered, while in a nontrivial theory
there is at least one }egular bound state ( not necessarily a physical one). We demonstrate at present this latter
. assertion with an example. Consider the £ ¢ theory in the ladder approximation. The BS kemel needs no sub-
'struc’tion, it..belongjs to the Fredholm elass/7/. One can symmetrize the kemel by introducing g G': X G’:
instead of g" Go' K . Then by Schmid_t;s theorem there exists at least one eigenvalue g?(f,s ) giving
an inplicit relation for the Regge trajectory. Because of the absence of subtraction terms, certainly no singular
bound states appear.
In +hat follows, we study the analytic part of G (i.e. G, ) ignoring the subtraction temsin K . We

can therefore omit the index *“1* from K, and G, without the danger of confusion.

3. Expansion into partial waves.

Following Wick/8/ in eq. (21) we restrict the value of E*w o< E% 4m? and go over to Euclidean
variables by turning‘the integration path in p® " tothe imaginary axis. For a kernel given by eq. (2.2) no singu-
larities ure crossed thereby. . ‘

The symmetry group of eq. (2.1) becomes then R, instead of L | Actually, for -7( 0 fixed, eq.

B (2 1) is invariant under the subgroup of rotations around the direction of E only ( wluch is isomorphic to

R, ), nevertheless, we fmd it convenient to. expand G  according to a basis of R, . Choosing the
l eeordinate system such as to have 'Eo =E , §= 0 we have the,usqal 'lfeprese‘ntation of R s
Thus we expand the equstion accodring to four dime_nsional spherical harmonics: <

'(Sin ¢ )E x
nt - (3.1

Z:e (¢r0r¢)=

e+1 m-. m
C o (wS'/’)‘Yg (0:¢)=pp (W)Y, (6, 4)

(of. Appendix ).

where . ¥, 0, ¢ mean the polar coordinates of a unit vector:



= cos ¢,

e’ =siny cos @,

el = sin ¢y sin@ cos ¢ , (3.2
e?=siny sin @ sin o ,
Cc Z-E_z is a Gegenbauer polynomial, Y; “the three dimensional sphéﬁcal harmonic, nor-
n-l -1 - .
malized to unity on the surface of the three dimensional unit sphere. The function p 0 (Y) is norma-
lized to unity: . '
, v A
Jesinyg)?p (¥lp,, (P) d¥. =5 ,
o n n L nn
el %) . o
N, =_2 sl rn+l 1)
. nl Cel+ ) anl(n=1)
( Bécausé of the compactness of K4 ,both 7 and € are discrete indices).
The four dimensional volume element is given by
dV =r3drsin?y dy sinf dgd¢ ,
so we have the representation: '
m m?* ' : :
8(p—-q)=20(p=0) S 2% ($) 27 (&) :
(p9)%3 alm nt 't : (3.3)

( Note that on the left hand side of eq. (3 3) we have a four dimensional — on the r.h.s. — a one dimensional &
function. Denoting a four vector and it’s radial.coordinate by the same letter may cause no confusion. £' stands
for the unit vector in the direction of the four-vector ¥ ).

In what follows, we choose the 0-axis of the coordinate system in the direction of E (c.m. system) and

-
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characterize G by the independent variables: p2, q2, E?, 3, ¢

Thus we have the following expansion:
. m. m
G(p g |E)=% an (;3‘)<n’q|(;(E’,ll)lnp2>‘zn'Z (3) (3.4)
nnlim’
and similarly for K and the operator F ={(}; E +p)=-m?[BE-p)’-m?].

(Notice that G ‘is not diagonal in a! ). In order to find the matrix elements of K ( ed. (2.2) ) in the

n [ representation, we first choose n > N , and expand in the angle between . p  and p’ . Denot-
, -1 . o

ing this angle by © , we expand the denominator [ u? —(p ~p 1 . In Euclidean metric we

have:

Tﬁ' 5 = [ r3dr sin?y dy sin@ dg d¢ e'** Gq).
u p? . IR



Choosing  p=(p,0) wehave px ='pr cos ¥ and we can integrate over the three dimensional

- solid angle to find:

o0

—L_ =47 [ % Grr) F(ps),
u? +'p2 0
where ‘
g ) rcos
F(pr)= [ dy sin*ye” ¢=7”— J (pr)
g r

and J; (x) is the Bessel function of the firsi kind of index one. Hence, by a well-known integral formula
(ref./9, p. 686):
| | Ger) = £ K (ur) L
4t ? v (3.5)
X, (x) being MacDonalds’s function of index one. _
Ina similariway, noting that (p=~qJ?=p?+ g?—-2pqcos and mékiné use of the addition theo-
rem of Bessel functions: (GR, p. 3) ‘
J,(.tlp—ql) =235 n ’]n(br)]n(qt)_f‘ ¢! ( cosw )=

Tt ney

r{p-q|  a=1 pr . gr

Lg%y Jdatpr)  (ar)

n_Z:o (cosw}
n=1 pr qr

Expressing  cos @ in terms of the unit vectors ' and & by means of the four dimensional cosi-

ne theorem and making use of the addition theorem of four dimensional spherical functions, we arrive at the ex-

pansion: - . L
K (p,p’| .E)‘EE, 2% (Y x
xK, (8 p?l EA 2 (8 . Ge
e o :
K (p%p ] E*)=f r'%: JatPr] 40 Jalar) ,
0 pr qr I? ~
v(t) = r dlu usa-(u) _%_g_‘ii!_ ’ (3.7)

')

( We omitted the variable E * ).

Stric'tly _speéking we have established the formula (3.7) for n>AN oﬁly, where in the expansion



K(pp"|B) =% X, G, (cosw)
the coefficients  * X, can be expressed in terms of Legendre”ﬁmctions of the second kind.
However, the radial equation to be obtained can be continued in 2 ibeyon‘d the line Ren =N
. A 10/ o L
( For the analogous case in three dimensions see. e.g. Domokos/ -) Thus; in what follows, we relax the res-
triction -
: : Ren> N

»

The matrix elements of the operator
Fel(4 E+p)+a?[(LE —p)*m?
can be easily found. ‘We have:
-( -p +1/E’—m )? +p?E? cos(p,E)

So the matrix elements in the n, Z represeutatlon take on the form

<n’ ZmlFlnEm> 8“, 5  , X

x[8 . (-p?+UE _m2)2+p252f“ ] : (3.8).
where
_fe -fg =__1 fdxcg}" (xj C b - (%) x’.(l--x’,),zf'_*‘
an’ nn N Ng ot neles ‘
- (39)
As x” is a-reducible- tensor of second rank, the matrix elements {ﬁn' will be different from zero
for n’=n , n'=n+2 only In order to find the explicit expression of lnn, , one has to apply the

- recursion formula( GR, p. 1044):

' A _ e A | A
(a+2)C. (=2(A+a+1)CL (0 —(P+n)CT(x)

twice. As a result, we find the non vanishing matrix elements:

4

Lls1) o (n=1)(a+1) = (1)

f =L )
an 2 (@-{a+1) 2(n-1)(n+1) v
¢ . v
- 1 (n+0+2)(n+l1)n-l+)n-€) - . S
ftan T 3AFT) ‘/ n(n+2) ,’: , (3.10)
[g R | J(n+ﬂ)(n+ﬂ—1)(n-—ﬂ—1)(n —f=2)
nez n - 4(11—1) n(n—2) ]



Insértihg the e)‘.cpah‘sio‘ns'(3.4), (3.6) and the é@rregponding one_for _ F. intoeq. (2 1) ( wibt‘h the sub'sﬁtutio,,

F°+ip” ), we find.the BS equation in the BS - representation®
. B - 2 : 2 2 v z 2 - e N z 2 B . . .
((-p?+%E" —mh+ p?E”f 1<n,p"| G(mE") |n"g?> - o

< =2p?G(L E?)In’, ¢*>

n-

. £
A =p?E" £

"
| -p?E?f . <n+207 GrL, E* |a’, q¢%>
. ' ) Q\ 2 oo ‘ .
=5 , 2(P=g) L [pdp" Ka(p?, P’ " E x ()

na’ (pg)¥3 C(2m)

x<n p?|G(L,E?)|nkg?>.

Formula (3,11) gives an infinite system of gt)upled equations for the matrii elemens <np2|G(p,E?)|n q2>
We note immediately that for ; E2.0 ( which in our cése means Eu + 0 |, asthe direétion of E
is kept fixed), the system is decoupled and G ‘becomes diagonal in n  as well. This corresponds to the
fact 't}h‘at‘th; little group of the Poincare group, corresponding to a null-momentum, is isomorphic to L, not

tO-Ra.

4. The differential 'equvation for the wave function and its solutions for E =0

The representation (3.7) for the kemel suggests to go over to a new representation by the substitution:

<p'n|G(LE?) [q?n">=

= r¥% r¥d’ ater)_ Ge ., (e’ E?) _-_’n_(é_';_'__)__ _ (4.1
o pr na Y
In fact, this transformatiqn converts our equations (3.11) into a system of local differential equations; With the
help of the Bessel differential equation one verifies immediately that p ? omesponds to the differential

operator:

.

2
d:'z+_3_ d ,_1=n")

2 o =
pre=l r dr r? " (4.9

in the new representation. We write out the resulting differential equation for E'=0:

a2 . - R )
[d(:z ¥ ——rL d-—:i _f(n——-z-;l + m’) i]zcne (f, r,’):

. ‘ (4.3)
==y 37
(r,r’)ﬂ{ * Qo) ¢ V() G(r')

10



. We go over to'the equation for the wave function instead; which reads - .

2 +_3- R S A S R N I L Vi w ) S
h [dr’ T oa AR (2m)* n , (4.9
This equation is by definition sufficient to inQestigate the energy-indepencient singularities of the Green func-

tions. It is obvious from (4:4) that the solutions with the correct. behaviour at infinity are those which behave ast

‘ L .
. b =9me 4.5
where (r) . has at most a pole at infinity.
In order to study the behaviour of the solutions at the origin, we assume that the spectral density in (3.7)

has the following asymptotic behaviour for

o(u.)-ao ua(logu)_/‘o: v N (4.6) -

which is the behaviour to be expected at least if X is approximated by the contribution of a finite number of

diagrafns. Correspondingly, the “potential”” V(1) . behavesat r + 0 as follows:
(log r )_E__ /
14 (r) E Vo ——;4::?1——_ ‘ B » . ) : (4'7)
with ‘ ' ' 2
. 4
Vaus [dx &% %X (%
° 0 !

Introdqcing a new independent variablet
u=log £ | (4.8)

and keeping in (4.4) the leading terms only, we arrive at the following asymptotic equation for ¢ .
. / N

¢’(Z) -4n? () +[(n2- 1)L G2e@ ™ ‘(-u)B lém)=0 (4.9) -
- U- oo
where
- 6 &%
(_2”) 4

The solutions of eq. ._(4.8) can be classified according to the signs of a‘ and 8 . Correspondingly, we find

the following classes:

. a <9, oo g=0, fB<0,

I,

- III.
Iv.

a=-0, B=07
a=0, B>0;
a>0.

11



-

The leading tem in the asymptotic expansion of can be found comparatively easily for all the classes.
Class I.. The *“potential”’ term vanishes with respect to the *‘centrifugal’’ one, so the solution for r +0
behaves as the free one.

Class II. The potential term equals in magnitude to the centrifugal one, so the solution behaves essentially

.as a free one, with a modified: centrifugal term. (-This class will be treated in detail in connection with the

examples).

- For the remaining two classes the potential term predominates over the centrifugal one at small distances.

Class 111, Eq. (4.9) can be satisfied asymptotically by the Ansatz:’
$u)moxpyud . o S @0

Inserting into (4.9), we find:.
S=1+ 674, o : @

while y is given by the solution of a quartic equation:

- VG i : ‘B (4.12)
" 1vBy, oxp A3 (N + BN, v )

(N , N  -integers)
1 2 s
Forintegral B , one finds four different solutions. If B is non integral, then there are four different

solutions for each branch of the power uB . Going back to the variable r , we find of course:

1+B/4
d(t)~ewp y(-logr)

‘Class IV. ‘e make the Ausatz '

hu

G~ uPexpoe (4.13)
Inserting into (4.9),-we find:
D='B R hBa/4, ¥ ’ (4.14)
" while o is given once again as the solution of a qﬁartic‘ equation?
o= G exp iz (N + g N +B) (4.15)
a 2 1 2 2 .

so in or we have

[
exp ogr 4

& (1)~ ( log f)B

12



There is an important feature of the solﬁtions belonvging to singular kemiels. Unlike the nonrelativistic cgsé, ac-
cording to (4,12) and (4.15), there can be found always at least one solution such that the wave function vanishes
sufficiently rapidly at the:origin, irrespective of the sign of the interaction. Obvi'ously, the condition férrsuch a’
solution is . Re y <0 or: Re < 0. ,respectively. This is fulfllled if 1 < (H +B/2 + H B )<3.
If B/2. + IV B isan integer, there is one solution, otherw1se two. This means that a relatlvmtlc system
does not *‘collapse’’, even for singular mteractlons. A

. The physical meaning of this phenomenon can be understood by considering a one-partlcle wave equation in

an external field. Eg. a Klein-Gordon particle in a scalar field is described by the equation

(E+A +(m~V@®)?) 1 ¢ (rE)=0

Going ngl; to the nonrelativistic limit, one can see that the effective ;;otential contains a term broportional‘_to
(v (r)r ) 2 ‘..This term is always repulsive and more singular then V (r) | ; thus the system ié preven-
ted from collapsmg by the relativistic effects. |
Let us now link up our results just found with the analytlc propertles of the scattering amplitude i in the angu -
lar momentum plane. To this end we flrst of all remmd that with the quantum number- 2, the square of the

four dimensional angular momentum in the basis chosen, can be expressed as follows:

WL, LY Z% =% (n-1)(a+1) 2, ,

with the restriction:

[} in_i ‘ ) ' ( ¢ integral)
For a given, still integral, £ , one can write: : ‘ _ , ' -
n=f+14n, e
with
nr =012 ...
Formula (4. 16) already shows, how we should continue our expressions in £ . ( The circumstance that our

wave functlon dependson n  only and noton n and £ separately, i is the consequence of the local charac-
ter of our kernel (2.9) and is analogous to the *“hydrogen -like’” degeneracy in rionrela‘tivistic quantum mecha <
nics/11,12/_ We have consciously borrowed our notation from atomic spectroscopy ). Now, the _sc.attering matrix
element is given by thé.’;suﬁl formula: | \

T, = (% v V@ ye L@

2]

where ¥ (7} is the wave function in the absence of interaction. The possibility of analytic continuation
0 ‘ :

13



of Tg towards the left half of the { -plane is govemned by'the behaviour of the'integral for . r -+ ()‘ - o Wave

functims ™ (1) .belonging.to classes I and II de not give anything essentially new. rI‘he-re;:.;ule'u"-‘free solutions

behave as’ b for r-0 so, "if the-potential is less singular then the centrlfugal term (class I) the
. integrand in (417) behaves as . 22 T (logn)B. o for o o LS T, can be continued
en’alytically for Re ( > ¥ (a = 1)... ClassIl — as already mentioned will be considered separately, '

here we anticipate the result namely that there appear energy independent branch cuts'in the £ - plane.

Tum now to class III, As has been mentioned, there exists-at least — one solution,» for which the interacting'
wave function vanishes A: the origin, and the behaviourof ¥ (). ..is independentof ©+ a , Let y'o cor-
.responld to such a *‘good” solution, i.e. ‘ |

Re Y°< 0
The integrand of TE‘ in formula (4.17) behaves like

7, . l1+B/4-
873 (log e )Poxp v, (log 1/t)

This function vanishes for ¢ -0 independehtly of the value of ¢ ', Hence',‘v for E?= 0 , Tf is analy-
tic in the whole € - plane. One verifies imrhedietely that the same is true for class IV, We go a step further
and show that this result holds not only for E 2= 0 but for any-finite en‘ergy',‘for which the kemel belongs to

class IIl or IVT

» In fact, for the classes Il and IV one can see at once that the terms, proportional to S s Byeens & donot
contribute to the leading term of the asymptotic expansion.at Tr=0 . A glance at eq. (3.11) shows that the
operators proportlonal to E? contribute to the coefficients of s s M ", but not to ¢rv . Thus for
-any energy, for whlch elther T a ->v0 or g =-6 s B8 >0 holds, the wave function behaves at * r- ¢
as dest’:ribed by eqs. (-4,10)- ( 4.12) or { 4.13) —( 4.15) respectively and T, (E?) is analytic in the whole

£ - plane.
5. Invariant classification of Regge trajectories

Eq. (4.4) can be used to determine the “regular bound states’ at E =0 ~» i.e. the points of Regge tra -
: jectories. In the foregoing section we have‘proven that there exrsts at least one solution with a correct heheviour
at the origin. ‘ ‘ ,

Rewrite eq. (4.4) in terms of the quantum numbers f n_ instead of no.( Following the spectrosco-
pic terminology, we call‘ n_ the “radial quantum number”” and n the “prmc1pnl quantum number’ ),

Taking eq. (4, 16) into account, we have:
(42 +3 d_(aalinerls 2) ., 021 4y
dr r - dr r?

;'\zv(") Y(r) , with A? s é_ (4.9)

14



Suppose now that we have found a solution of eq. (4.4) ( or equivalently (4.4) ). Then we can write:

N LA R S S R VD WAL

(5.1)
[ ridr 1,[/: (rj V() Y (1) ? .
0
The integral in the numerator is positive and so is. A? . Hence we find that
[ r3dr v,!:" IGRLG) v () >0 ' ‘ (5.9
0 .
for a bound state at E =0,
Denotmg the r.h.s. of eq. (5.1) by F(n, A?)  we find the implicit equation?
MaF(n M) : (5.3)

for the points of the Regge trajectories at E? = ¢ . Suppose, we have found the solution in the form of

- _— 2
a power series in A

Y@=l ) 2N 1) 4N () +

Taking into account that ‘ ‘ i

2
Lyoslf v 8 do_(nii,g ) v °m=0

We find:

F(nio)"--—-l =0
aa?

M=0 %

So that actually the equation for the determination of the trajectory looks:

/ 1=NF, (a,N) (5.4
) where already F; (n, A?) 40 .
Explicitly ¢
o 2 ) :
Fe I ride y*(r) [-—7‘—‘:—2 % - J_+ m?)]@l(r) +0 (A%
1
f £ dr ANURACRAT)
( we omitted the index n ) or taking into account the self-adjointn‘ess of L
oLy Loy
1 ) N
[ r3dr y°%m) V() y°r)
However, from 0 :
LAY +N 14 o )= V() (O+AIG L4 ),
= LV mym ), ' : -
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so that

b—g

-1 : 2 :
rde { L7 (V(r) 4O (r) ») } . O (A)

Foesde o ve oo . R

F=
1

q

’ ‘ ] : ; I S
- The Green function of the operator L can be constructed by the standard procedure.

"Solutions of the equation L ®=0 are cylindrical functions of imaginary argument:

) =r! Zn (imr)

We choose @) = 12 I (mr), O 2y =rig L (mr), - so we write the Green function:
o . ‘ ’ "1 . A ’
. 'L'I(r, r')"=_Lr_’_’___)____._ [I, (me’) I{n(m ) O(r=r") - . ) - .
V¥ W) o : SN
' (5.6).
.-In (mr’) .Kn(rﬁr)()(r—r'-)] ‘
~where W(r) >is; the Wronskian of the solutions ot , ¥ . Inserting (5.6) into {5.5) one can
see that FI isregularfor n >0 jat -n=0 it has a simple pole: Fl = g . Hence the
v n
solution of eq. (5.4) in the weak coupling approximation reads:
n =.1;,\2 +‘0(,\4) .
* or with (4.16):
[4 =d1_nr+ fl_’A_2+i‘O,(A,“)' . ‘ ) (5-7)

Eq. (5.7) shows that the Regge trajectories at A?= 0 differ by integer numbers. Our considerations so far apply

to kernels of class I and I only, since the solutions of class IIl and IV are singular at X =0 . Nevertheless,

if : F # 0 in eq. (5.8), we can solve for 7, to obtain!
, n oo

L=-1-n +f@A") . , (5.8)

"So our results juéi found remains true. The essential difference between (5.7) and (5.8) is that for classes | and
Ilin the limit . A?> 0  the trajectories retreat to negative integers: lim [ =} -n
« N : X »o
just like in the case of ordinary Yukawa potentials in nonrelativistic quantum mechanics while for classes III and

- IV this is not necessarily true.

To show that the classification of Regge trajectories we have found for zero energy is valid in general, we ,
carry out a perturbation ;:aiculation in. E?, ) ,
| Introducing a symb.olic notation for the Hgnkel transform of eq. (3,11) for the wave function ( cf. eq. (4,1)), we
“write: : : : ,
<n_| H | nr><'n\r o>+
+s Z <nr|h1|ﬁ; ><n;|’¢(,)> (5.9
n X -

r
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‘ 2 ’ ’ . 4
+s 2, <nrlh’2|nr ><n; l%(t) >

" (5.9)
=N () V(@ <n |y @>
- '(l 2 ' .
We have introduced the notation E = s , otherwise the notation is self-explaining.
The ““unperturbed’’ equation, we were investigating so far, can be written as
<nrl'Holnr><nfl |bo(t)= (5.10)

2" _
=X V(@ <n |y, m>
We look for the solution of (5.9) in the form of a power series.
2 2 1 2 1 ¢232
N(s)=d + - s X, +—= s2A7 +.. _
' SR ? A , (5.11)
<a,|y@>=<nly (r)'>+.-11—s <n ¢, m >+

<, Y, @ >+
Insertmg (5.11) into (5.9) and companng powers ofs on both sldes of the equatlon, one finds the famohary expres-

sions, e.g.!
RPN B AL ln,><n | &, |n'><a] [u,m > (5.1
PR, Pt <y @i, >VE<n,ly0 >
4
o
etcv.

" ( All the quantities depend on £ of course).
Equatiﬁg A2 (s) to (27)* 62  one finds the implicit equation for Regge trajéctories. The

trajector} can again be found in the form of a power series:
2 ' 7
L(s) =, + 71,_ L s + _.él;- 22 s?+ L. (5.147)‘

Making repeatedly use of the theorem on the differentiation of implicit functions, one finds:

, .
(2rr)2‘ =4 ©
(5.15)
e, ’"‘F& o (1
¢
p
e =~_,__.A.28.3— +___Ai— A’ +
2 Azev . (x2 )2 s
ACIEV I I VR R
(A3 )3

where we have used the notation:

pud EA’(K,S.)|Q=Q , =0



)\2 _=._a_£__.
4 az lE=(’ , 8=0

_QL— lf=f 520 . etc.
ds :
Comparing (5.15) with (5,11), one finds that:

2 = 22
L) 1
.2
A o=_dAy |
te 9t b=t

2
PR
On nonng that (5.13) (0) is identical with our prevmus eq. (5.3), one sees that the clasmﬁcatmn found for

and )\2 v A are given by the perturbation expressions (4.12) and alike.

zero energy labels indeed the whole trajectory, if only the formal power series defmes an analytic functlon This
. is however true in’ v1rtue of a theorem on analytic perturbatlons/ / . Hence our statement on the classification of

Regge trajectories by the radial quantum number n is proved.
. . A

The question as to the completeness of the above classification remains still open. Ve have seen e.g. that if

the asymptotic expression of the potential contains (log r) 3 and we are on a branch, where
N + 1 is not equal to an integer, then there are two ““good’® bound state solutions in classes Il and
2 qu 8 8 L
1V for each n . Hence, for the complete classification of the trajectories there is at least one more
p

r

quantum number necessary, e.g., the value of Nz in eq. (4.12) or (4.15), respectively. In classes I and II

the trajectories seem to be nondegenerate with respect to n_, although we would not prove this so far.

6. Examples

We begin this short section by listing some simple BS kernels and stating the class to which they belong.
The reader can verify for himself these statements. The results are summarized in Table I, For the simplest
kemels there is a direct connection between the renormalizability of the theory and the class of the kemel:
renormalizable tﬁeories give kernels of class I or II in the lowest appro.ximatio'n. ‘Iteration of the lowest order
kemel may shift it to another class - as showp by the last example - but how far is it justified to iterate a given
kemel in ¢;'me direction, without taking into account other diagrams of the same order in unclear.

We are going now to investigate the kemel N2 of Table 1 in some more detail. The spectral function ol

is given by
7

. a(#)=_(_u2_)’/2
; u3

it tends to unity for g oo i.e. a=58=0. . In what follows, we put 4mi= g .,
_ The asymptotic equation, describing the BS wave function as t+0, E’=0 can be solved ex-

actly. In fact, by eq. (4.4), it reads:
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Table 1

NN Deséription of Diagram Class
the kemel .
1. Scalar theory,\\dir_ect ' *. ______ i I
- coupling ladder approx
2 Scalar theory, vector . 11
meson exchange ladder *’\/\/\A.i
approx. ’ .
3. PS pion theory, direct v ’ jidl
coupling, bubble approx. {<>|
4. PS pion theory derivative ’ V v
coupling, bubble approx. {O’ ,
5. PS pions interacting with v
fermions via V-A coupling, Q
bubble approx.
6. » PS5 pion theory, direct coupling , p< M I
iterated bubble approx. ,
d? 3 _d_(n¥=yl 2 =
[ el Rl Gy S B O ,(
- 6.1)
=y?V % ()
where
- .
V= dx x'K (1), yi=(20 )¢ &°
. o .
Setting & (f) =12f (r) equation (6.1) can be written as follows:

(424 5 d, 3=fr(dniey?V )" Lo,
dr2 r dr r?

| -n? 2 2V
%[ d3+—§_ _g_+ 3 ﬂ.p(4ﬂ2+}’ o ) —;m’]f(t)=-0
de? r dr r

The four solutions are:

where

[: I
: = b+(mt)

+ Z
f; =-Kpi (mr)

PO — 1
pi =L 1+n’sy dn3+y 2V 1%
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The singularity in the angular momentum plane, found by several authors/ 23/ is given by p, =0 .

The branch ppm_ts lieat n=+(1+y Voy’) or expressed in termsof [ :

= ~n \/—It'y VOV’
Besides that, there are branch points at copmlex angular momentum values, given by

R
n =+ l/zzyVo

or

f =-]-n +l/,yVVz
r 0

The interesting point is that with the help of our method, the branch points can.be found exactly, without making

a weak coupling apptox.imation or alike.

7. Conclusions

We believe that the main results we have found will hold true even by relaxing the restriction impoéec{ by
eq. (29 on the kernel. In our opinion these are? ‘

a) the classification of bound states into *regular’® and *‘singular’ ones ,

b) the qualitative classification of theories into classes I-IV, giving rise to quafitatively different analytic
propemes in angular momentum, and

c) the labelmg of Regge trajectories accordlng to the representations of the four dimensional rotation group.

As to the first point, this distinction may have a deep physical meaning. Singular bound states may correspond
to what we used to call now “‘elementary particles’’, regular bound states to “cofnposite" ones. It is of course
a.noihver question, whether singular bound states really exist in nature; we do not know the an;wer by now.

Point b) seéms to be interesting because it shows that nonrenormalizable interactions, such as weak interac-
tions, could influence the qualitative properties of familiar strong interactions even at moderate eﬁergies. Un-
fortuﬁately, we know about the behaviour at small distances of such nonrenomalizable interactions even less
than aboui strong ones, and the aithors do not feel bold enough to draw far-reaching conclusions conéenﬁng the
possible role of weak interactions in manufactﬁring “maximal a.nalyticit'y" in the angular momentum or alike,
although similar speculatxons would be very tempting.

We want to mention only that such a possibility has been mentloned about a year ago by P1'edaz21 and Regge/14/
in the framework of nonrelativistic quantum mechanics by assummg a potentidl,.strongly singular at the origin.

We would like to believe that the classification of regular bound states mentioned in ¢) is in fact A general

one. Could one prove for a general kernel that the integration path in - po can be turned round to the imaginary

axis atleast in some interval of the total energy, this property would turn out a consequence of the assumptions ofa local

field theory. At any rate, to classify discrete energy levels (or, which is much the same,Reggé trajectories) according to the

20



representation of a compact group is a very attractive idea — and-not new at all. The four dimensional rotation group
seems to be a natcral candidate in relativistic field theoﬁes, because of it connection wit}; the Lorentz group.
The mterplay of analytic propertxes of Green functions and compact groups to produce a labeling of _bound states
by quantum numbers, whlch are not conserved for the system as a whole — would then be a beautiful property of
lo-cal field theories. ;
As a last comment, let us mention that in our opinion the application of an x - representation, although
, b :

so far practical for a special class of kemels only ( eq. (22) ‘), may prove useful at least in finding out some

properties of Green functions, which afterwards could be proved by more sophisticated methods..

The authors express their sincere thanks to Prof. A.A.Logunov and J.A-Smorodinski for stimulating discus —
sions,

The valuable help of Mrs. S.A.Gamzaeva in the calculations is gratefully acknowledged.

APPENDIX

We list here some elementary properties of four-dimensional spherical functions used in the main text. Stan-

/16/

dard references are: the first two volumes of HTF/ls/, the booklet of Kratzer and Franz and GR. In a cano-

nical basis, the components of the four dimensional engular momentum LU-V " act as differential operators:

L,=i'(x,9,- %, 9)

We are looking for the simultaneous eigenfunctions of

y L 2

Y | ww Luv and L
where Ez . is the three dimensional angular momentum. On separating the four dimensional Laplacean
in polar coordinates? : x%=r cosy

x %= r sin s cosO
! =rsin sin® cos¢

x* =rsiny sin@ sin¢

the angular part of the operator reads:

L? ® ={ 9% 4 2ctgyp 9+ [ a2 . o
ou? oy  sin?y 30 2 A(A.l)
votg 9 4, 1 ‘ e ——(a*~1) 0

BO’SIOBQS’
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( = »1;2,'3 «e § in introd\rcing a as starting from 1 instead of zero, we followFrock/H/ ) . The Ansatz

o 0-2(9¢)y(¢) o
where YE 8 qb) are three drmensronal sphencal functlons normahzed to umty on the surface of the

three dimensional unit sphere, transforms (A 1) into:

5 2 +2dg¢_L ___—-)-(“1 y+(n2 1y=0 (A
: d r/; - dy sm _( -2 .
Introducing_the new variable: . x =cosy . andanew functlon by y=(1- x3)™%  u(x)
" wegeta Legendre: equation: .
(1-xfumzxa+(atmy - LR ) ueo (a9
v -x2 :
, The regular solution of ( A.3) is
u (x) =P-(e+%) (x)
n+Y
or expressed with the help of the original variablei
Y()=( sin )”‘ P (casw\ , (A.g)
Another, convenient form of ( A.4) is in terms o'f Gegenbauer  functions:
) ( . ? ‘ce+'.1 - . .
() =Csin g )= C_p (cost) (A.5)
'The nomalized functions are: .
2% (yog)=2" (———L"II: notl P
.7 (n+ +1) (A.6)

xr‘(ﬂ+1)(smlll)ece';‘ (c:osr/;)Ye (9,@5)5

n-f-1
=By (V) ¥, (0, 6)

They satisfy:
' id am & m’e ' :
((sin?y dy [ sn0dd [ do Z') Zog.=B ., Bys 5_ .
0 ) ° o

i.e.the {27 | form an orthonormal system on the surface of the four dimensional unit sphere. -

nl ,
- The system of - Z -s  is complete. The addition theorem follows immediately from those of the Gegenbauer

functions and of the three dimensional spherical functions:

4
0 =27 %' % z" - z” 0, ¢,)
Zno (yl . ) 17\/2 efo mg..z n e (l/,l 61 ¢l ) - n E (‘/’2 .2 . 2 (A,7)
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if

cos y = cos i cos ¢2-=sin ¥, sin lpz'cos @,

Cos w =cos § cos § - sin ‘QI sin @ cos ( ¢I_~ é,)

- ( The dots in the argument of .’ Zn(:’ mean that the corresponding angles are arbitrary, as the function is in-
'ﬂependent of them )

Finally, we notice the obvious, but important property:
Z E = O i fOf E > n-1
n
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