ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАВОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

V.G.Soloviev, P.VogeL, A.A.Korneichuk

ENERGIES OF THE OCTUPOLE COLLECTIVE STATES WITH $I_{\pi} K=1-0$ OF EVEN-EVEN STRONGLY DEFORMED NUCLEI DAR ceep, 1964, 7154, и 1, c 72 -75.

V.G.Soloviev, P.Vogol, A.A.Korneichuk

> E-1356

ENERGIES OF"THE OCTUPOLE COLLECTIVE STATES

 WITH $I_{\pi} K=1-0$ OF EVEN-EVEN STRONGLY DEFORMED NUCLEI

A number of authors ${ }^{/ 2 /}$ have made general investigations of the oolleotive properties of atomic nuolei on the basis of the method of approximate second quantization ${ }^{\text {/I/ }}$. The most progress has been achieved in the domain of spherioal nuclei where the collective state energies and the eleotromagnetio transition probabilities were caloulated $/ 3-5 /$. In the region of strongly deformed nuclei the investigations/6/ pre restricted to the obtaining of the basic equations and to the investigation of the problem of elimination of a spurious state. It is only in ref $/ 7 /$ that the gamma oscillation energies and the E2 transition probabilities are calculated. In the present paper the energies of the ootupole collective oscillations with $I \pi K=1-0$ of even-even nuclei in the regions $228 \leqslant A \leqslant 254$ and $I 52 \leqslant A \leqslant I 86$ are oalculated in the framework of the superfluid nuclear model using the method of approximate second quantization.

The secular equation determining the frequencies of the octupole oscillation is of the form
$1=2 x_{n}^{(3)} \sum_{s s^{\prime}}-\frac{f^{n}\left(s s^{\prime}\right)^{2}\left(u_{s s^{n}}^{n}\right)^{2}}{\varepsilon_{n}(s)+\varepsilon_{n}\left(s^{\prime}\right)-\frac{\omega^{2}}{\varepsilon_{n}(s)+\varepsilon_{n}\left(s^{\prime}\right)}}+2 x_{p}^{(3)} \sum_{\nu \nu^{\prime}} \frac{\varphi_{p}^{p}\left(\nu \nu^{\prime}\right)^{2}\left(u_{\nu}^{p}+\varepsilon_{p}\left(\nu^{\prime}\right)-\frac{\omega^{2}}{\varepsilon_{p}(\nu)+\varepsilon_{p}\left(\nu^{\prime}\right)}\right.}{+}$

where $x_{n}^{(3)}, x_{\rho}^{(3)}, x_{n p}^{(3)}$ are the oonstants of octupole-octupole interactions, $\mathcal{F}\left(s s^{\prime}\right)$ is the matrix element of the octupole momentum operator, the index n is related to the neutron system and ρ to the proton one; the summation $S S^{\prime}\left(\nu \nu^{\prime}\right)$ is made over the single-partiole levels of the average field of the neutron (proton) system. The pairing correlations of a superconducting type are treated as in $/ 8 / \quad \varepsilon(s)=\sqrt{c^{2}+(E(s)-\lambda)^{2}}$ $u_{13^{\prime}}=u_{d} v_{1^{\prime}}+v_{s} u_{1^{\prime}}^{\prime}$. The values of the correlation functions C, the chemical potentials λ and the schemes of the average field levels are taken from $/ 9 /$ and $/ 10 /$.

The frequenoies of the octupole oscillations are found by numerical solution of the secular equation (I) on the electronic computer. The first root of ω is found in the interval

$$
\begin{equation*}
0<\omega<\min \left(\varepsilon_{j}+\varepsilon_{b^{\prime}}, \varepsilon_{y}+\varepsilon_{y^{\prime}}\right) \tag{2}
\end{equation*}
$$

by a suooessive division of the interval into two parts. In the case $x_{n}{ }^{(N} \cdot x_{p}(1)=x_{p}^{(d)}=x^{(a)}$ there is no root in the interval (2), provided $x^{(3)}>x_{\text {mox }}^{(s)}$. The second and the subsequent roots (I) are situated between successive poles in the right-hand side of (I), they exist for any values of $x^{(3)}$.

The values of ω oalculated from (I) depend on the wave functions and the eigen-
values of the arerage field potential and also on what levels of the average field were taken into account in (I). The terms in (I) with S and S^{\prime} corresponding to the particle and hole states in all the nuclet with $|E(N)-\lambda| \geqslant C$ and $\left|E\left(s^{\prime}\right)-\lambda\right| \gg C$ lead only to the renormalization of constants x^{∞} as in $/ 3 /$. The same terms in (I) which in some nuclei correspond to the particle and hole states and in another - only to particle (hole) states, lead not only to the renormalization of $x^{(3 / b u t}$ also to the change of ω in some nuclei as compared to another.

The correctness of the location of the Nilsson scheme levels in the regions $61 \leqslant Z \leqslant 79 \quad ; 89 \leqslant N \leqslant I I 5$ and $87 \leqslant Z \leqslant 99, I 37 \leqslant N \leqslant I 55$ is proved by the experimental data on the single-quasi-particle levels of odd-A nuclei. As to the behaviour and the choice of the other levels there is a certain arbitrariness. In order to decrease this arbitrariness we have taken into account all the orbits of those subshells in which the location of at least one singleparticle level was proved experimentally. The calculations are made for the deformation $\mathcal{S}=0.3$ for nuclei in the region $I 52 \leqslant A \leqslant I 86$ and for $\delta=0.2$ for nuclei in the region $228 \leqslant A \leqslant 254$ with ware functions given in/II/. In each region for all nuclei the same single-particle energies $E(s)$ of the average field have been used and the changes of the deformation for different nuclei have been disregarded. In order to see how strongly the results of calculations depend on the wave functions in the region $228 \leq A \leq 254 \omega$'s were calculated with wave functions for
$\delta=0.3$ but with unchanged values of $E(J)$ The values of wobtained in this case differ little from those of ω in case $\delta=0.2$. The octupole-octupole interaction constant $x^{(3)}$ is taken to be equal to $x^{(1)}=\frac{1.3}{A} \mathrm{Mev}$, i.e. the values of $x^{(3)} A$ are identical in both regions of strongly deformed nuclei.

The results of calculations of the energies of the octupole states with $K \pi=O-$ in the region $228 \leqslant A \leqslant 254$ for $\delta=0.2$ when $x_{n}^{(3)} x_{p}^{(3)} x_{n}^{(3)} x^{(3)}$ are given in Fig. I. The
 However for the isotopes of $T h$ best are $x^{(3)}=0,000 \& 1 \hbar \omega_{0}$ and for the isotopes of U $x^{(3)}=0.00085$ tio. . As was noted $i n^{/ I 2 /}$, the smallest calculated values of ω are in satisfactory agreement with the experimental values of energies for states With $K \|=O-$. The tendency of the lowering of the energies of these states in the light isotopes of Th and U is represented correctly. In the isotopes of Th , U and Pu the states with $K \pi=O$-are to a large degree collectivized, the values of w are by 0.8 - I. 0 Mev smaller than those of the energies of the nearest poles in (I). As to Fm^{254} the contribution to the state with $K \bar{\pi}=0$-of the proton two-quasi-particle state with conilguration 633/-5I4hamounts to 96% so that this state is with good accuracy two-quasi-particle one. Its energy is I. 4 Mev. It is $10 w e r$ only by 26 Kev than the
energy of the nearest pole. According to the calculations $/ I O /$ the energy of the two-quasi-particle proton state 6331-5I4t in Fm^{254} is I. 08 Mer taking into account the block ing effect but for $x^{(3)}=0$. If in investigating the collective effects we took into account the blocking effect then we would obtain the energy of this state equal to $I \mathrm{Mev}$.

Thus some states with $K \pi=0$ - possess the collective properties and others are two-quasi-particle. The average field defines the structure of the given state-- whether it is collective or quasi- particle.

The results of calculations ${ }^{\circ}$ the energies of states with $k \pi=0-\quad$ in the region
 a satisfactory agreement is obtained between calculated energy values of states with

$$
K_{\bar{i}}=0-\quad \text { and corresponsing experimental data. In this region of strongly }
$$ deformed nuclei all the lowest states with $\quad K=0-\quad$ are collective. So in Er ${ }^{16 E}$ the contributions to state $0-$ with an energy I. 66 Mev are given by one two-quasi-particle state 30%, two states I6 \% each, and by nine states (I-5) \% each. The energy of ω if $\mathrm{Er}^{\text {I6 }}$ is by 0.55 Mev lower than the energy of the nearest pole and by 0.34 Mev Iower than the energy of the two-quasi-particle state taking into account the blocking effect.

Calculations have been made for more general cases $x_{n}^{(3)} \neq x_{p}^{(3)} \neq x_{n p}^{(3)}$ which, bowever, differ littie from calculations with $x_{n}^{(3)}=x_{p}^{(1)}=x_{n p}^{(1)} \equiv x^{(3)}$. In solving (I) the conservation of particle number on the average was controlled, for what the following quantity was calculated

$$
\begin{equation*}
\Delta n=\left\langle Q \sum_{s \sigma} a_{s \sigma}^{+} a_{s \sigma} Q^{+}\right\rangle-\left\langle\sum_{3 \sigma} a_{s \sigma}^{+} a_{3 \sigma}\right\rangle \tag{3}
\end{equation*}
$$

1.e. the difference of the average number of neutrons (protons) in the excited collective and ground states. In most cases it was obtained $\Delta n<0.3$. However, states with
 $e_{n}=e_{\text {gge }} \quad, e_{\text {ggf }}=0.5 e$ as $\mathrm{in}^{/ 4 /}$ are larger than the single-quasi-particle ones by a factor I. 2 - 3.6 for the exception of $C m, C f, F m$, where they are somewhat smaller than the single-particle ones. The reduced probabilities of the Ef transitions with $e_{p}=\frac{N}{A} e, e_{n}=-\frac{Z}{A} e$ are smaller then the single-particle by about a factor 10^{2} Thus the behaviour of the energies of the collective octupole stateswith $K \mathbb{\pi}=0$ is explained by introducing one new constant $x^{(3)}$, all the other parameters were fixed earlier $\mathrm{in}^{/ 8,9 /}$. It should be noted that the microscopic treatment of the states on the basis of the superfuid nuclear model strongly differs from the phenomenologioal treat ment of the unified nuclear model. So, according to the treatment of the superfluid nuclear model the octupole states in some nuclei lie comparatively low (below beta and
gamma vibrational states) and possess the pronounced collective properies and in other ones such states may have high energy and in their nature will be close to the two-particle exoited states.

In conolusion we express our deep gratitude to N.N. Bogoliubov for interesting discussion, and to G.Jungklaussen for help in performing numerical oalculations.

References

I. Н. Н. Боголюбов. Лекции по квантовой статистике. Радянська шнола, Киев, I947.
2. C.T.Беляев.Selected Topics in Nucl. Theory. 29I, IAEA, Vienna (1963);
M.Kobayasi, T. Marumer1. Prog. Theor. Phys. 23, 387 (I960);
R.Arrieu, M.Veneroni. Compt. rend. 250, 992, 2155 (I960);
M.Baranger. Phys. Rev. I20, 957 (I960).
3. T. Tamura, T. Udagava. Progr. Theor. Phys. 26, 947 (I960);

Nucl. Phys. 35, 382 (I962).
4. S. Yoshida. Nucl. Phys. 38, 380 (I962).
5. L.Kisslinger, R.Sorensen, Препринт, I963.
6. Д.Ф.Зарецкии, М.Г. Урин . щЭТФ, 4I, 898 (I96I); 42, 304; 43, IO2 (I962). D.Bes, Z.Szgmanski. Nuovo Cimento, 26, 787 (I962).
7. E.R.Marschalek J.O.Rasmussen. Nucl. Phys. 43,438 (I963).
8. B. Г. Соловьев . Selected Topics in Nucl. Theory, 233, IAEA,Vienna (1963).
9. В.Г.Содовьев. Препринт ОИяИ Р-80I (I96I);Н.И.Пятов, В.Г.Соловьев; Препринт ОИяИ Iо. Т.Вереі, В.Г.Соловьев, Т.Шиклош. Изв. АН сссР. 26, 1045 (1962).
II. S.G. Nilsson. Mat. Fys. Medd. Dan. Vid. Selsk. 29, n I6 (I955).
B.Mottelson, S.G. Nilsson. Mat. Fys. Skr. Vid Selsk I., N, 8 (I959).

I2. В.Г.Соловьев, П.Фогель . Phys. Lett. (в печати).
I3. G.W. Farwell. Prog. Rutherford Jubilee Int. Conf. 32I (I962).

Fig. I The energies of the octupole collective states with $I \pi K=1-0$ in the region $228 \leq A \leq 254$. The lines - denote the experimental data, taken from ${ }^{I} 3$, the open circles (joined by the straight lines for the sake of illustration) are the calculated values of energies for $s^{(s)}=0.00083 \hbar \omega_{0}$, the dark circles denote the energies for Th when $x^{(3)}=0.00081$ the and for other nuclei when $X^{(3)}=0.00085 \hbar \omega_{0}$.

Fig. 2 The energies of the octupole collective states with ImK=1-0 in the region $I 52 \leq A \leq I 86$. The lines - denote the experimental data, taken from ${ }^{I 4}$, the dark circles (joined by the straight lines for the sake of illustration) are the calculated values of energies for $x^{(3)}=0.00107 \mathrm{nw}$. .

