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So far it has not been possible to find the general nature of the leadin_g singularities in field theories (in ·the sense 

the firs_~ from the right). In the so-called two-particle. approximation it is possible t_o prov/ 1/ the mero_morphy of the 

amplitude on the right half plane. Logunov et al/ 2/ proved that the amplitude satisfies an integral equation, with an 

unkno~ kernel V , so-called potential. If this kernel is of the Fredholm type, the amplitude is a m~romorphic function . 
of f on the right half-plane, otherwise we have to subtract some terms from the potential to make it belong to the 

Fredholm dass. However, by this method some strip of the f plane is excluded from the investigations .of the analytici-

ty properties of the amplitude, 

Some author/3,4/ tried to atta~k the problem from the side of perturbation theory. Lee and Sawye/3/ proved 

that in the g cp 3 
theory in ladder approximation we have only one Regge pole on the right-hand side of the f plane. 

Sawye/ 4/ summed up the m.ost singular parts of ladder diagrams in the f cp 4 
theory and in a Gr/, -1ff- t type 

theory ( here tµ /L is a vector boson field). He proved, that this sum of ~ an. {n !Y ~ leads to a cut in dfe angular 

momentum plane: However it is not clear that the sum of less singular terms do not give a singu 

larity which lies at higher values of Re e • Therefore we prefer to solve exactly the integral equation which generates 

the sum of ladder diagrams. 

The integral equation for the ladder diagrams has the form: 

T( "") B( ,, ") e s, P,_ <JJ, P ,·(J) = e s, P,·<JJ, P ,·<JJ . + (1) 

00 00 

or formally writing: 

+ .( dp' .( -'· ' Kn ( ' ') r· ( ' ' " " uw L s,p,<JJ,P,·<JJ e s,p,·<JJ,·p i<JJ) 
0 •00 

=Be+ Ke re 

'Our abbreviations are the same as in the paper of Lee and Sawye/3/. 

The kernels of integral equations (1) are the following in gcp 3 
(2), in vector meson exchange (3) and in f rj,4 

( 4) 

theorie/S,4/: 

B 2 2 ,2 2 , ( , ) 2 
K = g Q ( P + P + u -u - <JJ-w 

e i(211) 3 F(p,<JJ,s) e 2pp' 
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. s 
~fter a counter-clockwise rotation of the Cl) integration contour we may see, _that l{ e defines es sen ti ally 

V 
an equation of Fredholm typ~, unlike kernels !(e p 

and Ke • Nevertheless, the iterated kernels ( l{ vet, 
s lat 

( Kp)n exist, only their traces are infinite. As we mentioned the integral, equation with ·kernel 
e 

so we shall examin·e only the other cases. 

Ke is solved 

-v 
We define the 'asymptotic ·kernels' !{ Y. 

- p 
, ~ e so that all the masses and s would be equal to zero in the 

., expression of kernels K; 
lntrodu~ing new variables: 

and 
p 

Xe (3), (4). 

p = a sin a , p '= b sin f3 , p " = c sin y , 

w = a cos a , w '= b cos .f3 w"=ccosy, 

Y=b 2 .z 

(5) 

and symmetrizing, we obtain new integral equation. ( We write here for sake of simplicity the equations for the resol-

-v -
vents I} ( a,a;_b,(3) and fy_p ( a, a; b, f3) 

-v -v re (a,a; c,y) = Ke (a,a; c, y) + 

00 1T 
::"v - .. + J db ( df3 b K ( a, a; b, /3 ) r ( b, /3; c, y ) 

o a e e 
-p 

and a similar equation for re ( a, a ; b, /3 ) • 

Here the kernels are defined in the following way: 

2 G2 
K ~ ( a, a; b, f3 ) = ( 2") 3 

_1_ [ l+_l_] x 
b 2 ( a )2 

2 T a 
(.i!...l +l -•2-cosa cosf3 

x Oe ( b , b -
2 Tsina sin f3 

t2 KP ( a, a,· b, f3) = 8 (21T J5 e 
1 

b2 
1 X 

(%)2 

) ' 

oo a 2 ( 0 ) + 1 + z - 2 ,:_ cos a cos f3 
x [ dz Q ( ----"'-----=--"-----J 

0 e 2 + sin a sin /3 

(6) 

(7) 

(8) 

From this point we shall work only with kernel (7), but all the following results are true for kernel (8) too. 

Kernel K f may be easily diagonalized in variable b by means of a Mellin transformation. 

We define 
00 

re (x; a,f:3) 
2 -x X•1 - V 

b ( da a re ( a, a; b, f3) 

and 00 

- . 2G2 r-z 1 K (x; a, /3) = _ ( dz. z [ 1 +---:, ] x 
e (2rr) 1 0 z 

X 

2 2 00 
z + 1-2 z cosacos8 2G r•t ,.,. 

Qe ( ------- ') = -- ( dz(z +z ) x 
2zsinasinf3 (217)' 1 

(9) 
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x [ 1 + _1_] On ( z
2
+1 - 2z cosa cos.#_ ) 

z2 r 2 z sin a sin "i3- -

-
The resolvent r r ( X; a, ;3 ) satisfies the integral equation of Fredholm type: 

11 

re (x; a, y) = Ke ( x; a, y) + ( d/3 Ke( x; a, /3) re ( x; {3, y). 
0 

The definition (9) shows that !'{ e ( x; a, f3 ) exists if 

"1 - Ree< Rex <l + Ref 

On the real axis (11) the positive kernel Ke ( x; a, /3) and the iterated kernels 
-n 
Ke (x;a,{:3) 

the following conditions: 

sgn I 
-n 

a Ke (x;a,ay) I= sgn Ix - 11 ,_ 
a X 

2 -n a l{e ( X ; a , y) 
> 0 , 

ax 2 

a K0 

& (x;a, yl < 0 , 
ae 

-n 
Xe(x;a,/3) ➔ 0 if e ➔ oo- • 

-n e ➔ x-1, for X > 1, Ke ( x; a, f:J) ➔ oo if 
e ➔ 1- x, for x< 1, 

n = 1,2, ••• • 

(9) 

(11) 

satisfy 

(12) 

The conditions (12) define the behaviour of the Fredholm determinant of equation (10), which may be seen on figure 

1. The equation 

D et ( 1 - Ke ( x; a, f3 ) ) = 0 (13) 

is satisfied _at two points 

The iterative solution exists in the interval 

(14) 

· The resolvent 
-v r f ( a, a ; b, /3 ) is given by the following integral: 

(-a-)"" Dp (x;a, /3) 
b Det ( 1-Ke( x;a, /3)) 

(15) 

5 



Here Xo satisfies inequality (14), be is the Fredholm numerator of equation (10). 
·- .. 

The leading singularity of 1e ( a, a; b, f3) determined by the mint when the two zeros of Det ( 1 - ·· 

Ke (x; a, 13 )) pinch the integration countour in integral (15). This fo value is defined by equation (13) if we 

put X= 1 x 1 re J . near e = eo ~~y be 

obtained by developing 

e o depend only on G! ). The beha~iour of 

Det ( 1 - I( e ( x; a , f3 j ) into T~ylor's series around the point f=~, x= 1: 

x1 (f) "'k,j e _fo; (16) 

where k >'0, eo>·o. 

From here we obtain the behaviour of rt ( a, a ,· b, f3 ) near f=fo 

-1 Dr ( 1, a I f3 ) 
- .. i r _iLJ . - I e 
r (a,a;b,/3)=- IJT b a (Det(1-K

0
(x;a,f3)) x=1+",<) e ~ L 

a X 1 a -1 D ~ ( 1, a I f3 i 
De ( 1, a, (3) .. - ( b) k \/"C°'[ 
k x

1 
(f.) /il 

0 

-1 
,._1_(.1!_) 

b:i b 

(17) 

It is simple to prove that the solution of the original integral equation (1) has the same leading singulatity (17) as 

the solution of equation (6). 

Introducing variables a, b, c, a, /3, y (5) we diagonalize equation (l) by some integral transformation 

, The generating function of S satisfies the following h~mogeneous integral equation: 

-1 00 

~( ( s, x, .b, a, /3). ! da Se ( s, x, a, a, {3) X 

(18) 
X Ke ( s, a, a, b, /3 ) = k e ( s, x, a, /3 ) • 

The kernel l{ e ( s, a, a; b, f3 ) has a continous spectrum/SI with.eigenvalues ke ( s, x, a, (3) 

In the limiting case · b ➔ oo, ·a➔ oo the kernel Ke (s, a, a; b, f3 ) ➔ Ke ( a, a ; b, f3 ) ; so 

asymptotically the Mellin transformation diagonalizes equation (1). Having k e ( s, x, a, f3 ) independent of 

b ke(s,x,a,{3)= g;e(x,a,{3) • From here we may easily obtain the wanted results. Still we remark 

that the singularity described by formula (17) leads. to an asymptotic behaviour in the crossed channel: 

eo 
A ( t,s) "' f (s) t 

,j log t 

similar to that recommanded by Gribo/6/ earlier. 

There remains an interesting question: what is the essential difference between eq~ations with kernels 

and 
V p 

l(e or Ke ? 

To explain the situation we assume that we have an integral equati~n for the partial wave amplitude: 

00 

Ae ()I., ... )= Ae (>.., ... ) + ( d)1.'l(e (.\~·.\, ... ) A e (,\~- ... ) 
0 

(19) 

s 
Ke 

(20) 

where " ,\ is some quantity with the dime_nsions of momentum or momentum squared, Ke contains some 
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• · power of the coupling constant. We a~e interested in the asymptotic behaviour of _Ke (>.. ', >.., ... r,-.• .' We define the 

asymptotic ker~el Ke (>..~ >..) · ·in the same way as we did in formulas (7) and (8). We define , /(e_ (>..',. >..) 

so that _L K1 (>..',A)= Ke(>..~>..) ~here le ( >..', >.. ) is dimensionless. If the coupling constant is dimen-
A, e 

sionless if p_ ( >..'·, >.. · ) may depend only on , -fr . It re~ults 

that our k~rnel wiH not be of the Fredh~lm type, but. it may be diagonalized by ,neans of a Mellin transf~~mation. At the 

.inverse transformation there appear the s~me type,of leading singularities as in eq.(17). 

On the' other side: it the· coupling constant has the dimensions of length on some negative power, then our kernel 

may be written like · K." ( >..~ >..) = __ 1_ K 1 (>..', >..) where 
• L >.., k e 

k>l It results equation ( 20) will 

be of the Fredholm type, the leading singularity being a Regge pole • 

. The author is indebted to prof. A. A.Logunov and to Dr. G.Domokos for valuable discussions.· 
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Det ( 1 - Ke ( x ; a , {J )) • 

•· 

1-f = 

1+£ .x 

Fig. I. The behaviour of Det ( 1 - ~ ( z; a, /3) ) ~s the .function of x at a given f > fa value • 
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