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- So far it has not been possible to find the general nature of the leading 5ingularities in field the?)ries (in the sense
" the fu-st from the right). In the so-called two-particle approximation it is possible to prove’ Y the meromorphy of the .
- ,_,amplltude on the nght half plane. Logunov et al/z/ proved that the amplitude satisfies an integral equation, with an
“unknown kemel V . so-called potential. If this kernel is of the Fredholm type, the amplitude is a meromorphic funchon
of ¢ on the nght half-plane, otherwnse we have to subtract some terms from the potential to make it belong to the
Fredholm class. However, by this method some strip of the { plane is excluded from the mvestxgatlons of the analytxcx-
ty properties of the amplltude. |
Some authors/3’4/ tried to attat;k the problem from the side of berturbation theory. Lee and Sawyer/s/ proved
that in the ¢ ¢ 3 théory in ladder approximation we have only one Regge pole on the right-hand side of the £ plane. .

Sawyer/4/ summed up the most singular parts of ladder diagrams in the f¢ ¢ theory andina G¢ —a—QL l,'l type
theory ( here l/’“ is a vector boson field). He proved, that this sumof X a, Z_-" ty pe leads to a cut in tf\le angular

y 2 o e
momentum plane: Ay =/ Ay However it is not clear that the sum of less singular terms do not give a sxngu

larity which lies at higher values of Re € . Therefore we prefer to solve exactly the integral equation which generates

the sum of ladder diagrams.

The integral equation for the ladder diagrams has the form: ]

Ty(sipo,p"30”) = By(spwpie™ + S 6\

. oo 00 .

+{ dp’ [ do” Ky (spwpie’) Ty(spre’p e’
.or formally writing? ° =00
Ty =Byp+ KTy

"Our abbreviations are the same as in the paper of Lee and Sawyer/s/.

The kernels of integral equations (1) are the following in 8¢ : (2), in vector meson exchange (3) and in f $*(4)

theories/3’4/=
Ry Y. SRS
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Ky = L rdy ot O (Rpthyoiczlome?)? ) @
8(21)5 F(p,w,s) 42 2’

2
where the weight function P (¥) = \/Z—}—ﬂl’—

" and : .
F(pows)=[p? + m3 ~i¢ -(‘/—--—w)][p +m’-—xc-(\_l;_+w)’]



After a counter-clockwise rotation of the @ integration contour we may see; that = Kp . defines essentially

an equation of Fréydholm type, unlike kernels .'(Qv and Kg . Nevertheless, the - iterated kernels. (K;)n{

I

- (KP)" exist, only vtheirr‘traces are infinite. As we mentioned the integral, equation with -kernel K; is solved
A‘ so we shall exémiﬁé only the other cases. ‘ ‘
We define the ‘asymptotic kernels’ :’ZE , 'Z[, so that all the masses and ‘s would be equal to zero in ti:e
. exﬁréssiop of : kernels ’{; and .'{g (3), (4)-

Introducing new variables:

p=asina, p’=b sinf8, p” =csiny,

»,

w=acosa, w ' =b cos B w” =ccosy, _ (5)

y=5b2.z

and symmetrizing, we obtain new integral equation. ( We write here for sake of simplicity the equations for the resol-
“vents’ I“zv(a,a;‘b,B) and IEp(a, ahB)

—y -
Ty (aa; c,y)=KeV(a,a; Gy)+
oo 7 ’

-, ~ v
£ ! db ode b Kg(a,a.b,ﬁ)rg (b,B;cv) (6)

=P
and a similar equation for FQI (aa; bB).

Here the kernels are defined in the following way:

va(a,a,- b,B)=-v_,_2__c_;2_ 1 _[1+_1 ] x
4 (2m)3 b2z (a2 D
“ Qg ( (_ba_)2+1-:2—f-cosa co_sﬁ

2 _.g-sina sin 8

-— 2
r . = f 1 1 .
Kﬂ (a.'c.l:b’B‘) 8(217)75 b2 (% )2 X (8)

a a
(£) +1+z~24 cosa cosfB )

x {dz G (
° L 2—§—sinasin/3

From this point we shall work only with kernel (7), but all the following results are true for kemel (8) too.

Kemel Ké’ may be easily diagonalized in variable b by means of a Mellin transformation.

We define
Fg (x a,B )= b2~xfda ax-lP; (aa; b,B)
and - - 2 = : ‘ -

; - = 2G x-1 I

Kz(x,a,ﬁ) 72} !dz.z [1‘+_z_, 1 x

2 1_'_' ) 2. o - o

x 0. ( z‘+1-22z2 comcos%_: 2G [ dz(z 1+z; ) x ©)

¢ 2z sinq sinf3 (2np, .



‘x[1'+ ‘_ii‘] 9 ( 2241 =2z cosacosf ) .

2z sin a sinf3 R
. i The resolvent ‘r‘ﬂ (x;a,3)  satisfies the integral equation of Fredholm type:
- - o - A S
Fg (% ay)=K(x ay)+fdB Kgfx;»a.B)Fg(X{B;y)- e
0 : .
The definition (9) shows that Kﬂ (xa8) exists if
1~Rel< Rex <l+Rel . an
- -n ,
On the real axis (11) the positive kernel X 0 (% a B)and the iterated kernels X ¢ (x;a,B) satisfy
the following conditions: |
sgn | dKp (X ayay) J=sgnlx -1} ,.
Jd x :
) 3R ‘ : (12
] (x;a,v) > 0,
9x?
}_il—(f_(_z.‘_a._w_ <o,
at
!zz(x;a,B)*O i feer,
e [ -1, > 1,
K (x0,8) g LEoL fer X3
L »1-x, for X<1,
n = 1,2,...

The conditions (12) define the behaviour of the Fredholm determinant of equation (10), which may be seen on figure

1. The equation

Det (1K, (xiaB))=0

(13)
is satisfied at two points
’ x=1%+x(0)
The iterative solution exists in the interval
L x, () < Rex < I+x, ). 14) i
. Vv .
-The resolvent Fe (a a;b,B) is given by the following integral:
- _ l°°+xo - ’
L7 (aaibB) =L [ dx (-2-)™ Dy (5 B) (15)
s 2, b Det (1-K)(%a,B)) :



Here - xo satisfies inequality (14), bg .jis the Fredholm numerator. of equation (10), .~
. . ., ) - . - — v : . g |
The leading singularity. of » Fe (aa; b8) determined by the point when the two zefos of Det( { ~ "

Ky (xa,8)) pinéh the integration countour in integral (15). This Lo value is defined by equation (13) if w>e>

“put x=1 ( Lo depend only onG’). The behaviour of x, (L) - near £ =P may be
obtained by developing Det( 1 -~ ;(-g (%a,B)) into Taylor’s series around the point =, x=7:
x,(0) ~ ky L_to, ‘ K (16)

where k >0, £,>0.

From here we obtain the behaviour of r‘gv (a a;b B) near £=t, :
—v ° : _ D .
Ty (acitp) Jocay’ 20 (be B) ]

g_x (De!{l—Kz(xy'a:B))‘x=1+xl(e)

17
 p ) !
= _1_ (_a ) Z(1>G:B)= 1 a st Dp(l a,B
57 b Kz @ 7w (5 e
0

It is simple to prove that the solution of the original integral equation (1) has the same leading singulatit‘y (17) as °
.the solution of equation (6).
Introducing variables & b, ¢, o, B,y (5) we diagonalize equation (1)} by some integral transformation

. The generating function of § satisfies the following hbmogeneous integral equation:

-7 oo
S~e: (sx%.h q B)-,! da Se(sr x 8 a, B) x
(18)
X Ke (s aa b,ﬁ)=ke(_s, x e ).
The kernel Ky (s,8 a; b 8 ) has a continous spectmm/S/ with eigenvalues kg (s, xa,8)
In.t};e' limiting casg - ) - ‘a» o the kernel KE (”S, a ay bl B )~ Ez(a, a;hb B) ; - 8o
asymptotically the Mellin transformation diagonalizes equation (1). Having ky(sxap ) - independent of
b, ké' (s x%a B)= K;IZ (xa8) . From here we may easily obtain the wanted results. Still we remark
that the singularity described by formula (17) leads to an asymptotic behaviour in the crossed channel: .
o
A(t,s)zf(s)__._ii_, (19)
Viogt
/6/

similar to that recommanded by Gribov’ *’ earlier, -

, . s
There remains an interesting question: what is the essential difference between equations with kernels K
v p
and KIZ or K'IZ ?

To explain the situation we assume that we have .an integral etjuatign for the partial wave ampljtude:

Ag (M) = £ (A .)+°f IN Ky (N5 hui YAy (M) . (20

where )\ is some quantity with the dimensions of momentum or momentum squared, KZ " contains some



, power of the couplmg constant. We are. mterested in the asymptotic behaviour of - ﬁ (A )\;-- ) . We define the
- asymptotic kemel Kg (A5 )\) in the same way as we did in formulas 7 and (8) We define . [-(.f‘ ()\' A)

"0 that _1_ K (A )\) = Kg ()\ A) where Ke (A, A ) is dimensionless. If the couphng constant is dimen- - B
: »snonless Kﬂ (2 A ) may depend only ¢ on . T’\,- . It results

that our kernel wdl not be of the Fredholm type, but it may be dlagonalxzed by means of a Mellm transformatlon. At the

.inverse transformatxon there appear the same type of leadmg smgulantles as in eq. (17)

On the other sxde, it the coupling constant has the dlmenswns of length on some negative power, then our kernel

may be wrmen like Kﬂ (NS )= ”Tk Kﬂl (Ao A) ‘ where - .‘k >1° It results equauon (20) wxll _' v

be of the Fredholm type, the leading singularity being a Regge pole .

. The author is indebted to prof. A.A.Logunov and to Dr. G.Domokos for valuable discussions.
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Det (1~Ky (x; a,B))
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Fig. 1. The behavidur of Det (1- ;{l( % a,f) )as the function of xata given € >, value.



