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l. Introduction 

IJ ~ / 
In previous papers: -;:, a relativistic equation of the Schrlidinger type was obtained for a system of two identical 

particles, and on its basis the properties of the scattering amplitude and its asymptotic behaviour were investigated. 

In this paper we deduce equations for the systems of two different scalar particles. A procedure for deducing equations 

and the scattering amplitudes is examplified by the reactions ( in the annihilation channel) 

a+a ... a+a, 

(1) 

b+b ... b+b. 

Other channels are taken into account by introducing the compex potentials. The equations obtained allow to investigate 

the asymptotic behaviour of the scattering amplitudes for the reactions 

.!!+a ... a+ a, 

a +b ... a+ b, 

in the s- channel. In the case of potentials without subtraction the scattering amplitudes of all these reactions are of 

the Regge type with one and the same trajectory a(s) • Equations for determining a(s) are the analytical continual-

ion in f of the equations determining the energy spectrum of the system. As a result the well-known relationships 

are obtained both between the differential elastic scattering cross sections and the total cross sections. The subtract

ion terms in the potentials may lead to the non-Regge-type behaviour of the amplitudes. It is shown, however, that the 

relationships between the total cross sections for the processes under consideration remain valid. 

2. Two-time Green Functions and Lippman-Schwinger Equation 

Consider the Green functions for the systems of particles in reactions (1) 

(2) 

Gbb (1,2;1~2') =<0\TI ¢ (1) ¢-(2) ¢ (1) '¢.,..(2') i i ·)>, 
b b b b . 

where ¢., • ¢ b • ¢
8 

• ¢;;- are the annihilation operators of particles a, b and antiparticles a, b, respec-

tively, ¢- = ¢ • ¢..:.= ¢ . 
a a b b 

Th fu . . f h . . d . bol" f 16•7/. ese nctlons satls y t e equations written own m a sym IC orm · 
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G G0 +G0 1\G G°KG, 
aa IJB aa aa aa aa ab be 

G -- G" '( G t r;o K G , 
ha bb ba aa bb bb ba 

G ccG°KG,GOKG, 
ab aa aa ab aa ab bb 

Gbb = aobb+ ac:,b Kb.G•b+ ~b XbbGbb' (3) 

Here ~. and G~b are the Green functions of free particles. The kernels K;j , i,j = a, b are 

real, if only the two-particle intennediate states of the systems ( a a ) and ( b b ) i.e. only channels (1) are 

taken into account. 

In the opposite case these kernels are complex. 

If we rule out, for instance, G b• from the first two equations (2), then we obtain an equation for G and, 

hence, we get an equatio'n for the amplitude of the first elastic scattering process (1). The kernel of this equation is 

complex even when the kernels K .. 
l] 

in system (3) are real. This equation has been investigated in/1-5/. 

By introducing the matrices: 

a •• a.b J 
G.= ( G Gbb 

ba 

a<;. 0 ), 00
=( 0 ~b 

we are able to write system (3) as one matrix equation 

G G0+00l{G, 

whose •olution can be found by iterations 

G =GO+aoKG•+ ... 

K = ( K •• K •; 
Kb• Kbb (4) 

(5) 

(6) 

Following the procedure of/ 1-5/ we introduce the two-time (matrix) function G . It satisfies an equation of the 

fonn: 

I G = l 
(7) 

where 
= -1 = -1 ~ = -1 

I=[OO] -[GO] G°KG0[00] 
(8) 

Up to a normalization factor we have: 

~ ( 2 E2) 0 
-1 2 • p' ) ' 

[Go] = F ( p
2

, E ) = ( O ~ (p~E"~ 
b 

(9) 

4 ·' 

' c 

\ 

\ 



(3) 

are 

Is (1) are 

•• and, 

quation is 

5/. 

(4) 

(5) 

(6) 

ion of the 

(7) 

(8) 

'f 2 2 E2 ~-~ 
·a,b=(p +m.,b- )v P +ma,b • (10) 

where m. and mb are the masses of particles a and b , respectively. Therefore, Eq. (7) reads in an explicit 

form: 

'2 E 2 G= -> ' -> 1 
F(p, ) (p ,p,E)(2rr)3 

where V(p',p,E) is the potential matrix 

V(p,'p, E) 

For the wave function of the systems 

'I'= ( 

we have the corresponding homogeneous equation 

'1' ... 
'P bo 

(12) 

(13) 

From this equation it is possible to get, with the aid of the well-known method/1/, the Lippman-Schwinger equation for 

the transition amplitudes 

T(jl~p,E)= V(p:p,E)+,b..(/q V(p:q, E );;;-TL._E. 2 T(q,p,E) 
t~"r F(q,(+u)1 

(15) 

t<> ... , ... E) 'H 8 lP•P• ) 

(iJ ~, _.. E 
:::JbiP ,p, ) (16) 

On the mass shell the amplitudes coincide with the scattering amplitudes: 

'Ill ... , ... E 
"i/P ,p, ) 

@ ->,-> E 
'1j (p 'p, ) 

:nt ... , ... E 
ij ( p' p' ) ' 

,2 2 2 2 2 
p + m 1 = p +. m1 = E . 

3. Local Potentials • 

In this section we shall deduce Lippman-Schwinger equation with local potentials ( according to the nomenclature, 

employed in/4/), We introduce the notations: p 
1

, p 
2 

and p; , p ~ are the 4-momenta of particles in the initial and final 
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states, respectively, 0 is the angle between 
PI 

2 
S=-(p1+p2), ' 2 

t ~ - ( {J; - ~) • 

<.. 

and 
-+ 

~ in the c.m.s. 

~-(p'-p / 
2 I 

As here we consider all the processes in the annihilation channel. 
and t are the momentum transfers, and 

s is theenergysquared. The substitution ~ 
~ corresponds to the change in the sign of cos 0 . In other 

channels s is the momentum transfer. and 
or ~ is theenergysquared. It is possible to prove, by resorting 

to perturbation theory, that for 

-411
2

< s <411
2 

the scattering amplitudes have a spectral representation* 

mlj (t, t; s) =-1- r dt' _!..J.Lit: s) + _1 r dt' ~t: s) 

1T 112 t'- t 1T 112 t' - t 

or in a matrix form: 

AI (t, t, s) = _.1_ (""d t' ~_!I+ _1_ {""dt' a(t:sL_ 
1T 112 t'- t 1T 112 t'- t 

B I . h h h . I !' d d . 11-51 · d h f · y ana ogy wit t e one-c an~e amp itu es treate m· · we mtro uce t e unctwns 

.:!- 1 ' M (t,s)= -{ dt 
1T 112 

The_ total amplitude is relate'd to them by 

p(t: s) t.a(t:s) 
t'- t 

M(t, i; s)= '12 l M+ (t, s) + M+ (f; s) + M-(t, s)- M- ('i; s) ! . 

+ 

07) 

(18) 

(19) 

+ -+ -+ 
V - ( ( p '-p )~ Ejas potentials of the Lippman-Schwinger equation for the Now we define the local potentials 

amplitudes r (P: r, EJ . 'd' . h ,. d (18) ± -+ -+ 2 2 comci ing Wit amp itu es .If (p '-p ), E) on the mass shell 

T.:r(p',p,E) _.;t _, ' ... E 1 { 3 V£ -+' ... E 1 T ~ _, E (20) v ( p ' p, ) + ;;:;::rr d q ( p ' q, ) -~---;-y ( q' p, ) 
(217) F( q ,(E+zf) ) 

or in a symbolic form 

± ± ± 1 ± 
T=V+VxyxT. 

(21) 

If we expand the amplitudes and potentials in series in the coupling constant 

+ (n)..:±-
r=l:T , 

n 
+ v-=Iv(nJ± 

n ' 

* Here 112 is the least (by the absolute magnitude) limit for all integrations. rr the limit of a ~ertain integral lies above 11 2 • then the 

spectral tunotlon is multiplied by the oorrespondtng () function. 
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, and 

f) . In other 

by resorting 

07) 

08) 

19) 

for the 

(20) 

the 

I 
f 

then from (21) the following equation is obtained 

n·I 

=l: 
m=t 

(22) 

This equation leads to the fact that if the potentials in some region of energy E have a spectral representation of the 

form: 

(23) 

then the amplitudes in Eq. (20) in this region have also a similar form 

+-+~-+ 00 + ,22 
1(p, p, E)= _1__ ( dt ~-~L_§_ _ _L __ 

"llz o to+(p'-p)z 
(24) 

.\nalogouslv in the region where the scattering amplitudes may be presented in a fonn of (24), the potentials of Eq. 

(20) have the form of (23). In proving these assertions we follow the arguments of / 3/ *· However, it should be noted 

that the amplitudes T and the potentials y-are the matrices 2x2 and in all the equations the multiplication is be-

ing done according to the rules of matrix multiplication. 

-J., Asymptotic Behaviour of the Scattering Amplitude 

'low we investigate the asvmptotic behaviour of the solutions of Eq. (20) with the potentials of the fonn of (23). 

These solutions have the fonn of (2-J.), and we shall consider them on the ma8s shell of one variable, viz., for 

. 1\e put p' 2= s . When we have the scattering 

amplitudes. 

\ote that both the potentials V ± --+ --+ 2 
(p '-p), E) and the solutions 

+-+,-+ 
T-(p ,p,E) of Eq. (2) depend 

on E as a parameter. For the sake of simplicity in the following we suppress both tlas parameter and the signs + 

In an explicit form E.:q. (20) means a system of equations for the amplitudes ~aa'~ab' § ba' 
ru of 
;::1 bb 

different processes (l),viz., 

(25) 

or in a svmbolic form 

~ = v +V X 
1 

X ~ v 1 
~ba :r + x-r- X a a a a B8 8a ab 

8 • b 

(26) 

~b8 v + v l (;) v X } X ~ba X-- X 
J8a + b8 ba ~ bb ---:r- (27) 

8 b 

--------------
* HPre we do not concern ourselves with the problem as to whether the boundaries of vanishing the spectral functions of the scattering arnplitu· 

&>s and potentials are consistent. To tell the truth, this problem is not so important, for in what follows it is supposed to investigate the behaviour 

of the amplitude starting from the given properties of the potentiaL 
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'-

§.b l X ~b + V88 X~ §.b + v.b x l X § bb ' 
1b 

~ =V + V X 1 X§ + V X 1 X(<! 
· bb bb ba ---r- ab bb -cz- "<::fbb 

a J b 

(28) 

(29) 

If account is taken of only the two-particle intermediate states of the systems ( a a ) and ( b F ), i.e. only of 

channels (1) then the potentials V;j , i, j = a, b are real. In the opposite case they .are complex. ~ote that 

by using iterations we can rule the non-diagonal amplitudes §ab and ~ ba out in i'::qs. ( 26) - (29) and get inde-

pendent equations for § and ~ . These latter equations will be alike Lippman-Schwinger equation with the complex 
•• . bb 

potential even for real y .. 
l] . This approach enables us to investigate the asymptotic behaviour of the amplitude 

for each scattering process separately. However, in order to find the relationship between the asymptotic behaviour of 

the processes in question, it is necessary to investigate their amplitudes as a solution of a system of equations, viz. 

a system of Eq. (26)..(29). 

We represent the potenti~ls and the amplitudes as (23) and (24). 

v11 (tj v r (p , - i1 J 2 J = _1_ r dt o t + r'P , - i! fl 
~ " 0 

(30) 

§ r;;', ;; J = _1_ r d t JJ __ (_:.,_~L , i, i = a, b • 
IJ rr 0 t +(p '-p)2 

0 

(31) 

Substituting these expressions into Eqs. (26)-(29) we get a system of equations for the imaginary parts 

r (s,t)=v (t)+(ds'dt' o •• (s,t;s~ t')r •• (s~t')~ (ds'dt' Q.b(s,t;s~ t')r,.(s~ t') .. .. -----, • • , b 
s -s

0 
-u s -s

0
-il 

(32) 

r (s,t) =v (t)+(ds'dt' Vb/s,t;s',t')r..,(s~t) + (ds'dt' Qbb(s,t;s',t')rbb(s~t') 
ba ba , • . , b . 

s - s
0
-ll s - ~ -ll 

(33) 

r ( s, t) = v (t) + (ds' dt ~.t;s~ t) r.d~.D__+ r ds' d t' Q.b (s,t;s~ t? r bb( s~t? 
ab ab. . 

s'- s• - if s'- s b -it 
0 0 

(34) 

rbb (s,t) = vbb (t) + (ds'dt' Qb• (s,t;s't') Tab (s~t') + r ds 'dt' Qbb (s, t;s~ t') T bb ( s',t') (35) 

Here 

and t1 

Q
11 

( s, t;s~t') 

' . . s- s -u 
0 

1 r dt v rt ) 
0 IJ 0 (2rr) 3 

s- sb-il 
0 

K ( t, t', ~. s, s', so 

..j~m/ 

K(t,t:t,s,s',sl )= O(,jt-,/t'-yt9 l8(t1), 
0 0 ...; t1 

is the well-known determinant /8/ . 

8 

.. 

(36) 

(37) 

For t-+oo 

~- (s,t) 

rb• (s,t) 

r./s,t) 

Tbb ( s, 

where 

We 

t -+nt, t'-+ 



(28) 

(29) 

), i.e. only of I 
!'l'ote that 

I 
with the complex I 

I 
behaviour of 

equations, viz. 

(30) 

(31) 

(32) 

(33) 

(34) 

• (35) 

(36) 

(37) 

For t-+ "" the system of Eqs. (32)-(35) has an asymptotic form 

where 

, t' , , t' 
T (s,t)={ds'd_l_ P.e(s,s,T)r .. (s,t) +{ds'dt P..b (s,s~T) Tbe(s:t') 
•• t •. r- b· 

1 (s,t) = ( ds' dL 
be t 

s - so-l ( s - so - l( 

P ( , L , , , P , t'J c , t4 
be s,s, c 1 ~e(s,t) + {ds'dL bb (s,s,r Tbb s, ) 

e . s- s - l( 
0 

t b • s- s- l( 
0 

, , t , 
p ( s' t) 1 ( 't') peb(s,s,-t-) Tbb(s',t') 

T
8

b (s, t) = { ds, d+ _e_e_s_, -' _,tc____e::.;b:___s_, __ + ( ds' d +- _ _::.;:__ __ __,_ ___ -'-----

P (s s' x) = _1_ 1 
II ' ' '(2rrl3 . =-· 2 F yS +m

1 

S-Sb-i£ 
. 0 

b • 
s- so - l( 

X 
(} (s'-sx- t T='x) 

(dt
0

v,1 (toJ ~ 
(1-x )~ [s' -sx- t _x_] 

Ol -x 

(38) 

(39) 

(40) 

(41) 

(42) 

We emphasize that the system of two Eqs. (38), (39) coincides exactly with that of Eqs. (40), (41). Let us consider 

the first system. It follows from the invariance of this system of homogeneous equations with respect to the substitution 

t -+nt, t'-+ nt' that the system admits a solution of the form: 

a 
( s ) t ' 

(a) a 
1 ( s, t) = f (s) t 

ba be 

Similarly the solution of the second system has the form 

1eb ( s, t) = 
(a) a 
~b (s)t 

(a) a 
Tb/s,t)=fbb (s)t . 

SubstitUting (43) and (44) into (39)-(41) we get a new system of equations 

( ) Ia)( 't f(a) ( ') R(a) ( ) f(a)( 'I 
fa (s)={ds' R'e• s,s, •• s +{ds' ab s,s be s, 
•• , • • , b • 

s- s
0
-u s- s

0
-u 

(a) (a) 

~~~(s)= (ds' Rba (s,s) "· (s'}+(ds' 

s'- s; -i£ 

(a) (a) 
Rbb (s, s) fb8 (s '} 

( ) (a) (a) (a) (a) 
fa (s) = ( ds' R •• (s,s? lab (s? + f ds' R.b (s,s') 4zls'} 
eb 

, e • 
s - s -1( 

0 

(a) Ja) , (a) (a) ja> 
I<,. (s, s ) f.ab (s) + ( ds' R u (s,s') bb (s' fbb (s) = f ds' -=---...:..:::.=.__ 

s'- s • -it 
0 

9 

s'- sb-i £ 

.0 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 



where 

(a) 
RIJ 

1 1 
(2rr)r \~ mf 

1 a 
r d~ v lj(to) r dx --~-.;, 

o (1-x) 

'--

X 

e r s'- sx - to T~x. > 
' t ~- l [s-sx-oJ-x 

y, (49) 

Let us emphasize once more that the system of Eqs. (45)-(46) coincides exactly with that of (47)-(48). Therefore, the 

trajectories a (s) in (43) and (44) are identical. So, in the case we are considering the imaginary parts of all pro-

ceases have the same asymptotic behaviour at t-. "" . 

Now we consider equations for bound states. Let us show that systems of equations (45), (46) or (47), (48) are ana

lytical continuation in r of the equations for the wave functions of bound states. 

These equations are of the form: 

'1!, (~~tf)= (2;)3 (d3q Yaa((p'- q):z) ~f .. :q1) cll .. (q,p) (50) 

where c 

This 

tions for 

+ _1_ r d3q v ((p' -q-+) 2) 1 'I' (q-> p->) the 
(2rr) 3 ab ~) b ' ' 

'l'b (p~p--) = ~ (d~ ... b .. ((p'-q)2) it-~~( q, p) 
(2rr) J 8 ( q ) 

(51) 

1 3 ... ->1 1 ...... 
+ - (2rr) 3 r a q ~/ r p - q J J ~b r q-r; '~' b r q, p > . 

The wave function of the state with the angular momentum C can be presented as 

'l' ->' -> f{f) '2. Cli m ... , -> 
a,b(p,p) = a,b (p) ;:Jf (p 1 p) (52) 

Substituting this expression into equations (50), (51) with the potentials of form (30) and making use of the equality/9/ 

f d 1q8(q1-s') 

t+(p'-q)2 
0 

m m 1 X 

Ye r if ttJ = , Y e r -p 'P> r ~ e [ s '- sx - u-=-x 1 
o(1-x) 'I> [s'-sx-t_X_]'I> 

01-x 

we get equations for the radial wave functions, which coincide exactly with Eqs. (45), (46) or (47), (48) with the sub-

stitution of a by f • If there exist bound or resonance states, then these equations have a solution. 
± 

Let us remind that we are considering equations for the amplitudes T and suppressed the signs ::!: • It 

follows &om (31) that the total amplitudes (19) have the asymptotic behaviour 

:111 - -irra+ 
ij ( t, t, s ) '" ~~ ~ 

sin r.a+ 

a+ 
t 

+ Y2 I 
-irra-

-e 
sin rru:-

(a+) 
f .. 
lJ (s) 

a- (a-) 
t fij (s). (53) 

As has been already remarked, the systems of homogeneous equations (45), (46) and (47), (48) coincide, and, there-

fore, 
I =ci .... ab 

I = c I 
ba bb 

10 ,· 

We expand 

have the 

and 

We 

put: 

It is 



(49) 

Therefore, the 

parts of all pro-

I 
(50) 

(51) 

(52) 

of the equality/9/ 

(53) 

lj 
cide, and, there- ( 

where c is the constant, and 

(54) 

This expression yields relationships between the cross sections/lO-l2/, both between the differential eros~ sec-

tions for elastic scattering and the total cross sections 

2 
a a =a 
ae bb ab 

5. The Role of Subtraction T enns, 

(55) 

We have investigated the case of potentials without subtraction of the fonn (30). Here the amplitudes of the processes 

in question have the asymptotic behaviour (53) with one and the same trajectory. Moreover. there is a relation between 

the differential cross sections for elastic scattering processes and a similar one between the total cross sections. 

Now we shall be concerned with the case of the potentials with the subtraction 

fo 
VII (t) = l: Oj~n) t" + + ( dt

0 
vII (~) 

n=o t- t 
0 

(56) 

We expand the amplitudes §ij (p ', p) 

have the fonn: 

in partial waves and write down equations for the partial amplitudes. They 

and similarly for 

We denote by 

put: 

(i)(f) 
;:J,_ (s) 

"'(f) v oo 

l] 

It is obvious, that 

(f) 11 l ds' v (s,s )+-- r-~~--
"" 0 ( 2zr) 2 , II • s -so -l£ 

and 

+ __ 1_ 
(2zr)2 

, where 

v<f) ( s, s'J §(f) (s') _1_ 
•• c •• vs +m2 

" 
(57) 

(f) (f) 
V (s,s') (i) (s" 
bll ~~~~~ I 

1 
..js'+m2 

" 

d , ~f) (f) r , : 0 ,,( s,s) §,. (s} -k 

(58) 

s - SO -I£ v s +mi 
y(f) are the coefficients in the expansion 
II 

V ( -+' -+) 1 ... D P -+ ,-+ y(f) '2 2 
II p 1 p = -- k ( 2t + 1) f ( p p) II ( p, p ). '(59) 

P f 

the expansion c6efficients of the Yukawa part of the potential-the second tenn in (56), and 

(6!» 

(f) "' (f) (f) 
V;lo]o = Vo • + 8 V.o 0 

l} l} 

for {t,l) 
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--

<... 

Let ~~~) -.:1,, be a solution of the system of equations (57)-(58) with the potentials 

can be continued analytically in the f -plane. 

Let us denote 

ci~> "'(f) (f) 
lJ = §ij + 0 ~ij ' 

(f) 
o§ii = o for f > fo . 

;(f) 
ij . This solution 

(62) 

(63) 

The additions 0 §~j satisfy some equations which can be obtained from equations (57), (58) and from definitions 
~ ~ 

(60) and (62). The kernels of the equations for o § ij depend on the potentials and on the Yukawa parts § ij 

of the amplitudes. It is like!r that for some potentials this system of equations has a solution of the form : o §~~) = 0 
(~) lJ 

for one process and o §;j f, 0 for other processes. The totlll scattering amplitudes are as follows 

=(f) 
§

11 
(t,s) =..L I. (;£ +1) §

11 
(s) Pf(z) 

p f=O 
fo 

+L I. (2f+1) 
p f=O 

(f) 
8 §11 (s) Pf (z) . (64) 

In the analytical continu~tion of §;j (t,s), t-+"" the first JBrt of (64) is complex and has a Regge beha-

viour, while the second part is real and has a power behaviour. In the case eo= 1 the scattering amplitudes 

have the following asymptotic behaviour 

~ - a~ 
Jn 11 (t, t, s) = A

11 
(s) + ~1 ( s) t (65) 

This behaviour does not contradict unitarity if a (0) = 1 • The first term in (65) determines the asymptotic behav-

iour of the elastic scattering cross section at s f 0 • In this case relation (55) between the differential elastic 

scattering cross sections is not fulfilled .However, this term is real, and the total cross sections are completely deter-

mined by the second complex term in (65). In contrast to the elastic scattering cross sections the relation between the 

total cross sections exists even if there are subtraction terms. 

In conclusion the authors express their gratitude to N.N.Bogolubov, B.A.Arbuzov, G.Domokos, M.A.Markov, 

A.N. Tavkhelidze, R.N.Faustov and A. T. Filippov for interest in the work and discussions. 
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· This solution 

(62) 

(63) 

and from definitions 
(el 

awa parts § .. 
lJ 

he form : o §~~) = 0 
lJ 

as follows 

(64) 

d has a Reggr, beha-

tering amplitudes 

(65) 

asymptotic behav -

differential elastic 

re completely deter

lation between the 
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I 
I 

References 

l. A. A. Logunov, A.N. Tavkhelidze. Preprint E-1145, Dubna (1962); Nuovo Cim. ( in print ) •. 

2. B.A.Arbuzov, A.A.Logunov, A.N.Tavkhelidze, R.N.Faustov, A.T.Filippov. jETP, 44, 1409 (1963)·. 

3. A.A.Logunov, A.N. Tavkhelidze, I. T. Todorov, O.A.Khrustalev. Preprint D-1191 , Dubna (1963 ). 

4. A.A.Logunov, A.N.Tavkhelidze, O.A.Khrustalev. Preprint P-1195, Dubna (1963). 

5. Nguyen van Hieu, R.N.Faustov. Preprint P-1235 Dubna (1963); Nucl. Phvs. (in print). 

6. \1.Ge!l-Mann, F.Low. Phys. Rev. 84, 350 (1951). 

7. 1;:.Salpeter, II.llethe. Phys. Rev., 84, 1232 (1951). 

8. S.Fubini. Theoretical Physics, Lectures at Trieste (1962). 

9. R.Stroffolini. Theoretical Physics, Lectures at Trieste (1 952). 

10. v.N •. Gribov, ltla.Pomeranchuk. JETP, 42, 1147 (1962). 

11. M.Gell-Mann. Proc. k,em. Con£. on High Energy Phys. at CERN ( 1962). 

12. G.Domokos. Proc. Intern. Conf. on High Energy Phys. at CERN (1962). 

Received by Publishing Department 

on May 11, 1963. 


