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1. Introduction

/ - .. . . N - -
In previous papers’ a relativistic equation of the Schrbdinger type was obtained for a system of two identical

particles, and on its basis the properties of the scattering amplitude and its asymptotic behaviour were investigated.

In this paper we deduce equations for the systems of two different scalar particles. A procedure for deducing equations

and the scattering amplitudes is examplified by the reactions ( in the annihilation channel)

a+;-»a+;,
a+38Sb+Db, (§))]

b+b»b+g.

Other channels are taken into account by introducing the complex potentials. The equations obtained allow to investigate

the asymptotic behaviour of the scattering amplitudes for the reactions

a+a+»a+a,
a+b>a+b,

b+b+b+b

in the s- channel. In the case of potentials without subtraction the scattering amplitudes of all these reactions are of

the Regge type with one and the same trajectory a(s) . Equations for determining a(s) are the analytical continuat-

jonin ¢ of the equations determining the energy spectrum of the system. As a result the well-known relationships
are obtained both between the differential elastic scattering cross sections and the total cross sections. The subtract-
ion terms in the potentials may lead to the non-Regge-type behaviour of the amplitudes. It is shown, however, that the

relationships between the total cross sections for the processes under consideration remain valid.

2. Two-time Green Functions and Lippman-Schwinger Equation

Consider the Green functions for the systems of particles in reactions (1)

G, (1,31,2)=<01TLg (1) dz(D &, (17 $5(27110>,
Goa (12152 =<0| T (D d(2 ,(17 $-(2)1]0>,
Gup (52 152) =<OITLS_(D éx(2 b,(1) 35(2) 310>, )

G,, (1,21,2)=<0Tt ¢ (1 ¢ (1) ¢x(27)117>,

where é .q’>b , ¢i‘ , (ﬁb_

. are the annihilation operators of particles a, b

and antiparticles a, b, respec-
tively, ¢; =%, . pp=b, -

These functions satisfy the equations written down in a symbolic form/6’7/=



G -G +G°KG G K G ,
aa aa ab be

. ] i O
Ghu be (ba Gaa' qab Kbbia’

G =G K G +G K G
aa aa ab aa

ab ab bbb

Gyp=Gos* Gop KyuGast Gp XpsGpsr (3

Here G3, and Gg, are the Green functions of free particles. The kemels Kij , Lj=ab are
real, if only the two-particle intermediate states of the systems ( a a Yand ( b5 ) i.e. only channels (1) are
taken into account,

In the opposite case these kernels are complex.

If we rule out, for instance, G ,, from the first two equations (2), then we obtain an equation for G.’ and,
hence, we get an equation for the amplitude of the first elastic scattering process (1). The kemel of this equation is

complex even when the kernels Kij in system (3) are real. This equation has been investigated in/1-5/,

By introducing the matrices:

G, G G5, 0 Kaa X
G, = ( an lb)’ G°=( aa ), K=¢( aa i\ a
Gya Gys 0 G, Kpu Koo (4)
we are able to write system (3) as one matrix equation
G =G +GKG, (5)
whose solution can be found by iterations
G =G°+G°KG*+...
(6)
Following the procedure of/ 15/ we introduce the two-time (matrix) function G . It satisfies an equation of the
form:
Y4
where
= =1 = - = =1
T=[(6°] -[G ] GKG°[G°] -
8
Up to a normalization factor we have:
pa f.05EH) 0
°] =F(p4,E¥H=( 2"’ ,



ﬂi'b=(p2+ m:.b- Ez)\/ p’fmlb ’ (10)

where m, and m, are the masses of particles @ and b | respectively. Therefore, Eq. (7) reads in an explicit

form:
= s 3 >, > z—» - > 2,
F(p’fE’)G(p’,p,E)b—”—i, fdqV(p ' qd,E)G(ap E)=8(p-p'), (1)
where V(g ,p,E) is the potential matrix

o s ‘:.(_I; ’;P-’y E); Eb(l_; ’ti;’ E)
V(p,'p,E) =

V(s 0 E), V(P P.E)] . (12
For the wave function of the systems
‘Pal‘ R
Y=y ‘pr ) * (13)

we have the corresponding homogeneous equation

F(RAEYY@RE) — 5 hs( da v(7,4,E) ¥(3,E)=0- (19

From this equation it is possible to get, with the aid of the well-known method’ 1/, the Lippman-Schwinger equation for

the transition amplitudes

3 1 > >
3.8,E)=V(B 8, E)+ i dg V(F % E 'y T( 4,5, E) (15)
I(p,p,E)=V(p,pP )+mf q V(p L )I'T(;?_(E+t€)2)
6.(p5p,E) 8, (P+pE)
T(I_;’I_I; E) = >, >, >

’ G (P 5. E) S, (BB E) (16)
On the mass shell the amplitudes Q,'j (p’sp,E) coincide with the scattering amplitudes:
1 >, >, > .2 2 2 2 2

Q‘.j(p,p,E) = mij(p,p,E), p’¥mi=p +m=E",

3. Local Potentials .

In this section we shall deduce Lippman-Schwinger equation with local potentials ( according to the nomenclature,

employed in/4/).we introduce the notations: p , p and p" , p; are the 4-momenta of particles in the initial and final
1’ T2



-
states, respectively, 0 is the angle between p and 1_7: in the c.m.s,

)

s ==(p+p ), tee(p—p)? t ’ 2
== , =~ (p —p)°, =—(p’—
1 %2 I; e) (Pz PI)

As here we consider all the processes in the annihilation channel, t and 7 are the momentum transfers, and

s is theenergysquared. The substitution ¢ ¢ ¢ corresponds to the change in the sign of cos @ . In other

channels s is the momentum transfer, and ¢ or ¢ is theenergysquared. It is possible to prove, by resorting

to perturbation theory, that for

~4u?< s <4u2

the scattering amplitudes have a spectral representation*

ml} ('ts)———— f dt’ _ﬁ'}_’it_’i) +.l?dt' _ﬂ;{t;s) )
u? - ¢ 2 t - 1

or in a matrix form:

Ill(tts)__L{dV p(ts_)+ 1 {dtfa(l’,s)__.
’12 t'—t T u? l’-? (17)

. -5/ . .
By analogy with the one-channel amplitudes treated in” 15 we introduce the functions

d_ o0
- 1 (tys)La(t,
A = 4 _L,_%
M (4s) "# tuta :8) (18)

The_ total amplitude is related to them by

Mt ts)=uit* (s)+ MY 5oy Mts)-M (5s)} . (19)

Now we define the local potentials vV ((p '—-;)2, E)as potentials of the Lippman-Schwinger equation for the

hy - > st
amplitudes I (p’pE) coinciding with amplitudes (18) (p ‘~p ),2 Ej on the mass shell
Ti’(l_;’:ﬁ:E) Vi (p,p,E)+—,-fd qV (P 7Q)E) T(EEE) (20)
(2. F(q? (Em) ) T
or in a symbolic form
* T T x
T =Vaeviclxr (21)

If we expand the amplitudes and potentials in series in the coupling constant

x n)+ it n
T - 2 T() V_:EV( )t
n n

Here Ilz is the least (by the absolute magnitude) limit for all integrations. If the limit of a dertain integral lies above

I 2 |, then the
spectral function is multiplied by the corresponding 6

function.



then from (21) the following equation is obtained

ne
T(n):t_ V(ﬂ)i =3 (m);§< « T(n-m)j;
=1

~

(22)

m

This equation leads to the fact that if the potentials in some region of energy E have a spectral representation of the

form:
v 3,2 . v (t,E)
(p ~p)"E)=_1 [ dt _____Q_T
T2 0 te(p -p)? (23)

then the amplitudes in Eq. (20) in this region have also a similar form

Ti >, > oe s 2 2
(P:P:E)=_1__fdt T (t,p ,p,E)
T 4 =, 5 3 (24)
u? t,+(p "~p)
Analogously in the region where the scattering amplitudes may be presented in a form of (24), the potentials of Eq.
(20) have the form of (23). In proving these assertions we follow the arguments of 73/ x, However, it should be noted
+

that the amplitudes T and the potentials V "are the matrices 2x2 and in all the equations the multiplication is be-

ing done according to the rules of matrix multiplication.

4. Asymptotic Behaviour of the Scattering Amplitude

Now we investigate the asvmptotic behaviour of the solutions of Eq. (20) with the potentials of the form of (23).
These solutions have the form of (24), and we shall consider them on the mass shell of one variable, viz., for )
p?=EL m? :Soj’ j=ab .VWeput p'=s .When s=E% m?,i=ab we have the scatte;‘ing
amplitudes.

Note that both the potentiais 14 * (E'-—E)f E) and the solutions y gl (; ‘ ;, E) of Eq. (2) depend
on E as a parameter. For the sake of simplicity in the following we suppress both this parameter and the signs +

In an explicit form Eq. (20) means a system of equations for the amplitudes @’“ , 8 P ’G}ba’ G b of

different processes (1),viz.,

§.(2.8) =, ((p*’~ﬁ)’)+( [ d'q V(@ —q*)) q3 (38 (25
feb L, (8 ‘(—7) S,a(3-7)
or in a symbolic form
Sum Lol g B, e Vil )
G, = V. ¥, ; x B, v, x_f;b_x 8,. . 20

*
Here we do not concemn ourselves with the problem as to whether the boundaries of vanishing the spectral functions of the scattering amplitu-

des and potentials are consistent. To tell the truth, this problem is not so important, for in what follows it is supposed to investigate the behaviour

of the amplitude starting from the given properties of the potential.

-3



gub = W+ Vo~ ——j}— X gab + Vopx Tl x gbb , . (W)
e b
= 1 1 @
be Vst Ve x—f}'._ x gab * Vbb x 3 X Fp (29)

If account is taken of only the two-particle intermediate states of the systems ( a& )and ( b5 ), i.e. only of
channels (1) then the potentials Vij » Lj=ab are real. In the opposite case they are complex. Note that

by usingiterations we can rule the non-diagonal amplitudes Q_ and § out in Egs. ( 26) - (29) and get inde-

b ba

pendent equations for g.. and be . These latter equations will be alike Lippman-Sch‘winger equation with the complex
potential even for real Vij . This approach enables us to investigate the asymptotic behaviour of the amplitude
for each scattering process separately. However, in order to find the relationship between the asymptotic behaviour of
the processes in question, it is necessary to investigate their amplitudes as a solution of a system of equations, viz.

a system of Eq. (26){29).

We represent the potentials and the amplitudes as (23) and (24).

v pr-d)y=L fa uld
y ((B'=8))=——1T dt, T b ) (30)
§ (prp)=-L [dat L (S, ij=ab. '
y % » ] ly 3
1y [ [ t+(p —5)? (31)
Substituting these expressions into Eqgs. (26)-(29) we get a system of equations for the imaginary parts
r (s,t)=v (f)+fds'd!' Qealst;sh !’)T,.(S',!')+ ['cls'dt' OQap(sit; s, ")’bu(s’r t’) , (32)
aa aa s - s: —ie s - sz_ i€
(33)

r (s0=v ()+[ds’dt’ edS S5t ma(st) | [ds’dt _Qre(StS ) r,(S5E)
ba ba

, a - , b .
s~ s, ~1e s'— § —1¢

r (s,t)=v (t)+ [ds’dt Qu(sitisit) rap (s5t) 4 fds’dt’ —Cap (s, 685t) rpp(sht) , (34)
ab ab’ . .

s'—8% —~ie s'—s —Ii¢
°

Qb_(st;S'!') L (s5t) -  [ds’dt’ Qpp (S, ;85t) Ty (S5t (3%

rbb(s,t) =V, () + [ ds’dt

s’ - s; —1ie s~ S:—ic
Here
’ ’ (36)
0, (stsity =L ratv, @) Klbblssis)
(27) VsT+ ml2
K(tt)t, s,s,s’ )= 0BG/t =y/t'~/t)0(A), 37
0 ° VA
and A is the well-known determinant /8/ .



For t- o the system of Eqs. (32)-(35) has an asymptotic form

’

’ t, ’ 44 ’ t ’ ’
T, (s,t)=fds'dtL Ra(s 87T ) faa(sHt) +fds'd_’t_ Bab (5,8, T ) rha(s’ t’)

(38)

S—S;—i( S—S:—i(
. , ’ 0 ’ , ’
r, (98 = fds'dtL Poa (585 1) 4(s5t) + rds'dtT Py (58, 1) tpe(s’ #4) , (39)
a
s—s " ie s— s ie
0 °
! t’ ‘s
o ¢r Paa(sis, L) 1 (s5t) L Po(sst =) 1, (sht)
r!b(s,t)= {ds d_f_ ‘ t ap ( + [ds d_tt‘ b t bb , (40)
s—so‘ —~i¢ _S-sob ~I¢
’ t' # ’ t’ ’ '
1 (st)= [ds'dL’ I'},a(s,s,—r)r,,,(s, t)+{ds’d.t.i Pon(s851 ) tos(S5 ¢) , 41)
bb t t
s—s;—i( S-S:—i(
where
‘ x
. 0 (s’'—sx~t T=2x)
P (ss/m=_A___L  [(dt v, (t 1 (42)
4 ( (27P \Js °+mlz 0o Y (0 (l—x)%[s'-—sx-tolx x]'ﬁ

We emphasize that the system of two Eqs. (38), (39) coincides exactly with that of Eqs. (40), (41). Let us consider

the first system. It follows from the invariance of this system of homogeneous equations with respect to the substitution

tsnt, t’ > nt’ that the system admits a solution of the form:

(st [(a) (s )t a
T 8t = s )
e (99= L (43)
(s.t)= [(a) K
rb. S )_ ba (S)
Similarly the solution of the second system has the form
T, (st = ffj)(s):“ ,
() ' 449
(s =10 ()t @
Substituting (43) and (44) into (39)-(41) we get a new system of equations
[(a) (s) = [ ds’ I{"_)(S,s') [(.a‘) (s’) +[ds’ R(.a,,)(s,s'} 1.(,‘:)(37 (45)
- s~ s;—i( : s - s:—ie
(a) @ @ | (
[(ba)(s)= [ds’ Rpa (8,3) faa (S’)+ [ds’ Rob (s,8) fra (s} (46)
s'-s;-i( s'-—sz—i(
(a) (@) (a) () V
I(G)(S) = [ds’ R‘a' (53) [': (s) +[ds’ R‘?’ (55 bels) , (47)
** s’ —s%~i¢ SmgP_je
0 0
( a) , (a) () a)
’.:.)(s)=f ds’ R(ss) 1.9 (09 + [ds” Res(s9) 2 ) (48)
s'—sa ~fe s'—gb—f ¢

[ €



where

(a) a
R, ~_1 1

1
TR — . fdt v”(to)‘[ dx X ..

X
i O(s’' —sx ~T=%)
vs Timf (1=x)" [s'—sx—t % ] * ' (49)
¢ °oI=x

Let us emphasize once more that the system of Fgs. (45)-(46) coincides exactly with that of (47)-(48). Therefore, the
trajectories

a(s) in (43) and (44) are identical. So, in the case we are considering the imaginary parts of all pro-
cesses have the same asymptotic behaviour at

t> o0

Now we consider equations for bound states. Let us show that systems of equations (45), (46) or (47), (48) are ana-
lytical continuation in [

of the equations for the wave functions of bound states.
These equations are of the form:

2 3,2 1 > >
(2m) 3 q V.‘((p q)”) m}) ‘b. (q,p) (50)
1 3 >, -2 1 >
= _[dq ¥V - vy
+(2”) 3 [dq ab((p q)) W) b (9, p)s
¥, (3,p)= _1 da ¥V (p'-)Y) L __ ¥ zz
b (—2'”—)——3' fdyq b.((P q)) ?,(qz) (9 P)
(51)
1 3 d > 2 1 - >
+_W [d'q ‘Lb(( p-q) )?—b—(—q—z*)—wb(q;p)-
The wave function of the state with the angular momentum f can be presented as
L4 2, > (E) ’ Ky " >, >
s (PoP) = Y, @9 . (52)

Substituting this expression into equations (50), (51) with the potentials of form (30) and making use of the eqnality/g/

f d*qd(f ~s)

Y (qe)=n¥, (37 X9
t+(3°-4)*

x

Ols ~sx —¢7T=x ]

o(l-x) ™% [s'--sx—to X _ 1%
' —-x

we get equations for the radial wave functions, which coincide exactly with Eqs. (45), (46) or (47), (48) with the sub-
stitution of @ by ¢

. If there exist bound or resonance states, then these equations have a solution.

+
Let us remind that we 8re considering equations for the amplitudes

T and suppressed the signs ¥ L
follows from (31) that the total amplitudes (19) have the asymptotic behaviour

- -inat g+ {a+)
Wi (tt,s )=y _Lre .

Je—— [1]' (s)

~ira” a~ (g)
vy l-e"" i‘.l (s) .
sin ma— J

(53)

As has been already remarked, the systems of homogeneous equations (45), (46) and (47), (48) coincide, and, there —
fore,

f =cf
aa ab
[b. =c[bb s

10



where © is the constant, and

fa [bb‘= fplpar (54)

This expression yields relationships between the cross sections/lo-m/, both between the differential cross sec-

tions for elastic scattering and the total cross sections

2
a%s" %ap" (55)

5. The Role of Subtraction Terms,

We have investigated the case of potentials without subtraction of the form (30). Here the amplitudes of the processes
in question have the asymptotic behaviour (53) with one and the same trajectory. Moreover. there is a relation between
the differential cross sections for elastic scattering processes and a similar one between the total cross sections.

Now we shall be concerned with the case of the potentials with the subtraction

¢
0
= (n) 1
Vi (9 % g 1"+ 2 [dt, _YY (%) . (56)
n=0 t—t
0
We expand the amplitudes Q,-j (p°%) in partial waves and write down equations for the partial amplitudes. They

have the form:

(4 (4 . (4
g =V (s0)+ L f_ds" vD (s C‘}(E) (s) —i=

aa ] (2m)2  s— s;—ic vs¥m] (57)

p {4 (4
st f 4 V) (60780,

2 , b . - N
(2n) s'=s —ie Vs+ma
b

(]

© : , ® ®
G () =V (s8%)+_1 ds 1% .
) ba ba sso) (2”)2 fs,_ So.—it' ba (ss7) gl.(s) m‘

(58)

’ f) )
+ 1 ds “ p
g (08 @) e

(4
and similarly for gﬁ) and g(bl , where ‘:ﬁe) are the coefficients in the expansion
v, (0,p)=—1_ 3 ? P (37 V(e) 2 2
y (Pyp)= . ’ (2t +1) 7 (p'p) 15 (py D) (59)
=({
We denote by V(i;' the expansion céefficients of the Yukawa part of the potential - the second term in (56), and
put:
® = 3
i - Vij( ) ‘5 V,§ )
60
It is obvious, that '
)
Vi =0 for £>e, . 6D

11



)
Let @,'(j) be a solution of the system of equations (57)-(58) with the potentials V,‘j . This solution
can be continued analytically in the £ -plane.

Let us denote

(®) e ]

Sij =8y +88; . (62
)

89ij =0 for t >0, (63)

(
The additions ) g,]) satisfy some equations wl(lei)ch can be obtained from equations (57), (58) and from definitions

(0
(60) and (62). The kernels of the equations for & gij depend on the potentials and on the Yukawa parts S‘}ﬁ
of the amplitudes. It is like}y that for some potentials this system of equations has a solution of the form : SQE.? =0

H
for one process and 5@;,- £0 for other processes. The total scattering amplitudes are as follows

- =®
§, (ts) =“,f‘ efo (2+1) §, (3 Py(z)
lo

(6
+;1.. 2 (20+1) BQU (s) Py (). (64)
£=0
In the analytical continuation of gij (ts), tse the first mart of (64) is complex and has a Regge beha-
viour, while the second part is real and has a power behaviour. In the case =1 the scattering amplitudes
have the following asymptotic behaviour
- a(s)

W, (tTs)=A, (s)+ B (s)t (65)
This behaviour does not contradict unitarity if a(0) =1 . The first term in (65) determines the asymptotic behav -
iour of the elastic scattering cross sectionat S7 0 . In this case relation (55) between the differential elastic

scattering cross sections is not fulfilled .However, this term is real, and the total cross sections are completely deter-
mined by the second complex term in (65). In contrast to the elastic scattering cross sections the relation between the
total cross sections exists even if there are subtraction terms.

In conclusion the authors express their gratitude to N.N.Bogolubov, B.A.Arbuzov, G.Domokos, M. A Markov,

A.N.Tavkhelidze, R.N.Faustov and A.T.Filippov for interest in the work and discussions.
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