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The Mandelstam representations are based on the hypothesis that any Feynman graphs for pion-nucleon scattering 

possess definite analytical properties. But already for transitions amplitudes with the next degree of complexity _ 

one meson production amplitude - the analysis of the graJi!s shows that the analyticity property is violated and the use 

of the mandelstm integral representations becomes impossible. 

There arises the question by what one may replace the usual dispersion integral representations and how to express 

the fact that the scattering amplitude h may be analytical but not in a so wide region as one su~gested earlier. 

In the present paper we shall indicate one possible solution of this problem. Owing to the fact that it is little 

advisable to start with a complicated case in which h is considered as a function of two or more complex variables, 

we restrict ourselves to <ile simpler problem in which h is a function of one complex variable. The more complicated 

cases which correspond to the Mandelstam problem are considered by the author in/ll/_ 

This problem is a generalization of that boundary problem which is solved by the Low integral equations. 

The Low equations are equivalent to the boundary problem/ l/ in which the scattering amplitudes h' ( z') 
a 

z' = x '+ iy ' , a = 1, . 2 , ••• N to be determined satisfy the three following well-k11own conditions: 

1) analyticity on the physical sheet, 2) unitarity and 3) crossing symmetries. In this problem ~itions 2) and 3) are 

conserved without any change and condition 1) is weakened. It is namely supposed that the analyticity is needed 

only on some strip containing cuts and not on the whole physical sheet. It is remarkable that the width of the strip 

can be reduced to zero without changing the_ shape of the equations, i.e. the same equations hold also for completely 

nonanalytical amplitudes. 

In the paper it is shown that this problem is equivalent to one algebraic system of equations. 

The algebraic system is convenient for investigating the solution properties and for numerical calculations. It 

has advantages as compared with the N/D -method/2/. With its aid one can solv~ equations for rr-11 scattering which 

in the framework of the simplifications made remain correct even aher an eventuel disproof of the Mandelstam repre

sentation/31. 

Now we go over to the formulation of the problem. Find R -functions h~ ( z'), a"" 1,2 ••••• N which 

satisfy. the following conditions a') Let X' be the cuts of the real axis y'-= 0 determined by the inequalities 

-oo < x' < -1 ; 1 < x' <"" and T' be a region containing X' • Then the functions 

T'-X' 

const 
x' 

h' (x'), a= 1,2. •.•. N are to be continuous in T' and analytical in 

-piecewise smooth functions which at infinity decrease not slower than 

By h' we shall denote the vector with the components h 'a ' a= 1,2, •.• 

b') 1 h'( , . ') , n ( ') , 2 ( , I h '( , . , 12 m X + It = p X V · p ) X + I( ) , 1 .s 

and 

N. 

x'< 

where p' =vx'2-1 is the pion momentum v'(p ')is the cutoff function and n - an integer. 

c') h'(x'-+ it')= Ah'(-x'- it'). 

h' (x'), 
a 

""• 

Here A is theN-row matrix among the eigenvalues of which there are numbers + 1 and-'1 • 

x' t X' 

The problem i), 1:1), c') has been formulated by the author in papers /4,S/ The systems of algebraic equations 

which the solutions of the problem must satisfy have been written there. However these equations are inconvenient 

to find solutions of the adiabatic type. In this paper we shall obtain new algebraic equations of the problem a'), b'), 

c') by means of which we can investigate both the resonance and adihatic solutions. 
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By means of the conformal mapping 

z f ( z) = 2z 

1 + z 2 (l) 

The plane z'=x'+iy' goes over to the plane 
z = x + iy = re

1
¢ , the cuts X' to the unit circle C and 

T' into the closed ring region T with the outer boundary C . Then the problem a'~ b'), c') goes over to the prob .. 

lem : Find the vector R -function h( z) with components 

satisfies the following conditions: 

ha(z), a= 1,2, .••• N which 

a) the functions h ( z) are continuous in T and analytical in T- C a h a ( z ) 

lzl= 1 
ha (¢), a=1,2, ••• N 

are piecewise smooth functions. 

b) · lm h ( ¢) = F ( ¢ ) I h ( ¢ ) I 2 

where ,n 1 ) •2{ ') F(¢) =p ( __ v p 
cos¢ 

c) h(¢+1T)=Ah(¢), -rr 

00 

~ 
k=t 

.:s ¢ < 

1T 

2 
~ ¢ < 

F sin 2k¢ 
:lk 

1T • 

1T 

2 

On the basis of a) we can expand h(z) in the Loran series 

from which we obtain for 'I z I 
h (z) 

1 

+oo 
~ 

n=-oo 

+oo 

a z" 
n 

Re h ( ¢ ) = ~ an cos n ¢ 
n=-oo 

+oo 
I m h ( ¢) = ~ a n sin n ¢ 

n=-oo 

an being vectors with components ( 1) (2) a , a , ...••.•..•••.••• a 
n n 

(N) 

n 

Using (2) and (3) we transform the well-known formula for the Fourier components: 

/ 
an 

1T • _'!. 

+!!. 
2 

_I_ f sin n ¢ lm h ( ¢) d ¢ 

' The transformed formula has the form 

sll 
2 

+Lfsinn¢ 
"+...'!.. 

2 

lmh(¢)dcp. 

+~ " 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

2 +s,- 2 

a = .!_ f sinn¢ F(¢) lh(¢JI
2
d¢+L(-1)"f sinn¢F(¢JAih(¢JI d¢. 

n 1T 1T • 1T +" 
·- 2 -

By replacing F( ¢) and 
2 I h ( ¢) I = Re 

2 
h ( ¢) + lm 'h ( <P) by mean; of expansions (3), (6) and (7) we get 

where 

r 
nk 

--- ------- -~--~--- ~--

+oo 

an= ~ rnk a"' * am+k , 
m:,t=:r-oo 

n +oo 
1 + (-1) A ~ 

(Ir-k + 

+~ 
2 

if +Jc)f d¢ sinn ¢sin f¢ 2TT 

lh 

f=-oo 

-l 
-h 

F 
h 

-2-

1T --2 

lor h=2,4,6, •••• 

f h = 0 for h = 0, 1, 3, 5, 7, ••. , 

4 i 

(9) 

xn 

t' 



(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(7) we get 

(9) 

The symbol''•''.is to he understood as: if vectors a and b have the components a 
1 

, b 
1 

, i = 1, 2, • .. • N 

respectively, then a * b is a vector with components a 1 b 1 , i = 1, 2, ••• N. 

We emphasize that in some respect eq. (9) is generalizing. It is eqnally applicable to amplitudes which are through· 

out non-analytical as well as to fully analytical ones. In the first case the region of analycity 1 reduces to a line

the circumference C , and in the second 1 goes over to the whole unit circle. It is convenient to represent a in n 

the form 
a = ~ + X n n D 

where ~ n is a known vector by means of which the asymptotic behaviour of the solution is taken into account, and 

X n the vector to be determined. Inserting the expression ~ n + X n in (9) we get: 

h=-00 

xlc} K1 · ... o .... (10) 

I =- 00 , ••• , - t, o, I, ••• + oo 

where 

Hillel = rl,lc-m 
K1 = ~ rile ~, * ~ 11+ 1c - ~~ • 

h,k=..oo 

Putting in (9) a n = 0 for n = - oo , • • • • - 2 , - 1 we get an algebraic system cor-

responding to the eqnation of Chew and Mandelstam/2/ and Shirkov and a1/6/. lf.in (9) we put a = 0 for 

n = - oo , ... -3, -2 and a = _i_ then we obtain an algebraic system/
1

/ correspondingnto the Chew-Low 
. _, 2 . 

eqnation/7,8/. To the residue -} in the plane z there corresponds the residue .\ in the initial" plane z ' 

>.. is the three dimensional vector :l -4 .\ =-jf (-1·). 
2 

Using (9) we have made the calculations for the adiabatic solution of the Chew-L~:w equation at I 
2 

= 0,02 and 

f 2 = 0,04 v' 2 (p ') being taken in the form/
9

/ 

v'2(p') 
1 

1 - 0,0Zlp'2 

The comparison of the results of the numerical solution with the corresponding results of/10/ shows that the system 

(9) can be solved with a desired accuracy ( the error amounts to 0,5% if the infinite system is replaced by algebraic 

system with 40 ununowus). 

1n/8/ the calculations have been made for f 2 = 0,087 as well. However as it was shown in/
1
0/ the possibility 

of finding the numerical solutions for so large values of f 
2 

is doubtful. 

The author expresses its gratitute to P .Bymev and R.Pentchev for the help. 
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