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Infrared Singularities of Matrix Elements in Scalar Electrodynamics
Expressions for the infrared (near threshold) singularities of the matrix elements in
scalar electrodynamics have been obtained by summing up the perturbation theory seriee
with the aid of the renormalization group. The matrix elements of the photon-meson,
electron-meson, and meson-meson scattering have been treated. A comparison of the
results of this paper with the corresponding expressions for spinor electrodynamics/l/
shows that the form of the main infrared singularities is independent of the charged

particle spin.
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Introduction

The infrared singularities of the matrix elements in spinor electrodynamics were treated in’1/ . Here we will be
concerned with the case when charged particles are spinless.
Like m/ /, the index A denotes the quantities calculated with the introduction of the mass v/ X into the photon

propagation function. We write the § -matrix element for elastic scattering of two particles as
< k S. — k ——1 4 o 00 0 % - -
P, 2‘ A llpl e i(2n) (16 P Py K k) d(p vk ~p, k) T, (1)

. . . 2
where p, ,k and p, +k, are the particle momenta before and after scattering. We designate by s =(p+ kl), u—_~(pl-k ),2
2

1

2
t= (pl—pz) the squares of the total energies of the direct, crossing and the third processes. The infrared divergenc-
/2/

es in T,\ are taken into account by resorting to formula

T =expl{K } T,
\ — ek @)
2 2
K,\f-‘:j z a, 2z, a F\ ((pa+p a) pisp, ), &)
where the summing is being carried out over all the charged particles before and after the reaction, z; is the sign

of the charge , &; =1 or -l for outgoing or ingoing particle with a momentum p. ,

2

2 2 2 ; 2p, — k 2p,—k
E ((p—p ) pop )=—ia, [ _dk_ (2P - 2P2 ) @
A 1 2 1772 Py Y 2p1k—k‘ 2p2k-k‘
( a is the fine structure constant, h =c=1, ab=a"b"~ a b ). For F)\ (with A0 ) the following rej sentat-
ion holds

2FA(t,m’,M’)=B(x,)2n(mM/A)— (%, ,v),

(5)
2 2
4m Mx'=t-(m—/'.l) ; 4mMv=(m-=-M ),
(6)
B(x) = ax F (2z-1)dz ,
27 y\Jz(z=1) z(z-x-I) )
- *
e(xv)=_4% ([ 2z~1 fn __2+V + Vz(2-1) dz (8)
g 2n 1 z(z=1) 4z (z-1) z+ v z(z=Xx—1€)

In what follows we are going to consider the infrared singularities of T , i.e, singularities for s, u ,or

¢t tending to the threshold values, for the elastic photon-meson, electron-meson and meson-meson scattering proces-

* :
Note, that this expresaion corresponds to the transverse gauge. 1f, on the other hand, use is made of the Coulomb

gauge, then in this expression the second component should be omitted in the brackets under the integral.



ses. [t turns out that the form of the main singularities remains the same as for the corresponding processes involving

av4

spinor charged particles treated in’ '+
In 4 the analytic properties of the matrix element of the meson-meson scattering were investigated in the fourth
order of perturbation theory. Upon singling out the main infrared singularities this matrix element contains in the infra-

s

1 R
red region the terms tending to infinity like y* iy, y &

nt , y %, t*, Int |, where

2 2
y=8s—(m+M ) or u-~(m+M) i.e., ithas integrable singularities. In the fcarth order of perturbation

/8/

theory the Mandelstam representation is va  for it.

2. Photon-Meson Scattering.

1A 7
The kinematics of the photon-meson scattering was considered in paper’ 4 Let P, » P, and m be the meson

momenta and mass, kl , k and e » e,are the photon momenta and polarization vectors. The matrix element

can be put then in the form

T=A(s,u,t)HA+B(s,u,t)H}9 9
where the structural expressions HA ,H_ are guage invariant and equal to
H =(ele2)—._(f’_k7_)(l’i2_k_l_)_._ s (10)
A k, k,
Hy=(e q)(e,q)- (8 (5a)(ka) __( eqa)iek)(kza)
’ ki k, ky k

Qn

+(e!k1)_(€hkt)(1£1Q)(k9CI}; q=p1+p

(k) ’

It is worth while to note that at t = =2k, k2= O the momenta k, and k, become equal and k, e =k es".

So, H, and H_ are finite at t=0 . In the c.m.s. of the direct process

_ > - 2 - > g g
H=-(e, e+ F (e, P )e, ), (12)

2 > > -
HB=——‘:,—(S—-m2) (e py)(e,pp ). (13)

Now we consider the analytic properties of A4 and B in the lowest orders of perturbation theory. In the

second order { Fig. 1)

AP=_2e?, B=o*(_ 1 . _1 ) . (14)
S

In.the fourth order diagrams 1-9 (Fig.2) contain the infrared divergences (at A >0 ), Upon renormalizing the
meson wave functions and singling out the infrared divergences by formula (2), where for the given case
K/\ = Py (t m?, m?), we get that in the infrared region, i.e., at s > m2 or u » m?2 the main singularities in
T4 yield, like in spinor electrodynamics/l/, diagrams 8-15 ( Fig. 2).



The main singularities are of the form

TO-[B(t/am?) tn [(m*~s)/m" ) +y (t/4m")] T s
15
+[Bry/am™fn [(mimu)m®)+y (t/4m)] T ..,

where the points indicate the terms less singular than the poleat s »m? or u-m 2, provided g(x) is given

by (7)

*
y(x) == _0QX f[(22*1)2"4z_\/hz———1—] dz )
4 1 Vz(z-1) 2 Hz~x—ie) (16)
and 7(2:, Tf‘”are the contributions of diagrams 2 and 3 of Fig. 2, respectively.
Other diagrams of the fourth order are finite at X - 0 and at s»>m?(u>m ?) have only integrable ( i.e.,

weaker, than the pole ) singularities.
Expression (15) may be expanded in structures (10),(11) up to the terms less singularat s » m? or u»m?
As a result , we get that in the fourth order
A(‘) - A(‘) (17)
a

B9~ e? {(s ~m™J  (B(t/4m”) tn ((m*=s)/m? + y(t/am®) ] +

. (18)
+(u—-m ’)I[B(t/zlm’) lnl(m—u)/m? )+ y(t/dm )1} + Bm,

(4
where A_) and B:‘)

have singularities weaker than the pole in the infrared region.

The equations of the renormalization group/s/ allow to sum up the main singularities in B. Let us consider, for
example, the region s -+ m? . Representing Bas B=e?(s—m?f! )y and considering M for different normali-
zations, the factors of external lines being fixed, we are able to write for M differential equations of the group. We
choose the normalization momentum ko so that Re d (I, m’/ k:,e ?)=1 where d(k’/ k:, m ’/k:, e?) isthe
transverre Green function of the photon. By making k: tendto m” at s+ m 2 we get the relationship between
M((m®=s)/m®) and M(m’-s)/(m ’_ko’)) , for which the perturbation theory series is well convergent for all ¢
in the region where the function B8 (t/4m2) is determined. As a result for M  we obtain
M= Y expl e’ﬁ(t/zlm z)fnﬁz_l_g_}, where €7 is the observed charge. For ¥ () it is again possible to write
down the equation of the renormalization group which for all finite ¢ (for f+4m? inclusive) yields
Yt)=exply(tram?) }.

Considering in a similar manner the region u - m? we get for B
) )
B=-o7exply(t/am?)} Umo~s ) *(m’-u ) 1+ B, (19)
S()=-1+8(/4m’) , (20)

where 8 and y are, generally speaking, series in @ , whose first terms are represented in (7), (16),

and B_ does not contain main infrared singularities. 168/
The physical interpretation of the function 3(f) in (19) was treated in ~ .

*
See a reference on page 8.



3. Electron-Meson Scattering.

et P, - P, and m  De the electron momenta and mass, k k and M

e 2 are the positive meson momen-

ta and mass.

In the second order ( diagram 1 of Fig. 3 ) the matrix element

— " -1
T e?u (p) y ulp)(ky v hp) ¢ (21)

(uu=2mhas a pole at ¢ =90 . Unlike the previous case, the main infrared singvlarities in the fourth order arise

at t=0 . In order to consider these singularities, we single out, first of all, the infrared divergences. In the fourth

order the divergences are given by diagrams of the same type as in the previous case. However, as far as each charged

particle gives the contribution to the divergences then the infrared factor Ky in (2) is cquul here to

K/\:ZF/\ (s,mz,Mz)-—ZIi(u,mz,M2)+l§\(i,m2,mz)+F}\(t,Mz,Mz) (59)
Unlike the previous case, diagrams 2 and 3 of Fig. 3 contain two virtual photons and give the infrared divergences
and singularities when the momentum of each of them vanishes. Consider, e.g., diagram 2.

Representing its contribution as

7. ety dk i Ny o Ny ) 1
Ay (2n)4 (k2—2plk)(k2+ 2k k) k=n (k —g )= q?
(23)
PR, 70)Y G S S P QU S N |
KX ¢?-29k 4* (k—qP-1 q?-2qk q?
V[ _NKk) =N©) . N(k)-N(g) | 1 i
k%) (k—q)*= A ?—2qk
where ¢ =p —p and
s\ I
- m LN - r s,
N(k) = (p,) y"d (kr ki k) (B —k+m)(2krk)d yu(p) (24)
( djj s the factor of the photon Green function equal to &€ for the Coulomb gange or gij - k; kj/ k?

for the transverse gauge; in the latter case in - N(0) and N(g) the momentum k in djj is not fixed) we can see
. . . . . . . 2 442

thatat A -0  only the first component in curved brackets is divergent. It gives the contribution to ZF/\ (s,m5 M%)

in (22). In the second and third components in (23) A can be put to be 0. At the same time the second component

at t >0 has at least the pole. It is possible to show that the third component has weaker singularities than the pole.

~ P . o . 4 : ¢
Thus, the main infrared singularities in TZ( ) enter the second component in (23).
Just in a similar manner diagram 3 of Fig. 3. is considered. Diagrams 2 and 3 give the following contribution to the

main singularities of the matrix element at ¢ -0

V-0 T, ..., (25)
2,3



Colp o i i nl )/ mM]) +e(x, v )—elx, ,v),

(26)

where the fanctions 3 and ¢ are siven by (6-8).

Besides diagrams 2 and 3 of Fig. 3 the pole singularities in T are given by diagram 4 of Fig.3 which has an electron-
photon vertex function. Apart from the factor F,\ (t,m?, m?) in (22), this function makes a contribution to the

infrared singularities which depende on ar: sdditional magnetic moment of an electron g -

T - a¢ AN . 27
P u(p,) ¢ /‘[q,y]_ﬂl(pl)e(kl+k2)nt e 27

It is easy to see that in the sixth order ( diagrams 5-8 of Fig. 3 ) a part of the electron-photon vertex function dependent

(2)

on p” leads to singularities of form (25), where one needs to substitute (27) for T °*. Thus, for the main infrared

singularities of the matrix element T  perturbation theory in the lowest orders yields a sum of expressions (21) and
(25) where the matrices y" should be substituted by "+ (u72e) [ .y 1.

Making use of the renormalization group, we get

T =e2if (172)()’n +(u72e) ¢,y 1 )u(pl)(kl+k2)" t-lexp{CD} + T., » (28)

where @ is aseriesin a , whose first term is represented in (26), and T hasat - 0 singularities weaker
than the pole.

If T isexpressed in terms of the invariant functions
T=u(p,)(A(sut)+(k+k)B(sut))u(p,), (29)

then

A e ’(S—U) e¢ Au
y=( K _e )
( B ( e’ ~2mey’ ) t + B, (30).

4. Meson-Meson Scattering.

We consider the matrix element of the scattering of the two oppositely charged mesons with the masses m and ¥
Like in the previous case, we single out the infrared divergences and the main infrared singularities . Then we get for

this matrix element the following representation
T=e’(s—u)exp{®¥t‘l+ T‘ (31)
where ® is given by (26), and T, has singularities weaker than the pole. We consider the singularities of T, in

the lowest (fourth) order of perturbation theory. The strongest of them are given by diagrams 2 and 3 of Fig. 3, as well

as by diagrams 1-3 of Fig.4. They are of the form

TW=wyga?i(s—m?-M?) | 1 gp_ ts’ ds’ + (s-uj)+ (32)
@ S k(s) s'—s~ie
(m+M)2
+ ZmaM)+0n 2t} o+ L,
V=t m M

7
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where k(s) =[5 = (m+M)* V[ s ~(m—MP, (s+u)denotes previous terms in which s is replaced by u and the
points indicate the finite terms. We see thatat ¢ -0 s sa(m+M)? or u ~(m+M )2 T(4) tends
*

to infinity, these singularities being remained integrable. The consideration of the fourth order diagrams (2-4 of Fig.3

and 1-6 of Fig. 4 ) shows that for T:‘) the Mandelstam representation/s/ of the following form holds true
f4)= s—s.) c b (S’) ds’ + _ f—t < d ’“dt' b,(s')
= o) AN et o o
(M+m)2 (M+m) 0

(33)

t(souye(t—t ) [ PO 4o _gyep B) At V[ B()dt )
"(t'—-to)(t'—-t) am? t—t ™3 t—t

Note, that the spectral function b, (s’) is independent of t’
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