
• 

06oE.UHHEHH.bU1 HHCTHTYT SI.UEPHbiX HCCJlE,UOBAHHt1 

nABOPATOPVIH TEOPE:TVI4ECKOH ¢VI3VIKVI 

L.D.Solovyev, Yu.Ja.Yushin 

E-1275 I 

INFRARED SINGULARITIES OF MATRIX ELEMENTS 
IN SCALAR ELECTRODYNAMICS 

.0.y5aa 1963 



E-1275 

ConOBbeB fl.D., !OWHH !O . s:J . 

Vl Hcb.P8K08CHbie OC06eHHOCTH M8TpH'lHbiX aneMeHTOB B 
C K8n9pHOR aneKTpOARHSMRKe 

nyTeM cyMMHPOB8HH9 P9AOB TeOpHH B03MyWeHHA c llOMOWbiO 
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aneKTPOAHHSMHKe. PaccMOTpeHbi MaTpH'lHble a neMeHTbi ¢oToH-M e30HHo­

ro, a neKTpoH-Me30HHOro H MeaoH-MeaoHHoro pacce9HH9. CpaaHeHHe 
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Infrared Singularities of Matrix Elements in Scalar Electrodynamics 

Expressions for the infrared (near threshold) singularities of the matrix elements in 

scalar electrodynamics have been obtained by summing up the perturbation theory series 

with the aid of the renormalization group. The matrix elements of the photon-meson , 

electron-meson, and meson-meson scattering have been treated. A comparison of the 

I f h. . h h d' · f · I · d · 111 resu ts o t ts paper wtt t e correspon mg expressions or spmor e ectro ynamtcs 

s hows that the form of the main infrared singularities is independent of the charged 

particle spin . 
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Introduction 

The infrared singularities of the matrix elements in spinor electrodynamics were treated in / 1/ . Here we will be 

concerned with the case when charged particles are spinless. 

L 'k 0 111 h . d \ 1 e 10 , t e 10 ex " denotes the quantities calculated with the introduction of the mass VA into the photon 

propagation function. We write the S -matrix element for e lastic scattering of two particles as 

where p
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, k a re the parti c le momenta before and after scattering. We designate by s = ( p + k ) ~ u =(p -k )
1 

2 I 1 1 2 ' 

the squares of the total energies of the direct, crossing and the third process es. The infrared divergenc-

are taken into account by re sorting to formula /
2

/ 

T = exp I K l T, 
A \ 

(2) 

(3) 

where the summing is bein g carried out over all the charged particles before and after the reaction, 

of the charge, ai = 1 or -1 for outgoing or ingoing particle with a momentum Pi , 

Z· 
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>.-+0 ) the following representat-
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(6) 
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* 
dz (8) 

z(z-x-iE) 

In what follows we are going to consider the infrared singularities of T , i.e, singularities for s , u , or 

tending to the threshold values, for the elaRtic photon-meson, electron-meson and me!"on-meson Rca tterin Jl: proces-

* Note , that this e xpr es.!'do n co rr espo nd s to the tran sve rse gauge. If, on the o th e r h and, u se i s m ad e o r the Cou l omb 

gauge, th e n in thi s expression th o seco nd compo n e nt sho uld b e om itt ed in thf" bra c ket s u n d e r th e Inte g ral. 

3 



S(. s , It turns out that the form of the main singularities remains the same as for the corresponding processes involving 

. h d . 1 d . 111 
spmor c arge partie es treate tn • 

In 4 the analytic properties of the matrix element of the meson-meson scattering were investigated in the fourth 

order of perturbation theory. Upon singling out the main infrared singularities this matrix element contains in the infra-

- 'll - 11 -11 -112 red region the terms tending to infinity like y fn y , y 1 fn t , y 1 
, t · Pn t where 

y = s- ( rr. + U / or u- ( m + M / i.e., it has integrable singularities. In the fcurth order of perturbation 

theory the Mandelstam representation / 3/ is valid for it. 

2. Photon-Meson Scattering. 

The kinematics of the photon-meson scattering was considered in pape/ 4/ . Let p , p , and m be the meson 
1 2 

momenta and mass, k , k and e , e are the photon momenta and polari za ti on vectors. The matrix element 
1 2 1 2 

can be put then in the form 

T = A ( s, u, t ) H + B ( s, u, t ) H 
A B 

where the structural expressions H A , H 
8 

are guage invariant and equal to 

H =(e e)- (e1k2)(e 2 k1 ) 
A I 2 k k 

I 2 

HB = ( e1 q ) ( e 2 q ) - ( e I k2) ( ~ q ) ( k 1 q ) 

kl k2 

+ (e1k2)(e,k,)(k1 q)(k,q 

( k1 k2) 

( e1 q )(e2~~}~2_ + 

k1 k2 

q = p1 + ~ 

(9) 

(10) 

(11) 

It is worth while to note that at = -2k
1

k
2

= 0 the momenta kl and k 2 become equal and k
2 

e
1 
=k1 ef"J. 

So, HA and II 8 are finite at t = 0 . In the c.m.s. of the direct process 

-+-+ 2 ................. 
IlA = -(e1 e 2 )+T (e 1 p2 )(e

2 
p 1 ) 1 (12) 

4 :.z:.l-+-+ -+-+ 
H

8
=? (s-m) (e1 p

2
)(e

2 
p

1
). 

(13) 

Now we consider the analytic properties of A and B in the lowest orders of perturbation theory. In the 

second order ( Fig. 1 ) 

i 2
)= -2e 2

, B = e2 ( __ 1_ + 1 
s- m2 u- m2 ) . (14) 

In .the fourth order diagrams 1-9 (Fig.2) contain the infrared divergences (at A'"' 0 ), Upon renormalizing the 

meson wave functions and singling out the infrared divergences by formula (2), where for the given case 

!(t\ o' FA ( t, m2 , rr.2), we get that in the infrared region, i.e., at s _. m2 

T( 4
) yield, like in spinor electrodynamics / 1/ , diagrams 8-15 (Fig. 2 ). 

4 
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Th e main sinp;ulariti es are of the form 

(15) 

+[,8(t/ 4m 2)fn [(m2-u )1m 2 ]+ y ( t/ 4m2)] ~2\ ... 1 
where the points indi cate the terms less singular than the pole at s -> m 2 or u ... m 2 , provide d ,8 (x) is given 

by (7) 

y (x) ax 
4rr 

( [ (2z-1) fn4z _ V z- 1] ---=-d=-z __ 

1 J z ( z-1 ) z z( z - x - ic) 

and T 2
}, T~2)are the contributions of diagrams 2 and 3 of Fig. 2, respectively. 

* 

(16) 

Other diagrams of the fourth order are finite at A -+ 0 and at s-+ m2 
( U-+ m 2

) have only integrable ( i.e., 

weaker, tl>an the pole ) singularities. 

Expression (15) may be expanded in structures (10)
1
(11) up to the terms less singular at 

As a result , we get that in the fourth order 

s ~ rn 2 or u .... m 2 • 

(17) 

J4) = e2l(s-m2)-I[,8(t / 4m2)o_ 2 ~ 2 l:f Ul [(m -s)j m J + y(t/ 4m)] + 

(18) 

where A(
4

) and B(
4

) have singularities weaker than the pole in the infrared region. 
• • 

The equations of the renormalization group / 5/ allow to sum up the main singularities in B. Let us consider, for 

example, the region s-+ m 2 • Representing B as B = e 2( s - m2 J1 M and considering M for different normali-

zations, the factors of external lines being fixed, we are able to write for M differential equations of the group. We 

choose the normalization momentum k so that Re d ( 11 m
2

; k 2 
I e 2)"' 1 where d ( k

2
; e I m 

2
j k

2 
I e 

2
) is the 

0 0 0 0 

transver"e Green function of the photon. By making k; tend to m
2 

at S-> m 2 we ,get the relationship between 

M ( ( m 2 - s)/ m 2) and M((m 2- s) 1 (m 2 -k2)) , fo! which the perturbation theory series is well convergent for all 
0 

in the region where the function {3 (t/ 4m
2

) is determined. As a result for M we obtain 

AI 'P I 2 2 2 2 . F = (t) exp e {3(tj 4m )fnm~;}, where e 1s the observed charge. or 'P (t) it is again possible to write 

down the equation of the re normalization group which for all finite t ( for t ->4m2 inclusive) y ields 

'P(t)'"' exp I y ( tj 4m 2 ) I. 

Considering in a similar manner the region u -+ m
2 

we get for B 

(19) 

(20) 

where ,8 and y are , generally speaking, series in a , whose first terms are represented in (7), (16) , 

and B • does not contain main infrared singularities. 

d 
. / 1,6-8/ 

The physical interpretation of the function o(t) in (19) was treate m . 

• 
See a reference on paae 8. 
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3. ~.:: lectron-~leson Scattering. 

Let p , p 
1 2 

and m be the electron momenta and mass, ki ' k2 and M are the positive meson momen-

ta and mass. 

In the second order (diagram l of Fig. 3 ) th e matrix element 

" -I 
1(2)= e2 ii (P.) y u(pi )( k1 + k 2 ) t 

2 n 
(21) 

(u u =2 11J)has a pole at t = ') . Unlike the previous case, the main infrared singularities in the fourth order ar ise 

at I = 0 . In order to consider these singularities, we single out, first of all, th e infrared divergences . In the fourth 

order the divergences are given by diagrams of the same type as in the previous case. However, as far as each charged 

particle gives the contribution to the divergences then the infrared factor KA in (2) is equal here to 

[(>. = 2Ft. ( s, m2
, M 2

)-- 2J\ ( u, m 2
, M 2 )+J\(1, m~ m2)+ Ft. (t, M~ M 2) 

(22) 

Tlnlike th e previous case, diagrams 2 and 3 of Fig. 3 contain two virtual photon s a nd give the infrared divergences 

and singularities when the momentum of each of them vanishes. Consider, e.g., diagram 2. 

11epresenting its contribution as 

where q = p -- p 
' I 2 

T( 4
) = i e 4 

( d k [ [ _!!_jJ}J_ -t.. N (q) 

t. 2 (2rr) 4 (k 2-2pk)(k 2+ 2kk) k 2-t. (k-q/-t. 

+ [ NCO! ( ----:c-
1 __ 

k 2-A q2 -2qk 

+ [ N(k) -N(Ql __ 

k 2
-- t. 

and 

1 1 

q2 
)-_N(q) ( 

(k-qj2-t. 
_1 __ + _1_)] + 

q2-- 2qk q 2 

N(k) -N(q) 

(k-q) 2
- t. 

__1 _ _ !, 
q2

-- 2q k 

N (k) = ii (p ) ym d ( k + k + k ;" ( p -- ~ + m) ( 2 k + k / d y "u ( p ) 
2 mn 1 2 1 1 til 1 

1 + --2-
q 

(23) 

(24) 

( d ij is the factor of the photon Green function equal to g ij for the Coulomb gauge or gij -- k; kjl k 
2 

for the transverse gauge; in the latter case in N (0) and N ( q) the momentum k in d ij is not fixed) we can see 

that at t. ... o only the first component in curved brackets is divergent. It gives the contribution to 2F 
t. 

(s, m 2, M 2) 

in (22). In the second and third components in (23) A can be put to be 0. At the same time the second component 

at t __, 0 has at least the pole. It is possible to show that the third component has weaker singularities than the pole. 

Thus, the main infrared singularities in T(4) 

2 
enter the second component in (23). 

Just in a simi lar manner diagram 3 of Fig. 3. is considered. Diagrams 2 and 3 give the following contribution to the 

main singularities of th e matrix element at t -..0 

'](4) =<I> TO)+ 
2,3 

... ' (25) 
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(26) 

where th e functions (3 and £ :m~ q i ven by (6-8). 

Besides diagrams 2 and 3 of Fig. 3 the pole singularities in· T are given by diagram 4 of Fig.3 which has an electron-

ph oton vertex function. Apa t· t from the factor in (22), this function makes a contribution to the 

infrared singulari ties whi ch depends on an :.~ dditional magnetic moment of an electron J! '. 

T( 4> = ii ( p ) IL ' ~~ [ q', y"] u ( p ) e ( k + k ) 
4 .7 - 1 1 2n 

-I 
t + (27) 

It is easy to see that in the sixth order ( diagrams 5-8 of Fig. 3 ) a part of the electron-photon vertex function dependent 

on J!' leads to singulari ties of form (25), where one needs to substitute (27) for T(l) • Thus, for the main infrared 

singularities of the matrix element T perturbation theory in the lowest orders yields a sum of expressions (21) and 

(25) where the matrices y n should be subs tituted by y n + ( IL '/ 2e) [ ~·, y"]. 

Making use of the renormali zation group, we get 

T ' (28) 

where ct> is a series in , whose first term is represented in (26), and T has at 
a 

singularities weaker a 

than the pole. 

If T is expressed in terms of the invariant functions 

(29) 

thea 

A )=( e iL ' (s-u) 
B e2 "-2m elL ' 

<l> 
) _e_ + ( 

t (30). 

4. Meson-Meson Scattering. 

We consider the matrix element of the scattering of the two oppositely charged mesons with the masses m and M 

Like in the previous case, we single out the infrared divergences and the main infrared singularities . Then we get for 

this matrix element the following representation 

a (31) 

where cl> is given by {26), and T a has singularities weaker than the pole. We consider the singularities of T a in 

the lowest (fourth) order of perturbation theory. The strongest of them are given by diagrams 2 and 3 of Fig. 3, as well 

as by diagrams 1-3 of Fig.4. They are of the form 

- ts' 

k(s? 

+ u 2(mt M) + fn _:._t _ _ l + ... , 
Y-f mM 

7 

ds' _..:.:..o __ +(s-+u)+ 
s' -s-h (32) 
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where k(s) = [ s - ( rn + M ) 2 1[ s - ( :n- .\{ IJ, ( s-+u)denotes previous terms in which s is replaced by u and the 

points indicate the finite terms . We see that at t ... 0 s-+(rn+M) 2 or u -+(rn+M) 2 T(4Henda 
• 

to infinity, these singularities being remained integrable. The consideration of the fourth order diagrams (2·4 of Fig. 3 

and 1-6 of Fig. 4 ) shows that for T~"> the ~1andelstam representatio/31 of the following form holds true 

_f 4) 00 b ( ' ' 00 00 

T = (s-s) ( ,1 s)ds, +(s-s)(t-t)(ds'(dt' b:z(s~ + 
" o (s -s )(s-s) 0 o 

2 0 
(s'-s )(s'-s)(t'-tl(t'-t) 

(M+m)2 (M+m) 0 rf 

+ (s-+u) + (t-t) r b3(t') dt' + (s-u)(f b.,(t') dt' 
0 

O(t ' -t)(t ' -t) 4m2 t'-t 
0 

Note, that the spectra l function b2 (s') is independent of t ' 
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