1271

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРНЯ ТЕОРЕТНЧЕСКОЙ ФИЗИКИ

S.M.Bilenky, R.M.Ryndin

E-1271

ON A CONNECTION BETWEEN THE TOTAL CROSS SECTIONS OF REACTIONS $1 / 2+1 / 2 \rightarrow 0+0$ AND THE INTRINSIC PARITIES OF PARTICLES

Биленькии С. М., Рындин P.M. О связи полных сеченпи реакций $1 / 2+1 / 2 \rightarrow 0+0$ с внутренними четностями частиц

Рассматриваются реакпи типа $1 / 2+1 / 2 \rightarrow 0+0$, где $1 / 2$ ко -спины частиц. Показано, что коэффнциент пои $P_{G} \vec{P}$ в выражении для полного сечения реакции с полярпзованными частицами $/ \vec{P}_{0}$ н \vec{P} поляризации пучка и мишени/ положителен, если произведение внутренних частностей равно -1 , п отрниателен-в противном случае. Это свойтво полных сечений может быть использовано для определения четностей странных частии.

Работа издается только на английском языке

Препринт Оббединенного мнститута ядерных исследований. Дуӧна, 1963.

Bilenky S.M., Ryndin R.M. On a Connection between the Total Cross Sections of Reactions $1 / 2+1 / 2 \rightarrow 0+0$ and the Intrinsic Parities of Particles

Reactions of the type $1 / 2+1 / 2 \rightarrow 0+0$ are considered, $1 / 2$ and 0 being the particle spins.

It is shown that the coefficient of $\vec{P}_{0} \vec{P}$ in the expression for the total cross section of the reaction with polarized particles $\left(\vec{P}_{Q}\right.$ and \vec{P} being the polarizations of the beam and the target) is positive if the product of the intrinsic parities is -1 and it is negative otherwise. This property of the total cross sections can be used to determine ther parities of strange particles.

Preprint.Joint institute for Nuclear Research.

Dubna. 1963 .

[^0]Submitted to JETP

Ifecenth information has appeared ahout the first experiments carried out on targets with polarized hydrogen $1, \mathbf{2}^{\prime}$. The degree of the livitrogen polarization in these experimenta amounted to 20%.

The use of polarized hydrogen targets will essentially simplify experiments on the measurement of polarization effects in elastic processes. For example, the proton polarization in $\pi-p$ scattering can be determined by measuring the left-right asvmmetry resulting from the scattering on a polarized target. If the target is unpolarized, the. proton polarization is determined by measuring the recoil proton asymmetry in a double scattering. A triple experiment on the determination of the correlition of polarizations in scattering is replaced by the measurement of the cross section for the scattering of polarized particles by a polarized target and so on.

The application of polarized hydrogen targets also gives a wide range of possibilities to investigate inelastic processes. In particular, in papers we have shown that the investigation of inclastic reactions

$$
\begin{align*}
& \pi+p \rightarrow \Sigma(\Lambda)+K \tag{1}\\
& \bar{K}+p \rightarrow \Sigma(\Lambda)+\pi
\end{align*}
$$

using a polarized hydrogen target will allow one to determine unambiguously the ralative parities of atrange particles. The suggested method consists in the measurement of the correlation of the sign of the leftright asymmetry resulting from a polarized target with the sign of the hyperon polarization occuring in the case of an unpolarized target. This method is based on the symmetry requirements only and is valid for any reaction of the type $1 / 2+0 \rightarrow 1 / 2+0$ where 0 and $1: 2$ are the particles spins. If the spin of E hyperon will turn out to be equal to $1 / 2$. its relative parity can be determined from the reaction $\bar{K}+\boldsymbol{P} \rightarrow \boldsymbol{K}+\boldsymbol{E}$.
II. In the present paper we shall consider other inelastic reactione on a polarized hydrogen target. We shall show that the comparison of the total cross sections for the reactions

$$
\begin{align*}
& \bar{\Sigma}(\bar{\Lambda})+p \rightarrow K+\pi \\
& \bar{E}+p \rightarrow K+K \tag{2}
\end{align*}
$$

with polarized protons and antihyperons, and unpolarized protons and antihyperons, respectively, allows one to deternine the strange particle parities as well.

I gencral expression for the total cross section of the reaction can be easily obtained from the requirements of the . invariance under space rotations and reflexions. Besides, we should take into account the fact that the cross section depends linearly on each of the polarizations. Let $\overrightarrow{\boldsymbol{P}}_{0}$ and $\overrightarrow{\boldsymbol{P}}$ be the polarizations of the beam and the target and \dot{k} be the unit vector in the direction of the relative momentum of colliding particles (c.m.s.). Vising tiese quantities, we rat construct the following general expression for the total crose section which satisfies the above requirements:

$$
\begin{equation*}
\sigma-o_{0} a \vec{P}_{0} \cdot \vec{P}+\beta\left(\vec{P}_{0} \vec{k}\right)(\vec{p} \vec{k}) \tag{3}
\end{equation*}
$$

there ${ }^{\prime}{ }_{c}$ is the total cross section of the reaction for unpolarized particles. The cocfficients a and β, Wrom on the initial encrgy and their values are detemined by dynamies. We shall see, however, that independently of the
assumptions about dynamics the sign of the coefficient a is unambiguonsly fixed by the product of the intrinsic parities of the particles involved in the reaction.

Thus, if we choose the target polarization \vec{P} ortogonal to \vec{k}, the comprison of re total croses sections σ and σ_{\circ} allows one to determine the sign of a and, consequently, the relative parity of the particles involved.
III. Now we proceed to the proof of this statement. The amplitude of the process (2) is writien in the form:

$$
\begin{equation*}
M_{\sigma \sigma^{\prime}}\left(\vec{k}^{\prime}, \vec{k}\right) \phi(\sigma) X(\sigma)=\phi^{T} M\left(\vec{k}^{\prime}, \vec{k}\right) X, \tag{4}
\end{equation*}
$$

where $\chi(\sigma)$ and $\phi(\sigma) \quad$ are spin functions of the nucleon and the antihyperon, $\vec{k} \quad$ and $\quad \vec{k}$, are the unit vectors in the direction of the initial and the final relative momenta in the c.m.s. and $\quad \boldsymbol{r}$ denotes transposition.

Averaging the module squared of the amplitude (4) over the initial spin states, we get the following expression for the differential cross section

$$
\begin{equation*}
\frac{d \cdot \sigma}{d \omega}=\operatorname{Sp} M\left(\vec{k}^{\prime}, \vec{k}\right) \rho M^{+}\left(\vec{k}^{\prime}, \vec{k}\right) \rho_{0}^{T} \tag{5}
\end{equation*}
$$

Here $\quad \rho_{0}=1 / 2\left(1+\vec{\sigma} \vec{P}_{0}\right) \quad$ and $\quad \rho=1 / 2(1+\vec{\sigma} \vec{P}) \quad$ are the density matrices of the beam and the target.

From the invariance under space rotations and space inversion we get:

$$
\begin{align*}
& M\left(\vec{k}^{\prime}, \vec{k}\right)=R^{T} M\left(\vec{k}_{R}^{\prime}, \vec{k}_{R}\right) R \tag{6}\\
& M\left(\vec{k}^{\prime}, \vec{k}\right)=I M\left(-\vec{k}^{\prime}-\vec{k}\right), \tag{7}
\end{align*}
$$

where R is the spin rotation operator, $I=I_{P} L_{Y} I_{\mathrm{R}} I_{\pi} \quad$ is the product of the intrinsic partities of all four particles, \vec{k}_{R}^{\prime} and \vec{k}_{R} are the vectors obtained as a result of a rotation from \vec{k}^{\prime} and $\vec{k} \quad$.

If we introduce the matrix* $\quad N\left(\vec{k}^{\prime}, \vec{k}\right)=\sigma_{2} M\left(\vec{k}^{\prime}, \vec{k}\right)$ then due to the relation $\sigma_{2} R^{T} \sigma_{2}=R^{+}$ from (6) and (7) we get

$$
\begin{align*}
& N\left(\vec{k}^{\prime}, \vec{k}\right)=R^{+} N\left(\vec{k}_{R}^{\prime}, \vec{k}_{R}\right) R \tag{8}\\
& N\left(\vec{k}^{\prime}, \vec{k}\right)=I N\left(-\vec{k}^{\prime},-\vec{k}\right) \tag{9}
\end{align*}
$$

Hence it follows that for $I=1$ the matrix $N\left(\vec{k}^{\prime}, \vec{k}\right)$ is a scalar:

$$
\begin{equation*}
N\left(\vec{k}^{\prime}, \vec{k}\right)=a+b \vec{\sigma} \vec{n}, \quad \vec{n}=\frac{\vec{k} \times \vec{k}^{\prime}}{\left|\vec{k} \times \vec{k}^{\prime}\right|} \tag{10}
\end{equation*}
$$

[^1]In the anse 1 k: matrix $\quad N\left(\dot{\varepsilon}^{*}, \vec{k}\right)$ is a psendoscalar:

$$
\begin{equation*}
N\left(\ddot{k}, \dot{k}, \cdots \vec{k}+d \vec{\sigma} \kappa, \quad \vec{\kappa}=\frac{\vec{k}-(\vec{k} \cdot \vec{k}) \vec{k}}{\left(1-\left(\vec{k} \cdot \vec{k}^{3}\right)^{2}\right)^{1 / 2}}\right. \tag{11}
\end{equation*}
$$

The expression wh the cross section (5) in terms of the matrix N reads.

$$
\begin{equation*}
\left.\frac{\vec{d}}{\text { (i) }}=\operatorname{Sp} N, \ddot{k}^{\prime}, \vec{k}\right) \rho N^{+}(\vec{k}, \vec{k}) \vec{\rho}, \tag{12}
\end{equation*}
$$

where $\bar{\rho}_{\rho}-\sigma_{2} \rho_{0}^{T} \sigma_{2}=1,2\left(I-\vec{\sigma} \vec{P}_{0}\right)$.
13v means of formulas (10). (1) and (12) it is easy to get the following expressions for the differential cross sections of the reaction under consideration for both cases:

1. $\quad l=1$

$$
\begin{align*}
& \frac{d \sigma}{d \omega}=1 / 2\left\{\mid a a^{2}+2 \operatorname{Re} a b^{*}\left[\vec{P} \vec{n}-\vec{P}_{0}^{2} \vec{n}\left|-|a|^{2} \vec{P}_{0} \vec{P}-\right.\right.\right. \tag{13}\\
& \left.\quad-|b|^{2}\left[2(\vec{P} \vec{n})\left(\overrightarrow{P_{0}} \vec{n}\right)-\vec{P}_{0} \vec{P}\right]-2 \operatorname{Im} a b^{*} \vec{P} \times \vec{P}_{0} \vec{n}\right\} .
\end{align*}
$$

2. $\quad I=-1$

$$
\begin{align*}
& \frac{d a}{d \omega}=1 / 2\left\{\left(|c|^{2}+|d|^{2}\right)(1+\vec{P} \vec{P})+\right. \\
& +2 \mathrm{Im} c d^{*}\left[\vec{D} \cdot \vec{n}+\vec{P}_{0} \cdot \vec{n}\right]-2|c|^{2}(\vec{k} \cdot \vec{P})\left(\vec{k} \cdot \vec{P}_{o}\right)- \tag{14}\\
& \quad-2|d|^{2}(\vec{\kappa} \vec{P})\left(\vec{\kappa}, \vec{P}_{0}\right)-2 \operatorname{Rec} d^{*}\left[(\vec{k} \cdot \vec{P})\left(\vec{\kappa} \cdot \vec{P}_{0}\right)+(\vec{\kappa} \cdot \vec{P})\left(\vec{k} \cdot \vec{P}_{0}\right)\right] \mid .
\end{align*}
$$

Integrating (13) and (14) over the directions of $\quad \vec{k}$, we obtain the following expressions for the total cross sections for the reaction (2):

1. $\quad I=1$

$$
\begin{align*}
& \sigma=1 / 2 \int\left[|a|^{2}+|b|^{2}\right] d \omega-1 / 2 \int|a|^{2} d \omega \vec{P}_{0} \cdot \vec{P}+ \\
&+1 / 2 \int|b|^{2} d \omega(\vec{k} \cdot \vec{P})(\vec{k} \vec{P}) . \tag{15}
\end{align*}
$$

2. $\quad I=-1$

$$
\begin{align*}
\sigma=1 / 2 \int\left[|c|^{2}\right. & \left.+|d|^{2}\right] d \omega+1 / 2 \int|c|^{2} d \omega \vec{P}_{o} \cdot \vec{P} \\
& +1 / 2 \int\left[|d|^{2}-2|c|^{2}\right] d \omega\left(\vec{k} \cdot \vec{P}_{0}\right)(\vec{k} \cdot \vec{P}) \tag{16}
\end{align*}
$$

The coefficients of $\quad \vec{P}_{0} \quad \vec{P}$ and $\quad(\vec{P} \cdot \vec{k})\left(\vec{P}_{0} \cdot \vec{k}\right) \quad$ in the expressions for the cross sections have a simple meaning. If the quantization axis is chosen along the vector $\vec{k} \quad$, then in the case $l=1 \quad$ the amplitude of the reaction $\quad M_{o}^{t} \quad$ from the triplet state with zero projection vanishes and the other amplitudes are

$$
\begin{equation*}
M_{ \pm 1}^{t}=b \mathrm{e}^{ \pm i \phi} \quad, \quad M^{s}=-i \sqrt{2} \quad a \tag{17}
\end{equation*}
$$

In the case $\quad I=-1 \quad$ the reaction from the singlet state is forbidden and the amplitudes of the reaction from the triplet states are

$$
\begin{equation*}
x_{ \pm}^{\prime}=-i d{ }^{ \pm i \phi}, \quad x_{0}^{t}=i \sqrt{2} c \tag{18}
\end{equation*}
$$

If the target polarization is perpendicular to the vector $\vec{k} \quad$ according to (17) and (13) the expressions for the total cross eections can be written in the form:

1. $\quad l=1$

$$
\begin{equation*}
\sigma=\sigma_{0}-1 / 4 a^{*}\left(\vec{P}_{0} \cdot \vec{P}\right) \tag{19}
\end{equation*}
$$

2. $\quad I=-1$

$$
\begin{equation*}
a=\sigma_{0}+1 / 4 \sigma_{0}^{t}\left(\vec{P}_{0} \vec{P}\right), \tag{20}
\end{equation*}
$$

whore σ^{*} and σ_{0}^{t} are the total cross sections for the reactions from the singlet state and the triplet state with zero projection. respectively.

Thus, the coefficient of $\quad \vec{P}_{\circ} \vec{P}$ in the expression for the total cross section is negative if the product of the intrinsic parities is +1 , and is positive in the case $I=-1$. Accordingly, for $\vec{P}_{0} \vec{p}>0$ the total cross section for the reaction a is maller than that σ_{0} with unpolarized particles in the case $I=1$, and a is larger than σ_{0} provided that $I=-1$. If the polarizations \vec{P} and \vec{P}_{0} are known, this property of the cross sections may be used for tho determination of the intrinsic parities of atrange particles.

In the general case of the reaction with two particles with spin $1 / 2$ in the initial state it is not difficult to get (\vec{P} is ortogonal to \vec{k}) the following relation between the total cross sections

$$
a=q+1 / 4\left(a_{0}^{t}-o^{s}\right)\left(\vec{P}_{0} \vec{P}\right)
$$

From this relation it is evident that in the general case there is no connection between the sign of the coefficient of $\left(\vec{P}_{0} \vec{P}\right)$ and the intrinsic parity, independent of dynamice.

It should be noted that the relative parities can be determined also in investigating the differential cross sections for the reaction (2). Is it is scen from (13), for $I=I \quad$ the ratio of the left-right asymmetry $\epsilon_{P} \quad$ in the reHtion with a polarized beam and an umpolarized target to the asymmetry e p in the reaction with an unpolarized beam and a polarized target is

$$
\begin{equation*}
\frac{{ }^{6} P_{0}}{{ }^{{ }_{P}}} \quad-\frac{\boldsymbol{P}_{0}}{P_{P}} \tag{21}
\end{equation*}
$$

In the case 1 - 1 this ratio is

$$
\begin{equation*}
\frac{{ }^{\epsilon} P_{0}}{{ }^{\epsilon}{ }_{P}}=-\frac{P_{0}}{P} \tag{22}
\end{equation*}
$$

Here we have sapposed that $\quad P_{0}$ and P are directed along the normal to the plane of the reaction.
IV. We note that our conclusion about the behaviour of the total cross sections is valid for any reaction of the type $\quad 1 / 2+1 / 2 \rightarrow 0+0 \quad$, e.g. the reactions $\boldsymbol{p}+H e^{3} \rightarrow \mathrm{He}^{4}+\pi^{+}, \quad \overline{\boldsymbol{p}}+\boldsymbol{p} \rightarrow \boldsymbol{K}+\overline{\boldsymbol{K}}$.

The product of the intrinsic parities

$$
I_{P} I_{y} I_{K}
$$ can be in particular determined from the comparison of the total cross sections of the reactions

$$
\begin{aligned}
& p+H e^{3} \rightarrow H e^{4}+K^{+} \\
& \Sigma^{-}+H e^{3} \rightarrow H e^{4}+K^{-}
\end{aligned}
$$

with polarized and unpolarized particles.
In conclusion the authors express their gratitude to prof. Ya.A.Smorodinsky for useful discussions and his interest in the work.

References

1. A.Abragam et al. Phys. Lett., 2, 310 (1962).
2. O.Chamberlain, C.D. Jeffries et al. Bull. Am. Phys. Soc., 8, 38 (1963).
3. С.М.Биленькии, Р.М.Рындин . ЖЭТФ, 35, 827 /1958/.
4. S.M.Bilenky. Nuovo Cim., 10, 1049 (1958).

[^0]: ON . \cdots RTIO: me TEEN THE TOTAL CROSS SECTIONS OF REACTIONS $1 / 2+1 / 2 \rightarrow 0+0$ ANI: THE INTRINSIC PARITIES OF PARTICLES

[^1]: We use the standard representation of Pault matrices.

