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1. Introduction 

The analytic properties of partial wave amplitudes in the total angular momentum quantum number have been exten­

sively investigated in a series of works. The attention devoted to this problem is due to the well-k~own fact that in a 

crossing-symmetric theory the asymptotic behaviour of scattering amplitudes at high energies is in a one-to-one ~orres­

pondence with the location and nature of singularities in the angillar momentum of a crossed channel. The investigation 

of analytic properties has reached a more or less satisfactory state, when one channel states containing more than two 

particles are neglected. In fact, for this case, it has been proved ( see e./.1•2•3/) that the partial wave amplitude is 

meromorphic in a half-plane, so the asymptotic behaviour of the amplitude in a crossed channel is dominated by the 

extreme right pole. 

In the present work we start a study of the role played by many-particle states, considering the firet non trivial case, 

that of three spinless particles. The method applied is a direct extension of that used for the two-particle case: i.e. 

we expand the amplitudes in angular momentum eigen-states (S e c. 2 ), following the work of WicJt4 'nd Lee and Coo~?! 

The continuation of the kinematic factors in j , the total angular momentum is effected according to the method, 

proposed in an earlier pape/6/. 

The amplitudes satisfying nnitarity and having the necessary analytic properties are constructed by meane of 

integral equations of the N/D type. ( Sec. 4 ). The main difficulty here is in our incomplete knowledge of the analytic 

properties of production amplitudes. Therefore we adopt a model of the inelutic interaction by requiring that the dyua-

mical singularities be given by some simple diagrams, their analytic properties being summariad in Sec.3. We then 

fmlfthat in spite of the presence of complex singularities, the N/D equations are of the Fredholm type, so the IIUlllY 

.. particle amplitudes - at least in the frames of the model considered - are meromorphic functions of the total angular 

momentum. A new feature is brought in when one inverts the denominator matriX (Sec. 5) : due to the presence of the 

three-particle channel, the Regge-poles have condensation points, the positions of which depend on the relative signa 

and magnitudes of the coupling constants ( Sec. 6 ). In Sec. 7 we sketch the physical implications of such a situation; 

some formal aspects of the Watson-Sommerfeld transform in the presence of complex singularities are summarized in the 

Appendix. 

2. Partial wave expansion and nnitarity 

The partial wave expansion we start with is similar to that of Cook and Lee/5/, i.e. the rr N channel (2) is ex-

panded into normal helicity amplitudes, ...Itile in the fl'tiN one (3) we expand two of the particles in their own CMS 

into partial waves (f) ; the resulting states are treated as 'particles' with spin t and mass V s 12 , where 

s
12 

is the invariant energy squared of the pai/1,2/ •. Thus, splitting off the kinematic singularities and dis con· 

nected diagrams from the amplitude, we obtain the unitarity condition, written in matrix form: 

(2.1) 

*For a special caae, •uch liD expiiDalou haa been slven Independently by Te,.MartlroaliiD. ( Proo. Internat. Cont. on Hlsh 

EnerBY Phyaloa, Geneva, 181:1). 
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Here i stands for the total angular ntomentum' f 

- the total energy squared. 

m - the angular momentum and its projection of the pion 

pair; s 

The elements of the'phase space matrix' I. IU'e given by: 

The matrix Map 

where: 

I-22 
2}+1 

P1 
ys 

k12 I. = -
33 vs12 

I-23 = I-32= 0 • 

21+1 

Pl. vs ... 

connected with the transition matrix T af3 by the relation: 

T(j) 
a{3 

.. pi 11m 
a a{3 

p~ , (a, f3 - 2,3) 

"""( 2]""( )2]Y. p =lhs s-(M+p.) s -(M-p. 
2 

k =lh s""" (s -4p.2
)"" 

12 12 12 

-Y. [ 2 .,.. 2 .,.. 
p "' lh • s - ( M + v s ) ] ( s - ( M -v s ) ] 

3 12 12 • 

The details of the derivation of these formulae are given in ref./S/. In eq. (2.1) a summation over f 

integration ever s 
12 

is understood from 4p. 
2 2 

to (ys- M). 

etc are suppressed. 

(2.2) 

m and 

In formula (2.2) factors like o( s12- s;2) aii' 
Sometimes it is convenient to go over to another representation; namely, instead of the quantum numbers (j f m) 

we introduce the orbital momentum L of the nucleon with respect of the CM of the pion pair. The transformation 

matrix between both representations has been given by Jacob and Wick 
11

1 ,and for our case it reads: 

<iMUiiMfm >=(~ 
2j + 1 

¥1 ) < LOfmljm> (2.3) 

II being the projection of j ) • 

Inserting the expansion of MaJ and MJ{3 with the help of eq. (2.3) into the unitarity condition, we observe 

that the summation over the projection m can be c.arried out in a closed form. If j is an integer, then, according 

to the well- known sum rule of vector coupling coefficients, we obtain: 

I. < LO f m I j m > < j m I L 0 f m > "' 
m 

=t 
2j+ 1 

2L+ 1 

0 

if 

4 

\j-L\~L<j+f 

otherwise • 

(2.4) 

s 

·v-

l 

' 
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• I If, however, we continue in the quantum number j to complex values, then the last formula is replaced by the expres-
. (6) 

S!On : 

where 

2L+1 

2j+ 1 
I. < L 0 f m I j m > < j m I L 0 f m > = /1.. ( j; Lf ) 
m 

fl..(j; U) sin j TT 

TT 

L-f 
( -1 ) 1 

i-IL-fl 

+G(L+f+1-j) G ( IL -f I + 1 - j ) + 

+(j->-j-1) 

G(z) being a poly gamma function of order zero ( Ref/81, Ch. 1. ). 

(2.5) 

+ 

(2.6) 

In the new representation, we have to sum over L and f , integrate over s
12 

as before, while the element 

I., of the phase space matrix is of the form: 

I-33 = _!u_ 
s 

12 

the other elements being unchanged. 

2}+1 

P3 /1,. ( j; Lf) 
ys (2.6) 

From our point of view, the main difference between eqs. (2.4) and (2.5) consists in the fact that for complex values 

of i _, the series in L is not cut off for a finite value of the orbital momentum; therefore, for the analytic proper­

ties of the amplitudes in the total an~lar momentum, the convergence properties of this series are essential. The 

function /1.. ( j; L f ) - as on'e can easily see - is an integer function in j ; if L or tends to infinity, 
-1 -1 . 

/1.. ( j; L f ) decreases as L or f ,respectively. 

Intuitively one ecpects that- due to the finite range of the interaction -the amplitudes Maf3 decrease exponen·· 

tially if L or f tends towards infinity through real values; therefore the series l~ converge uniformly in j , 

so the presence of the inelastic channel does not introduce new kinds of singularities. At present we are unable to prove 

this conjecture in full generality; therefore , in what follows, we study the contribution of some simple diagrams, where 

the convergence properties can be investigated comparatively easily. 

3. Model of the inelastic interaction 

We study the inelastic processes, described by the diagrams Fig. 1 a, b. In order to simplify the kinematics, in what 

follows we take all the masses equal ( IL ) and call them 'pions'. The contribution of the diagrams on Fig. 1 a, b is 

given by the following expression: 

Bj 
2 

(s,u)= gfs Q ( s( s -~ - u l ) + 
2.! TTa(s,u) i a(a,u) 

2•g 2 f s 
00 

J dt Q / 
{3 ( s, t, CT) 

) X + 
TTa (s,u) 4,.1.2 a(s,u) 

(3.1) 

2 
2 2 -Yo t(t-IL -u) 

x{[t-(IL+vu) ][ t-(IL-·..ju) ]l q,(__:_,.:__ __ ) 
a(t,u) 
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where 

a(x,yJ=Ix(x-4/l(x-(p.+yy r''l(x-(p.-vY ) 2 11~ 
and 

2 
{3 ( s, t, u)- s ( s + 2t- u- 3~t 1 ' 

u is the energy squared of the pion pair, emitted in a relative s -state. g and f are phenomenological 

coupling constants of the three- and four- particle vertices, respectively. Qj - s are Legendre functions of the second 

kind. The reader will immediately notice that the first and second terms in the expression (3.1) arise &om diagrams 

1 a, and 1 b respectively. 

Now we are going to study the singularities of the expression (3.1) in its variables. As one CBD immediately check, 

the amplitude is a meromorphic function in j , having simple poles at j"" • n ( n • 1, 2, ••• ) 

Singularities in the energy variables s, u may arise, where 

a) Some of the functions under the square root vanish. 

b) the argument of - at least - one of the Legendre functions equals to ..:t 1. 

The square -root singularities give rise to the kinematic cuts, while those coming from the Legendre functions to 

the leh-hand and anomalous singularities. 

As u increases from below, at the value u -3~t1 the singularity of Q0 reaches the point t • 4p. 
2

, encir-

cles it and goes backward down to the point t = 3~t2 ( this is reached at a= 4~t 2 ). Aherwarda the smgula-

rity moves out to the complex 

~­

t -plane. !n order to avoid this singularity, we have to deform the path of integratioa 

in t , as shown in Fig. 2. 

A similar analysis shows that the singularity of the function Q j reaches the point t • 4~t2 if • ucl u are . 

bound by the following equation: 

1 2 u .. 2 (2~t + s+ y3s(4~t2-s) 1, (3.2) 

I£ s> 4p.1 or s < 0 an end point singularity in t cannot occur for real values of a . 

The partial wave amplitude is singular at 

a = 4p.
2 u•Ol 

s•<~t..:tvu )1 J 
( the kinematic ltranch points) 

and at the surface given by eq. (3.2). If we inserted a complete pion-pion partial wave amplitude in the place of the 

four-pion vertex in Fig. 1 a , b, the situation concerning the location of singularities would remain essentially the same, 

The ·convergence of a partial wave expansion in one of the angular momenta could be damaged, if a singularity in the 

momentum transfer reaches the end point of the integration contour as at u = 3 p.
1 

in the diagrams considered). 

However, according to a well-known theorem/9/, a Legendre expansion begins todivergeif the singularity reaching the 

-~ 
end point is at least as strong as ( t - 4) ( or correspondingly for the other end point). In the cases considered 

here, the singularities in question are logarithmic; therefore the Legendre expansions are very likely to continue to 

converge even if an 'anomalous' singularity is developed. 
Bearing these considerations in mind, we retain the point vertices in our diagrams; this corresponds to set· 

ting f=O in all the previous formulas. 
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• 
4. N/D equations for the matrix amplitude 

We are now ready to construct the matrix amplitude .t(z,s ( a , ,S = 2,3 ) , satisfying unitarity in two· and three 

particle channels. We follow the procedure of Cook and Le/51, by assuming that the matrix M has the form: 

-1 
M ND 

the 'denominator matrix' D being chosen in such a way as to satisfy the unitarity condition for M while the nomi-

nator matrix contains the dynamical singularities. M satisfies the unitarity condition if the matrix elements of D 

are connected with those of N by means of the following relations: 

- 00 d , 
D (s) c 1- r 1 __ s_ I,

1
:/ s'') N

11 
(s) 

22 '4jl. s'- s 

D 
31 

-- roo _ds' ( s,a) -
·9p. 1 s'-s 

I. (~'a) N (s:a) 
33 31 

roo d s' D33 (s,a:a) =o(u'-u)-
9p.1s'-s 

I.33 (s:a')x 

x N ( s:a',a). 
33 

(4.1 ) 

_ . .-,~; The matrix elements of the phase space matrix I. a{3 are obtained from eqs. (2.2) and (3.6) by setting M = p. 

and e = 0. In writing down the expressions ( 4.1) we suppressed the diagonal index i . 

The equations for the nominator matrix N are constructed as in ref/51, i.e. assuming that the dynamical singu· 

larities arise from the inelastic amplitude only, and equal to the dynamical cuts of eq. (3.1). The amplitude B,
3 

can be represented by a contour integral of the form: 

B (s, a)= J 13 
c 

ds' 

s'- s 

the contour of integration being shown in Fig. 3. 

(4.2) 

Because of the singularities of B 13 , reaching the end points of the integrations, beginning at the elastic . 
threshold , the contours should be correspondingly deformed. The continuation procedure necessary 

is described in the literature ( e.;. in ref/5/), we simply quote the resulting system of equations for the elements of 

the nominator matrix: 

A13 (s',a+io) D32 (s',a-io) 

(4.3) 

) ds' ds' N (s,a =J --r-- A3 ,(s:a> D..(s')-2rri f --r--
32 s -s ... c"s-s 

C+C" 
I.u(s') x N 

22 
(s') A 

32 
( s', a) 



N (s,u~u)=- J d s' A (s',u) D (s~u)-
33 C'+C" B - B 32 23 

- 211; r 
c" 

ds' -s'- s 
I. (s') N (s~u) 

22 23 
A32 

(s', u' ) 

(4.3) 

, 

the contour of integration being explained in Fig. 3. 

By means of elementary manipulations from the expressions (4.1.) and (4.3) we can obtain a system of integral 

• The resulting equations read as follows: 
equations for the elements of the nominator matrix N a{:3 .. 

N2,(s)•-f;2 ds f(:+yu)2 ds''I.3,(s',cr-io) ~3(s,u+io)-B2s(s',u+io) 
s - s' 

X 

x N ( s',u-io) 
u 

NH(s,u)= B
23 

(s,u)- J4p.~ dcf {fl.:Vu'fds' I.33 (s',u'-io)x 

x B
23

(s,u'+io) -B23 ( s',a' + io) N
33

(s', a' -io, a) 

s - s' 

00 

N (s,u)=B (s,a)-f.4 .. 2ds'I.Js') 
B

32 
(s,a)- B 32 ( s', u) N (s') 

22 

32 32 ...,. 2 
, 

s - s 

00 - 211 i f 4p.
2 

da' J C,ds' I. 22 (s') A23 (s', a'+ io) 

B
32

( s, u)- B32 ( s', a) 

s- s' 

00 

x ~+.Ja12 
ds" 

---;;-, 
s -s 

!.
33

( s",u) N 
32

(s",a) 

N ( s, a', u) = 211 i J , ds' I. ( s ') A ( s ', u+ io) x 
33 c' 22 23 

X 
B

12 
( s, a') - B,. ( s ',a') 

-J "; ds' I.22 (s') 

4ft 

B.u (s,a)-B32(s',a') 
s- s' 

s- s' 

~3 ( s',u) 

-2ui!00 do" J ds' I. 22 (s') A 23 (s',a"+io) 

fl.2 c'' 

B32 ( s, u') - ~( s', a') 

s- s' 

00 

X [ 2 · fJ.+.Ju'1 

ds" I. ( s ", u "- io) N ( s ", a"- io, a) 
33 ss 

s''--.s' 

X 

(4.4) 

X 

$'-'' 

(Notice that in the system (4.4) all the integrations beginning at s = 4fl.
2 

are to be undestood in the sense, ex -

plained in Fig. 3 ). 

Introducing for a moment the notation: 

A--N A--N 
'I'J - 22 , .,.. 2- 23 

'cps=Nu' c/J_.= NH 
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' and 

f 
2 

etc, 

we see that our system of equations (4.4) can be written in the symbolic form: 

where the matrix 

¢. = f-+ :£ K ·o ¢o 
l l f 1L L 

K.; j has the following structure: 

0 

0 

0 K
24 

K, 0 

!(4!1 ° K 44 

and its elements Kij can be read off by comparing eqs. (4.5) and (4.4), e.g.: 

B23 ( s, a+ io) - B 2 3 ( s ~ a + io) :£
33 

(s',a-io) 
s - s~ 

etc. 

(4.5) 

(4.6) 

In order to investigate the analytic properties of the amplitude 
-1 

M •ND in j , the total angular 

momentum quantum number, one has to apply essentially the same procedure as in the one-channel problem/1,2/ • 

The method described in refs./ 1•2/ consists in establishing the conditions, under which the integral equations for 

N (or D ) are of the, Fredholm type. 

Taking these conditions for granted, we can immediately apply the theory of parametric integral equations ( cf. e.g. 

lglisch/lO/ ). 

So we tum to the investigation of the kernels of the system (3.6) ( or (3. 7) respectively ). 

As is well known the condition for a system of integral equations to he of the Fredholm type is: 

J dx dy I 
ij 

2 
I K ij (X, y ) I < 00 

where x and y stand for the set of variables correspondingly for each element of the matrix K ij . 

(4.7) 

For our system (4.4) we are- given the exact expression of the kernel matrix; a straightforward estimation of the 

integrals shows that ( 4. 7) is fulfilled down to Re j =- 1. Hence it follows that the matrix N af3 is a 

meromorphic function of j in the right half-plane - Re j >- l • N af3 will have poles, where the 

Fredholm determinant 

K "'exp Tr (log K ) .. 
IJ 

(4.8) 

· vanishes; the operation 'Tr' means integration over the variables s, a and summation over the index 

i of the diagonal elements of the matrix ( log K ) .. 
IJ 
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JC •• 
IJ 

(i.e.at j- n ), the solution Na{3 will have 
Besides that, at the poles of the elements of 

in general an essential singularity. 

As can be seen from the structure of eq. (4.8), the positions of the singularities of N a{3 
are independent of the 

energy variables s,a. 
If we had to do with a one-channel problem, by this analysis we could essentially he satisfied. In fact, when 

forming D , the same ('standing') poles would appear both in N and D , so the amplitude N/D would remain 

finite except at the roots of D • In our case, however, the inversion problem of the matrix D a{3 leads once 

again to an integral equation, the kernel of which may he singular in the param~ter; so we have to investigate this 

problem separately. 

5. The inversion problem of D 
and D -1 

The amplitude M in matrix form looks like M .. N D so, after having determined N 

we have to find the matrix D-1 • This is equivalent to sulving the integral equation ( cf. /
5
/ ) : 

f(s,a) • '2D33 (s,a,a') cp(s,a') da', 
(5.1) 

or taking into account the structure of D 33 
~eq. (4.1) ) : 

cp(s,a)•i(s,a)+X J
4
: 2 K

33
(s,a,a',A) cp(s,a')da', 

(5.2) 

where 
D

31 
(s,a,u') = 8( a-u')- X Ku (s,a,a', A, q) 

and A =f g. 

Now, K has the following structure: 
33 

A K 33= f 
d s' !.

33 
(s~a') ~ls~a',a) (5.3) 

s'- s 

and N 
33 

is to be taken from the solution of eq. (4.5). The latter being a system of Fredholm equations, 

N 
33 

can be written symbolically: 

N,= <P4 =14+; + r4k tk 
(5.4) 

"'" 

where +rile is the resolvent matrix of the system (4.5). 

and by eq. (5.3) 
AK

33 
will have poles in the parameter A , where the Fredholm deter-

So, N 33 

minant N (A. j, g) vanishes • The solutions of the equations 

N(A,j 0 ,g)=0 (5.5) 

can he written as : 

io = io ( A, g) 
(5.6) 
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l 
1 

1 
t 

so equivalently, we can state that the kernel of eq. (5.2) is a meromorphic function of j , having poles at the solu-

tions of eq. (5. 5). 

According to the results of ref./10/, the solution of (5.2) ( i.e. the inverse of D ) will have - in general -
33 

essential singularities ( condensation points of the eigenvalues ) at the points given by (5.6), except when in the 

11eighbourhood of j = j 0 the singular part of the kernel is a degenerate one. 

We can see the effect of this phennmenon on the amplitude as follows. 

Having found the resolvent of eq. (5.2), in the form: 

we find the matrix 

H ( s, u',·u) = 

-1 
D (s,u',u) 

a{3 

G(s,u~u) 

D (s) 

as in ref. / 5/ : 

I 

Det D a{3 

where the elements of the matrix are given by the following relations: 

a,, (s) = D (s) 

d ( s, u') =- { du D ( s, u ) G ( s, u , u' ) - D ( s, u') 
:13 1 :13 1 1 :J:J 

x D n ( s, u
1 

) ] [ f du :J D u ( s, u :J ) G ( s, u :J , u ') + D :13 ( s, u ') ] 

Here is the following expression: 

!l(s) = D
11

, (s)- f du
1 

du, D:J:J (s,u
1

) G ( s,u
1 

u,) x 

x D (s,u )- f du D (s,u ) D ·~ (s,u
1

) 
3:1 :J 1 :J:J 1 ~· 

Notice the relation: 

•lJet D a{3 = !1 (s) D (s) 

Hence, e.g. the elastic scattering amplitude is given by the equation: 

-{ciT duN (s,u )G(s,u u )D (s,u )-
. 1 2 :J:J 1 1 :J u 2 

- f du N ( s, u ) D ( s, u ) I . 
1 :13 1 32 1 

11 
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The poles of M :n ( and every other amplitude) in the angular momentum plane are given by the equation: 

/.). ( s) D ( s)"" 0 , (5.13) 

Where there no coupling between channels '2' and '3', (5.13) would reduce to the condition, known from the one-channel 

problem, i.e. D11 "" 0. In the present case, however, the presence of other channels 'induce' new poles 

even in the elastic one (we call them for the sake of brevity 'inelastic poles' although, as one can see from the structUI'e 

of /.). (s) and D(s) , both are influenced by all the channels). The 'inelastic' poles are given by the equation: 
~ .. 

D (s) = 0. 

They condense at the points where the Fredholm determinant, N (A, j, g) = 0, The condensation point 

of the poles obviously does not depend on s , hut on the strength of the coupling characterized by the parameters A 

and g only. 

This phenomenon, as the reader can immediately see, is characteristic of the presence of a many particle channel. 

In order to get some physical insight into the problem, we are going to study now this behaviour in an oversimplified 

model of a three-particle channel; not coupled to any other one. We are interested in the position of the poles of the 

nominator function N 
33 

, giving rise to the condensation of Hegge poles of the amplitude. 

6 •. Poles in the nominator function of a three particle channel 

Consider a system of scalar particles of mass p. • We study the amplitude Mu , under the assumption that 

the three particle channel is completely decoupled from all the others. In order to get a nontrivial equation in this case, 

we have to generate a dynamical singularity of the amplitude by prescribing the function which. according to our previ-

ous terminology is called B 
33 ( the 'Born term' for the three particle scattering ) • 

For Bu we take a simple pole diagram, shown in Fig.4. The expression for the partial wave projection of 

B u can be found in a straightforward way; it reads as follows: 

B 1 (s,u~u)"" 
33 

2f
3
gs 1 

a(s,u) a(s,u'}pf-u 

1 
X 

p.:l- u' 

x Q 
1 

( ( S+p.
1
-uHs+p.-Lu') -2p. 1 s ) 

1 
a ( s,u) a ( s, a') 

(6.1) 

where the kinematic factors a are defined as in Sec.3. (In spite of the fact that we take particles of equal mass, we 

choose two kinds of vertices at the upper and lower parts of the diagram in Fig.4., with coupling constants f and g, 

respectively). In a standard way we obtain the integral equations for N 33 and D33 

-1 
M = N D 

33 33 33 

N (s,a',a)= B (s,u~a)-
33 33 

00 - r ck.r, 
4p. 2 

B 3js, u, a'1- B33(s~ a', a") (6.2) _x 

s - s' 
J 

00 

ds'I (p.+..ju"):l 33(s',u") 
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~-

x N
33

(s',a",a). (6.2) 

(We suppressed the index i ) ; the denominator function is given by eq. (4.1). 

As we have shown in the foregoing sections, the quantity we are interested in, is N ( f, g, i ) ' , the 

Fredholm determinant of eq. (6.2). We want to work in a weak coupling approximation, i.e. we put: 

B
33

(s,a',a)- B 33 (s',a',a) 
N ( f, g, j) = 1 - Tr ( ~...:.__----.------

s -.s' 

Taking into account eqs. (6.1) and (6.2), we find in this approximation: 

where 

N(f g j) = 1-~ (4~,2 da (
00 

dp _L 
' ' 12s " 3 ,.. o a P 

p 
a(s,a) 

2ys 

(6.3) 

After an integration by parts, we observe that for small values of i , the main contribution to the integral comes 

from low values of p2 
; therefore we replace Q I ( 1+ 2;:) by its asymptotic form (Ref. /S/, ch. nn. thus 

arriving at the expression: 

where 

op 

F(p) = f 2da ( 
4p. 

.. 

00 

rc; + 1) f _!!.L 30 + fl. 2 

ro+3/2J 0 p2 2p2 

., -z a ( p 

-1- 1 

) X 

X F (p) I 

) ( l-a) -­
ap yp2+p.2 + v p2+a 

-3 

(6.4) 

(6.5) 

F(p) = O(l) if p -+0 F (p) = 0 (p . ) if p-+ 00 and F (p) > 0 

everywher~. 

The integral in (6.4) i.s singular for j = -% ( the singularity coming from the lower limit of integration), 

the behaviour coming from this singularity being described by a factor r<i+%J. 

Therefore N (f,g,j) is of the form: 

ro+1J c + .•• } 
(6.6) 

i+ Y:a 
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where C > 0 • (Had we taken the exact integral (6.3) we would have obtained a similar expression, with C 

a slowly varying function of j in the neighbourhood of j =- 1h ). 

Let us remark that the higher order terms of the determinant N contain singularities beginning at j =-3/2, -5/2, ... 

and the common factor ru + 1 > ; therefore, if we are near to i=-% , the first term in (6.6) is the do-

minant one, independently of the magnitude of the coupling constants. 

It is easily seen that the roots of N cannot go out to infinity in the right half of the j -plane. In fact, for 

by making use of the asymptotic expression for 

the Legendre functions, one can show that N = 1 + 0 ( j m exp{- a ( + j + :2~) where m and a are 

some constants. To study the behaviour of the first roots of (6.6) we replace 2 ·J r ( j + 1) by -~ , thus 

j ·+<>o (-rr/2 <arg j < 11/2 ) , 

1 + 1 

obtaining that N (I, g, j o ) 0 at 

j = ~ 1 -3 + . T--32_c_ £3---;- l 
0 - • 0 (6.6) 

3 

Now, these roots, as functions of the coupling constants. show a different behaviour, when f g z 0 . 

For I 3 g > () as the coupling constant increases from zero, the roots move towards each other afterwards 

going out to complex values; they, however, always remain in the left-hand part of the -plane. For the other 

sign of the first root, starting from j =- '12 , moves to the right ( the other one to the left) and can pass over to 

the right half plane if the coupling constants are sufficiently large. 

.._ 

7. Discussion 

Wehopethat the qualitative picture arising from our previous considerations, will essentially be the same in more 

realistic models as well; therefore let us look for the physical implications of the results we have found. 

The novel feature the presence of inelastic channels brings in is that the poles in the angular momentum plane can 

condense at points, the positions of which depends on the magnitudes and signs of the coupling constants. If such a 

condensation point can move out sufficiently far to the right half of the angular momentum plane, it can completely 

change the asymptotic behaviour of the amplitude in a crossed channel, originally determined by the dominant Regge 

pole. ( Besides the coupling dependent condensation points of Regge-poles, there are of course other ones, at the poles 

of the Legendre functions Qj , i.e. at j = - 1, -2, ... They are of the type found by Gribov and 

Pomeranchuk/ll/ ). If a condensation point has come out sufficiently far to the right half of the i -plane, then by 

constructing the complete elastic scattering amplitude by means of a Watson-Sommerfeld transformation, one can go with 

the residual integral to the left down to the first condensation point. Thus, if is the total energy, we obtain roughly 

for t -+ oo ( apart from trivial factors ) : 

Mn (t, sl :£ 'V t av ( ~-1 J ( 2 j + l ) a 1 
v 21 .. sm }17 

M:~~ (s) t 
1 

i=i +iT (-oo<r<oo) 
0 

the integration contour being 
and j 

0 
is the position of the first 

condensation point of poles. If s , the momentum transfer becomes so large that 
a

0
(s) = j

0
(a 0 (s) 

being the trajectory of the leading pole ) , the behaviour of the amplitude is no more characterized by one Regge•pole, 

but by an infinite number of them plus by the contribution of the residual integral. This change in the character of 

. . d h . 1 . I . f d'ff . . f l · 1 /!2
/ A d' h' scattenng remm s t e sem1c ass1ca p1cture o 1 ractlon scattermg o e ementary parbc es • ccor mg to t 1s 
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- D 

' picture, at small moraentum l•·ansfers the scattering is essentially determined by the 'cloud of virtual pions', for incre­

asing momentum transfe~s the dominant role being taken over by the 'core' - i.e. ·essentially by the multiparticles states. 

( As one can see from eq. ( 5.12), as s 

the contribution of many-particle states 

tends to the critical value, the amplitude M 
11 

is mainly determined by 

( D (s) - has a 'root of infinite order' ) . 

We want to point out that we have found no energy dependent cuts in the angular momentum plane; this is connected 

with the fact that our partial wave expansions in the three particle unitarity are very likely to converge. In fact, making 

use of the apparatus, developed in Sec. 2., one can see that if one expansions -e.g. that over f were replaced by 

a Watson-Sommerfeld integral and at least one of the elements of the matrix • M a{3 

this would generate an energy - dependent cut in the angular momentum j • 

contained a Regge-pole in f 

Whether such cuts reallv arise or not can be answered therefore only after a detailed study of the singularities of 

the inelastic amplitudes in th~momentum transfers. There is one further problem conceming the inelastic amplitudes. 

They surely contain complex singularities in the momentu~ transfer, therefore it may happen that apart from any con-

densation phenomenon of the Regge poles or the presence of singularities other than poles, the asymptotic behaviour in 

the total energy may not. be of the Regge type. Some formal aspects of this problem are discussed in the Appendix, a 

fiRal answer depending again on the structure of the amplitudes in question. Being aware of the incompleteness of our 

results, we nevertheless hope that they may serve as a basis for future investigations and that the qualitative features 

we have found will not undergo a substantial change. 

In conclusion we would lib to express our sincere thanks to Mr. J.Kwiecinski for having kindly checked some of 

our calculations and to Prof. A.A.Logunov for valuable critical remarks. 

Appendix 

We want to investigate the Watson-Sommerfeld transform in the presence of complex singularities of the scattering 

amplitude*. Assume that the partial wave amplitude is meromorphic for Re f > f 0 

cated at , where the satisfy the inequalities: 

0 < arg a
11 

< rr / 2 

0 < Re ai < A, 

A is some fixed positive number. 

For A ( f, s has the following asymptotic behaviour: 

A ( f, s ) = 0 ( f m exp{- y ( s) ( f + ~ ~) 

inside the sector: 
itjJ 

Re I t/1 I < rr/ r - l ; 

m is some fixed number, y (s) - a complex -valued function of s 

Consider the Watson-Sommerfeld transform of A(£, s): 

* /13/ 
At least part of these results - if not all - are .surely known to Challlfour and Eden 

1 
and to Zu.A.Slmonov and K.A.Ter.Martyroslan. 
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A(z,s)=i { 

c 
,\ d ,\ 
cos,\rr 

A (A,s)P,\-Ifz 

where for the sake of convenience we write f + 1fz = ,\ • 

(-z) (A.3) 

The contour C , originally taken around the positive roots of cos ,\ 11 ( for >. > eo + ~~ ) can 
1 

be deformed into the vertical line C : A = f 0 + 1fz + i rr and the semicircle of infinite radius, R 

Then we have: f.+ lfz+ j 00 

A(z,s)•i{ ,\ d ,\ 

cos ,\ 11 

fa +lfz-ioo 

A(A,s) P 
.\-'h 

(-z) + 

+ 2rr l: r11 (s) 
II 

,. 
av (s)+ 1h p (-z) 

sin rra
11 

(s) ay(s) ' 

(A.4) 

provided the integral along R vanishes. In (A.4), rll (s) stand for the residues of the poles at f = a
11 

Put z =cos (} 8=8o+ i (}1 and Y =Yo - i Yl with y
1 

> I) 

can be treated analogously). Then making use of the asymptotic formula: ( Re£./8/, Ch. III ), 

-lfz JA-Ih (-cos(}) = 2 ( 11..\ sin(}) cos [ .\ ( f)- 11)- TT/4] ( .\-> oo) 

and of eq. (A.2) we find that the integral along the part of R in the lower half-plane vanishes if 

while the integral along the part of 

() > 0 , 
0 

8, < y 0 (}o > Y, 

R in the upper half-plane vanishes if 

() <2~ [y +rr -lfz(} 1. 
l y l 0 

1 

( the other case 

(A.5) 

( A.6) 

The intersection of the domains determined by (A.5) and (A.6) has always a common part with the 'physical' interval 

0 < 6
0 

< rr
1

, 61= 0 provided y
1
<rr-E. ( Ry considering the diagrams in Sec. 3, one can show that 

for them I Y
1 
I < rr/2 ). If the last condition is satisfied, one can always continue the Legendre 

expansion into the representation ( A.4) and if (A.5) and ( A.6) are satisfied the series in (A.4) converges. If 

YJ > 11 > 0 the function 

of the domains ( A.5), (A.6). 

A(z, s) has complex singularities in z on the boundary of the int ~rsection 

If one is going to investigate the asymptotic behaviour of A ( z, s) for Z....., -·oo (physically this 

corresponds to the behaviour at large energies in a crossed channel), one has to consid~ complex values of 6 

given by () = rr + i (} 1 . If there are no complex singularities in the amplitude ( correspondingly Y1 < l 

where E is an arbitrarily small positive number), any finite portion of the line 0=11+i(} lies within 
1 

the domain ( A.6 ). However, for y > Tj> 0 this is not the case, so the series in (A.4) will in general diverge, 

and so does - formally -the integral along the vertical line. By a suitable analytic continuation the residual integral 

can be given a sense even in this case, and the series exists at any rate in the asymptotic sense. 
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Fig. 1. Diagrams determining the dynamical singularities of the inelastic amplitudes ( 'Bom terms'). 
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Fig. 2. Path of integration in the t- plane for diagram Fig. lb. The kinematic cut runs along the real axis 

from4~t
2

to infinity. The dashed line (------) corresponds to the left-hand cut of. The line 

( -.-.-.) indicates the path of integration to be chosen. 
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Fig. 3. Singularities and path of integration in the N/D equations. The solid lines( ___ ) along th~ real 

axis show the kinematic cuts; the dashed line the dynamical cut, while the line ( -. -. -. -. -.) 

the deformed integration path in the N/D equations. 
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Fig. 4. Bom term for three particle scattering. 


