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§ 1. Introduction

Generalizing the usual dispersion relations Mandelstam” 1 considers the scattering amplitude H for the meson-
nucleon collision as a function of two complex variables, eg £=5%(85" and i' = f l)‘- L.t” , 5 being
the square of the total energy in the c.m.s. and € - the square of the momentum transfer.

An essential step is then the hypothesis that ﬂ(J, t) is holomorphic in the region ,
[20<5"< o0 oitiamand M= s s oo, 0122 oo,

On the basis of this hypothesis, the crossing symmetry and the condition of the two-particle unitarity Mandelstam
formulates a problem for the determination of A(S, é) /1,2/, This problem which we shall call the Mandelstam
problem is the main topic of oyr investigation.

n/Y ang /2/ the Mandelstam problem is formulated as a system of singular integral equations, while in the present
Paper algebraic equations are preferred.

The choice of algebraic methods as a tool in the dispersion theory is not @ccidental. This is so becanse the repre.-=
sentations of analytical functions by means of power series are usually more natural and convenient than the represent~
tation by means of the Cauchy integrals. This is demonstrated in/ %56,/ where algebraic representations for the scat-
tering amplitudes derived from expansions in power series are shown to have great advantages ovﬁr representations by
means of the Cauchy integrals.

In §2 expressions for the unitarity conditions in the real plane s are derived. These conditions
together with the analyticity condition and the crossing symmetry define the problem we consider.

In 63 the closed region P + /7 is mapped holomorphically on a unit bicylinder. Then the scattering am-
plitude is expanded in a Taylor series for the coefficients of which one deduces a system of algebraic equationsdes-_
cribing the meson-nucleon scattering process.

In é4 the algebraic system is generalized to the case for which ﬂ(-s; f) is not analytic in r .
42. Formulation of the Mandelstam problem.

Here we shall consider only collisions of neutral scalar particles. The generalization to the case of charged non-

scalar particles is trivial/1/.
The conditions of the two-particle unitarity for the first channel of the reaction K”—’-?‘(N is written in

the form/l/
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This formula is valid for /\1"74. s S'< e and =fs2'< 7
Here S=S'2(s5” is the total energy squared in c.m.s. determined by the four-vectors of incident nucleon
and incident meson, 9 / is the momentum in c.m.s. which is calculated by the formula:

?"'-_- _j‘ﬂw



. . . T .
Z - is the cosine of the scattering angle which is found from the expression
f /
Z - 1+ Ql..
i/
f _é/ . . >
where =T+ is the square of the invarimt momentum transfer which is determined from the four-vectors

. r . ' . .
of incident and scattered meson, and %2~ -is as usual the angle determined by the scattering planes.

The problem will be formulated in the real plane Il . To write (1) in terms of the variables of this plane we no-

tice that in (1) 2’ and S’ are considered as constants and changes in Z, and » ’ lead to changes of the mo-

'
and tZ'

Therefore the connection between new and old variables is given by the expr
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After the substitution of the variables (1) goes into
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K which is bounded by the lines:

The formula is valid for all points of the region

e 5’ (1) £'=0
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and the integration limits are given respectlvely by the expressions for ty - 17/2 is the lower limit, (7
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is the upper limit: for

In an analogous manner we find for the seco
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The formula is valid for ¥, t'e K which is bounded by the lines
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Here
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and the functional determinant is calculated from the equations
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The limits of 1ntegrat10n are determined from the expressions for i1 i y ' s the lower limit, & s
2 l/
the upper limit, for 22' [2 g, "+ (A Z"}/"?'l 1_7 is the lower limit, Zz [Z’ E ’9'3///! :]

is the upper limit.

In the third channel the unitarity condition is of the form
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which is bounded by the lines:
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The connection between 2, ,, }’ ! on the one hand and S, ’, S" on the other is determined by the

equétion
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The limits of integration are given by the formula

l/ ' 2 2
for s’ :-22' Z"D‘GEN""S/"‘”’/“ '21’1 is the lower limit

Zi ﬁi L L s, +”/“ i 2’ is the upper limit.
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This determines the formulas for the unitarity conditions for all channels.

aboitt the holomorphicy of the scattering amplitude:

”{51 t) is holomorphic in r‘

We write the hypothesis
(5)

The crossing symmetry is expressed by the relation

A(21% Lut-s-T5 t)=Acs, )

h no more 'miormation i« available we are led to the

(6)

If we take into account the fact that in the dispersion approac

following definition of the Mandelstam problem.

which satisfies the condition (5) and equations

Find a function ﬂ of the two complex variables J§ and f ,

(2), (3), (4) and (6)

§3. Derivation of the algebraic system for the Mandelstam problem

s of the holomorphic transformation

By mean
Z2=T¢& y,: _.S;g
S+< (7
(8)

2= Re‘¢ t+l »
C

transforms into the hypersurface
Cz==1; R= 1
and eq. (2) into the equation
+ 3
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the real plane ”

in doing so, we put
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The boundaries of the region 22°  and the limits of integration of the variables d)l and ¢L are obtained

by inserting (7) and (8) into the corresponding formulas from éZ.

Further it is advisable to put

Are, by, R)=B(r 8% R)+ACs, B o R .
A, 050 &) = A B3 % R+ (3,85 )



A‘I (f; ¢/ ) R) is the sum of the pole singularities and singularities for S—vco

and £ —>ea
which after the holomorphic transformation passed from n w C . A,_ (r, ¢, 2, R} is a known rough solu-

tion of the problem we are interested.

In general A(Y, ¢)' , k) should be considered as a known function and B()’, ¢, 7-, R) -asa

correction to be determined.
Owing to (5) it may be asserted that -B satisfies the condition ¢
B(Y, ¢i X, K) is holomorphic in the bicylinder K s an -

-~

_f1>1=0
K= { 1>R=0

Taking into consideration the fact that the singularities of )4 on n and consequently on C are

taken into account by A (9, ¢; T, K) we may assume that «B(” ¢,‘ "L, &) is piecewise smooth
w C+K

Then B(S"[ ¢/ '1/ R) in K can be expanded in the Taylor S;l‘ies
N T e N AL
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which on C goes over into the Fourier series
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After inserting (10) and (12) into (9) and integrating over ¢1 and ¢z we get
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It is advisable to unify the indices m and A in f: and the indices Pand 2 in & :*

r & - 7 A | ¥ I T
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Eq. (13) is convenient form for expressing the analytic properties of the unknown solution and the unitarity condition(2).

We can make the same calculations for the second and the third channels so that we can write

(0 -
T )= Z L ESepns” STz e s AN L I
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where ’3 T corresponds to the first channel, €=22. to the second and €= ~ to the third.

The equation of the crossing symmetry (6) goes over in

‘5(5%5) Z X /\1‘(@ @)+ Nip.¢) =0 (15)
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Problem (2), (3), (;), (5) and (6) is reduced to the problem (14), (15) which is formulated as fdlows.
),
Let functions E( [Z ¢}’ . (ﬂ¢}) Mh“’ ¢// N(” #e known which are given in the regions
) e- ’ 2 3 and respectively. We seek the complex numbers -Z.< 4: coe &< by

means of which eq. (14) and (15) would be satisfied in xe) €= 4 2, 3 end xqrespectively.

The problem of such atype are not investigated yet. To solve this problem we shall use methods which have been
applied successfuly for numerical solution of the Low equation and other similar problem.

The first method for numerical sol'ition of (14), (15) r&é})mbles the method from the paper/7/' This method consists
in the following: by means of some weight multipliers A (50/ ¢/ , (: / 2, 3 and E"(}‘) ¢j

functional is first calculated

T(%) 22,_’ [[Z{" Lp XY S BCp, 8] J o <0, #(Bcy, #il"

Then it is advisable to seen for values of awhich minimize ] 7[r&),.
The second method“”ﬁ/ reduces the problem (14), (15) to an algebraic system:

€
The boundanes of ? are pxecewue smooth and this is sufficient for a complete orthonormal system of func-

Az athe expansions

tions L2[59¢j 2 = - e=3to exist by means .of which in

™
Thia is poasible beoause, B(Q’ ¢) being plecewise smooth, the series 1s absolutely convergent,
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are formed.

The insertion of these expressions into (14) and (15) leads to the algebraic system of equations.

oo (¢ =2 M oy = O
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(16)
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§4. Generalization of the equations for non-analytical scattering amplitudes.

There are two reasons which make the Mandelstam hypothesis probable. First , it is the simplest and natural gene-
ralization of the usuai dispersion relations. Second, it is checked by the Feynmann diagrams up to the fourth order
inclussively and recently it becomes obvious that it will stand the check of the sixth order diagrams too.

Nevertheless unless the hypothesis is not strictly proved it will be useful to do without it, if it is possible.

In the present section we shall not assume that the scattering amplitude ﬂ(’; t} in P is an analytical
function of the complex variables § and t. In this case the problem formulated in ¢2 passes to the problem: find
the function 4(5, -t) of the two-complex variables §  and 'L( which satisfies the conditions (2), (3),
(4). and (6).

For the excef)tion of one foint, the derivation of the algebraic system for the problem (3), (2), (4) and (6) is
identical to the derivations of the corresponding system in 63. The difference is due to the fact that in §3 the fun-
ction B(”, ¢) /S holomorphic in the unit bicylinder and is expanded in the Taylor series since here we refused the
analyticity and can only assume that on C it is a piecewise smooth function which is periodic with the period

27 both with respect to & and ¢ . Therefore m C  we have the Fourier series expansion:
o ' 0 "
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which is equivalent to the series

By, &)= z r,“ eyt ¥

(18)

The series (18) corresponds to (12) and the calculations from é3 can be repeated literally, by replacing (12) by
(18).

As a result we have that eq. (14), (15), (16) and (17) pass into the equations:
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5. Conclusion

Algebraic systems have been obtained which describe the meson-nucleon scattering in the two-particle unitarity
approximation. The system (16), (17), is derived under the assumption that the scattering amplitude is analytical in
complex points and the system (21), (22) without this assumption. In general to castruct the algebraic systems

the analyticity properties are not obligatory. Therefore the algebraic systems can be used where the integral equations

are not applied.

-

In systems of the type (16), (17) there is a small information concerning the analyticity, unitarity and the crossing

symmetry and in the system (21), (22) - smaller. Therefore one believes that the solutions, if they exist, are multiva-

lued.

Mandelstam has used the integral equations for summing the series of the perturbation theory/s/- The same can be

made, in principle, by means of the algebraic systems, in this case due to the absence of the Cauchy integrals the

calculation process will be more effective.

The author is indepted to A.V.Efremov, V.A.Meshcheryakov and 1. Todorov for useful discussions.
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