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• §I. Introduction 

Generalizing the usual dispersion relations \landelstam/1,' considers the scattering amplitude A for the meson-

nucleon collision as a function of two complex variables, e.g • .I'= s '+iS" and t • f 'f t t 11 

the square of the total energy in the c.m.s. and t - the square of the momentum transfer. 
.S' being 

An essential step is then the hypothesis that fi(.S, f) is holomorphic in the region 

r 1/ I' It t, :. o < s c:::. 0.01 o(t'"'tfn&n.«. r !! o ~.s '::.....eo/ o:::. :o.- c>o. 

On the basis of this hypothesis, the crossing symmetry and the condition of the two-particle unitarily Mandelstam 

formulates a problem for the determination of A (.S, t} /1,2/. This problem which we shall call the Mandelstam 

problem is the main topic of our investigation. 

ln/
1
/ and 1

2
1 the Mandelslalll problem is formulated as a system of singular integral eqaations, while in the present 

paper algebraic equations are preferred. 

The choice of algebraic methods as a tool in the dispersion theory is not accidental. This is so because the repre,-

sentations of analytical functions by means of power series are usually more natural and convenient than the represen._ 

tation by means of the Cauchy integrals. This is demonstrated in/4•5•6 .1 where algebraic representations for the scat­

tering amplitudes derived from expansions in power series are shown to have great advantages over representations by 

means of the Cauchy integrals. 

In q 2 expressions for the unitarily conditions in the real plane fl!! S ·~ f ~ 0 are derived. These conditions 

together with the analyticity condition and the crossing symmetry define the problem we consider. 

In f3 the closed region r f n is mapped holomorphically on a unit bicylinder. Then the scattering am­

plitude is expanded in a Taylor series for the coefficients of which one deduces a system of algebraic equationsdes-

cribing the meson-nucleon scattering process. 

In q4 the algebraic system is generalized to the case for which f/(.s, t) is not analytic in r 
92. Formulation of the Mandelstam problem. 

Here we shall consider only collisions of neutral scalar particles. The generalization to the case of charged non­

scalar particles is trivial/1/. 

Th~ conditions of the two-p!lrticle unitarily for the first channel of the reaction JC N -1r N 
the form/ 1/ 

This formula is valid for /'1~ ,s S r < ~ and - f ~ Z. 
1 ~ 1 

is written in 

, . ,, 
Here s~s ~l.S 

is the total energy squared in c.m.s. determined by the four-vectors of incident nucleon 

9, 
1 

is the momentum in c.m.s. which is calculated by the formula: 
and incident meson, 

~ 

.1:." '-(11~;~{~ '-(N~} 
lf..s' -
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j! 1- is the cosine of the scattering angle which is found from the expression 

t' 
t.'::: f+ -. 

t t l ·t'' where = +£ 

J..Q'-
1/ 

is the square of the invari111t momentum transfer which is determined from the four-vectors 

of incident and scattered meson, and ~' - is as usual the angle determined by the scattering planes. 

The problem will be formulated in the real plane n . To write (l) in terms of the variables of this plane we no-

' I zf and J' lead to changes of the mo-
tice that in (l) 

mentum transfers 

z.' and .S' are considered as constants and changes in 

I t' f., and 2.. 

Therefore the connection between new and old variables is given by the expressions 
, 

:i! I:. 1+ t, 
1 z.z·~ 

e.'i., '+ 1/ {1-l'&._j(1-l:,' 2 c...rsy,:. 1+ -~:: 
l.t'" 

After the substitution of the variables (l) goes into 

_.. 

A{s~ tJ-./t*rs;t') =/Jrll, 'dt~_' firJ;-t; t,; t~)Jt"rs; t; JArs:~') 
:r 

The formula is valid for all points of the region f( which is bounded by the lines: 

Here 

r , { 12- t' a.-: .s ?'" t'lt,~ i =- () 

&I: s = !1"+_,14 .. _ ; , + 2. r{n"-· f)(#. 2._ f, I 

- I 

I I '. t. It 'J_ ~ F ( s 1 t I 1 J z. I - Jii 1 Vi' 
])I{ e.,:. !P ') 

JJI (t, ', -tz_'} 

(2) 

. t' I.J 2 

and the integration limits ~re given respectively by the expressions for f : - lj' is the lower limit, 

is the upper limit: for i~ : 2 'J'2 [ z.'~/ + V(i-z'J(t-~.' a.'- iJ is the lower limit, ' 

!f' L [ z. I&:,'-V(1- z•"'j(t-l:{'-) '- -f] is the upper limit. 

In an analogous manner we find for the second channel 

/l(s; tj-R*c.s;t')= /Jolt, 'd.t~.' F '(s:t'; t,: tt')lt (s; t,').ll.(s,'i;.') (3) 

, t' /(.ff 
The formula is valid for S 1 E: 

which is bounded by the lines 

a!i=. .s ': {!1-fi ~; t '= 0 

&Il•s'=M~~+ f~-zVrn1..1)fp'-- $/ ; o ~ t ~- ~ 
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' 
H~re ;; 

Fe(. , t'· t · t · ,_ t' y/(s;t" .n-r t:: V> J 
.51 I ,, 2..}- I. ..., D"(-1- , t ') 

Sli. VZN~;.c, ~- s-t - ~, 2.. 

0~t(s't'J= [s+t'-(11~'3[.s~ f'-(f1~)'Lj 
y I 'f[lN t.fo 2..,...a._ 5 ,_ t'] 

and the functional detenninant is calculated from the equations 

·£ ~. = 11- lz·l 

~·Z:+Vft-l''Jft-l'1J ...,'-''/ '= t+ _!;__ 
(1 , 27•1. 

The limits of integration are deiennined from the expressions for t.; : - Y $' l. is the lower limit, 0 is 

the upper limit, for t1 ': 2tj'1{l'l,'+-VIf·l',(t-l,''}'-i] is the lower limit, Ztt'Yc'~,'- Vff-~'J(/-1/J......_f} 
is the upper limit. 

In the third channel the unitarity condition is of the fonn 

(4) 

s't'e K./" 
' 

which is bounded by the lines: 

;;; l.. 2. l .1. I. - .. 
q,- = .s'= 11 '/"- - 21-'- 21 'v 1' ~ .. -Nl.. i 'In'~ t '<c.<:) 
,,;; ' ' , ____ _ 
0 - a s = n ~ z._ 2 z, , 2..,. z., 'Vt, ~ .._ 1'1 2. ., j '111 L ~ t , < ~ 

where 

I I 
The connection between ~ .I J' S , s, 

on the one hand and , 1 " on the other is detennined by the 

equations 

for 

~·i!.,'-1 Y(t- i'lj(1- l!:,'J '41Sj' I= 
.s,'-11~ a.,.z,·· 
Zt 'f f'"~~,L 

The limits of integration are given by the fonnula 
II --. ' z. l ., z s,' : -Z:'vJ''~~I'fa.- s, +ff -;.-" -.ct' is the lower limit 

2 '
lr -1. ";" I 11& & 2. ,z f V 'J' ~ '&_f1• - s, + ;/4 - '1 is the upper limit. 
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. ' r, '+li.r. 11( •2.)•12 ,,~ 'f1J. .. ? ,a. for SJ.: .Sz.=L! i!, ,t-~·? 1-?:, .J J ll<j 7-'t.,-1'11. f ;u--"J. isthelowerlimit 

s~..'=[l. 'l.,'- Vft-l' 1l(l- ~, "~-)' 2y I r'f ~ w.~-~N~t«.~ lz' 2. is the upper limit 

This determines the formulas for the unitarity conditions for all channels. 

We write the hypothesis about the holomorphicy of the scattering amplitude: 

1/(.5, t) is holomorphic in r (5) 

The crossing symmetry is expressed by the relation 

/l(lf1J.t~a.- s-t; t}=./1(~, t) 
(6) 

If we take into account the fact that in the dispersion approach no more in1ormation if available we are led to the 

following definition of the Mandelstam problem. 

Find a function R of the two complex variables 4 and t , which satisfies the condition (5) and equations 

(2), (3), (4) and (6) 

§3. Derivation of the algebraic system for the Mandelstam problem 

By means of the holomorphic transformation 

~:.'tt!t't.p= s- r (7) ----: 
S+«. 

2=- f?_ei(/J = i-) 
t+L 

(8) 

the real plane n transforms into the hypersurface [ 

C= ·t:=-1i R.=1 
and eq. (2) into the equation 

Ac,, q,; ~ 1)- /l'*(,~ ¢; ~ 1J=/PrA t/ 'Pz. J?~ ~<4, ~J!I*rr;ct;i ttJil& c/Jvt tJ<9) 

y,if;e xi 
in doing so, we put 

ft ( 1..e .:JP.,.1 
-z .e( "'-1 

R.e'~cp +'}~fie~,¢ i 'l., R) 
' - . ., e'lP-t 

.,.~,,-

---

I ~ 
The boundaries of the region a:.- and the limits of integration of the variables "1-'t 

and </JL are obtained 

by inserting (7) and (8) into the corresponding formulas from 92. 
Further it is advisable to put 

!ICY', cpj 1-, ~.;; B(Yj 'l>i 1., ~+A(JJ'/'i 't, R) 

il(~ "'; 1.,1) =.l\(~ ~ i 1., f{)+Az..(r1 <Pi .,__, r) 
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A1 ( 'f, ¢J j 't., R.) is the sum of the pole singularities and singularities for .s-~ and f- o.c 

which after the holomorphic transformation passed from n to c . !J:t.l'f, t/J; 't, R.) is a known rough solu-

tion of the problem we are interested. 

In""""" !J{y//>i 1., 1!.) uhonld boo=nideud on • kno~ fooo<ion ~• B('f, tf> j -._, R.) -""" 
correction to be determined. 

Owing to (5) it may be asserted that .B satisfies the condition ~ 
.B{sP

1 
</); "l

1 
f{} is holomorphic in the hi cylinder K , (11) 

_[1>1..'~0 

K.:::. t 1 ~R.>-0 

Taking into consideration tha fa.s:t that the singularities of If on fl and consequently on c are 

taken into account by .l\ ( ~ (// j 't, 1?.} we may assume that J3 ( Yj </Ji '1..1 R) is piecewise smooth 

in C+K 

Then B( 9'
1 

1/) j "t
1 
!{} in J< can be expanded in the Taylor series 

C><" 

B( "' "'; ... , R.) = 2_
00 .x .. ~ z .... r = L :Z, ( 1 e·Y;' "'( R. e''lj ... 

~~:.(1 ~'\:=0 

which on C goes over into the Fourier series 

OQ 

8(y,¢)= B(~/Pj 1,1)= L x'llo ... e'(~,Pf7!.tfi) (12) 

nt, 1l :o 

After inserting (10) and (12) into (9) and inteiP'ating over c/11 and 4:>2. we get 

where 
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It is advisable to unify the indices I)\ and ll in ~and the indices pand ~in I( :* 

I eo... ~ I .,.q * 1 ~ • I ·I 
.lJ ry;,,PJ={;o X(. Eff._c,,¢) +l<> XA. G~,fsri ¢)+[;_.~4. ~H"'(sP,rJ>)+K.(rp,¢)~~3> 

Eq. (13) is convenient fonn for expressing the analytic properties of the unknown solution and the unitarity condition(2). 

We can make the same calculations for the second and the third channels so that we can write 

(iJ - ....tel oc --~ reJ CJQ ~c H.tJ b lJ (~ ¢)= 2. ~ /:.~ {t:p,¢}-1-~ .X.<. (it (.r, tp)+-l .2( X.. . ~J'P,r/Y+I<r~:tfJJ .. o U4> 
I..=CJ {.o -L,~~;'"" ~r:'f,·Z.,J; ~ 9S £ x_(U 

where '= t corresponds to the first channel, ~ -2 2- to the second and e: 3 - to the third. 

The equation of the crossing symmetry (6) goes over in 

,_ OCI 

J:J { SP, rfJJ =I. x4. r1 (. ('f, f/>J +- N r $" .. ?>.> ::. o 
~0 ~ 

'f,~E ~ 

(15) 

where 

M,_ r 'f, ;J , 'U!: .PJ =- e .-z.,.. ~ {.z. i{t1 t ... ')f., f f ,_~ 'f ].,'v/1 _ ~ (..,.,'I'J 

and 

N{Y',t/>}=!J{z.i~{z,"{lf~'}t-c.; r -1cf f], tJ> }-~(y, ¢J 
Problem (2), (3), (4), (5) and (6) is reduced to the problem (14), (15) which is formulated as fdlows. 

,..{tJ ~ (~1 
~ functions t:.~ ry, .,IJ}1 •• j . IC rf}¢), l1~.fS1 ¢), . !V(J', tJ)e known which are given in the regions 

~ e: ~ 2
1 

J and ~ respectively. We seek the complex numbers ~ J l_r: q ~ · · · c..c:. by 

means of which eq. (14) and (15) would be satisfied in M! ~: f = ~ 2, J and .,)(,f'lrespectively • 
• 

The problem of such atype are not investigated yet. To solve this problem we shall use methods which have been 

applied successfuly for numerical solution of the Low equation and other similar problem. 

The first method for numerical sohtion of (14), (15) resembles the method from the pape/71· This method consists 

in the following: by means of some weight multipliers ~r-~ t/JJ I e: I, ~I ] and E"-(~ t/Jj the 

functional is first calculated 

::J (Xi)= t /[,-!; .tp .),.(1~; ¢1 [ .19&, pjj~ II<'? <ttpe-(J'! r~[.8(JP, pjf" 

Then it is advisable _to seen for values of .Ji which minimize I :7{ X"-} I. 
The-second method/ 4,6/ reduces the problem (14), (15) to an algebraic sy&tem: 

(~) 
The boundaries of -x· are piecewi1e smooth and this i1 sufficient for a complete orthonormal _,ystem of func-

tions e;r~ ¢)' if=- 0, ., i., .. . c.o<:>to exilt by mean• .of which in ~ .. lf'lthe expansions 

"' Thla Ia poulble beoauae, /3(rp1 tp} beiDI pleoewlae amooth, the aarloa Ia abaolutely ooDVerleDt. 
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are fanned. 

The insertion of these expressions into (14) and (15) leads to the algebraic system of equations. 

~4. Generalization of the equations for non-analytical scattering amplitudes. 

There are two reasons which make the Mandelstam hypothesis probable. First , it is the simplest and natural gene­

ralization of the usual dispersion relations. Second, it is checked by the Feynmann diagrams up to the fourth order 

inclussively and recently it becomes obvious that it will stand the check of the sixth order diagrams too. 

Nevertheless unless the hypothesis is not strictly proved it will be useful to do without it, if it is possible. 

In the present section we shall not assume that the scattering amplitude 1/(5, f) in (" is an analytical 

function of the complex variables .S and f . In this case the problem fonnulated in ~2 passes to the problem: find 

the function 1/( 5 1 i} of the two-complex variables S and -/ which satisfies the conditions (2), (3), 

(4). and (6). 

For the exception of one point, the derivation of the algebraic system for the problem (3), (2), (4) and (6) is 

identical to the derivations of the corresponding system in §3. The difference is due to the fact that in f3 the fun· 

ction B(y>, if>} Is holomorphic in the unit bicylinder and is expanded in the Taylor series since here we refused the 

analyticity and can only assume that on C it is a piecewise smooth function which is periodic with the period 

2.'it both with respect to ~ and ¢ . Therefore <1\ C we have the Fourier series expansion: 

13{"'¢.'= L._ [ f/' (41 ~r c.n-., + B:.:.: c.-s'""'~' J.-..~ ?t- B,..:"~ ?>of' Cq:j -.¢+ 
'/ ... , .. =d ....... 

~ 1 'f) c.o{B"¥ , B•tc" ] 
~ .... , h .......... <foJ +(·.£:-.=0 ,.. ... u.s~r ~ ... ;;.,. , ... ~J>..r ~ ... ,-;,.. . --

9 



which is equivalent to the series 

+c.o 
BcYJ, ¢) = L: X. e i(.,..,, + ,_q,) 

"""'"-- "'~ (18) 

The series (18) corresponds to (12) and the calculations from ~3 can be repeated literally, by replacing (12) by 

(18). 

As a result we have that eq. (14), (15), (16) and (17) pass into the equations: 

(e) +- feJ .,._ .,_ {() .~ 

i1c,;J =I I.t £,(9', ¢J +I~· cft~;r~>JtL ~·~ H~.,.l,#~A-rh~J=o <
1
9> 

4:e- ..- .{: _.... 4,er--

(21) 

- ~ 61.2, J; 1'/¢e. ~} 
.!t'!,f/JJ=t--X,t1([r,rp)+ N{Y,f/J)=O '"" 

Y, t1 E (Jt!(l J 
~- ,~, '"~'# .,.._ 

''· ~J * ~J • (eJ 
L. ~~ ~+Z (; ~ +L 1{" .. :1( ~ +-kl =o 

4..:-..- "'=- ~lt:-c.-

(20) 

t·~ - c.::-, ... -1,o, 1, z, 
~Co._ 

e = 1, z, J 

fo-

L-'!1( .-1(.,. ~·=o 
"-=--- y 

(22) 

;=- -~, ... -I, 0 f, z., .... + ~ 

5. Conclusion 

Algebraic systems have been obtained which describe the meson-nucleon scattering in the two-particle unitarity 

approximation. The system (16), (17), is derived under the assumption that the scattering amplitude is analytical in 

complex points and the system (21), (2~) without this assumption. In general to c<astruct the algebraic systems 

the analyticity properties are not obligatory. Therefore the algebraic systems can be used where the integral equations 

are not applied. 

In systems of the type (16), (17) there is a small information concerning the analyticity, unitarity and the crossing 

symmetry and in the system (21), (22) - smaller. Therefore one believes that the solutions, if they exist, are multiva-

lued. 

Mandelstam has used the integral equations for summing the series of the perturbation theory/8/. The same can be 

made, in principle, by means of the algebraic systems, in this case due to the absence of the Cauchy integrals the 

calculation process will be more effective. 

The author is indepted to A. V.Efremov, V.A.Meshcheryakov and I. Todorov for useful discussions. 

10 

-... 

~ ..... 

• 

• 



,, 

' 

Referenvea 

1. S.Mandelatam. Phys. Rev. 112, 1344- 1360 (1958). 

2. K .A.Tep-MapTwpocsra. )K3Tct> g9, Bbln. 3, cTp. 827 /1960/. 

3. M.Cini and S.Fuhini. Ann. of Phys. 3, 352-389 (1960). 

4.. n.X.BbipHeB, B.A.MewepKKOB, Vf .n.He.aenKOB. 06 o.aaol Kpaesol 38Ll8'1e LlHCnep­

CHOHHbiX COOTHOWeHHI, npenpHHT, .lly6Ha, 1962, 

5. I,P.Nedelkov. Darstellungen der Stranamplituden- B ne'laTH. 

6. I.P.Nedelkov, A.Model. Equation for Nnoanalytical Transition Amplitudes. Preprint, Duhna, 1963. 

7. n.B bipHeB, P • .lleH'IeB, KHM 3e nxea. 06 O.QHOM MeTo.ae LinK 'IHcneHHOro peweHHK 

ypaBHeHHI noy. npenpRiT .lly6Ha, 1963. 

8. S.Mandelstam. Phys. Rev., 115, 1752-1762 (1959). 

Received by Publishing Department 

on April 8, 1963. 


