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Introduction 

The relativistic causality is usually discussed in the framework of theories of interacting particles. However, one 

may require it to be fulfilled in free motion of isolated particles as well, in the following sense : Let we have initially 

a wave packet localized in a local region ( so that the probability of detecting the particles anywhere outside of this 

region is zero). During free motion and spreading of this packet we must have vanishing probability of observi.ng the 

particle outside of the light cone, i.e. out of the front of the light wave radiating from the boundary of the above region. 

However, the quantum-mechanical packet spreads instantly over all space/1,2/ even in the relativistic considera­

tion. This fact means that it is possible to transfer a signal faster than light although I should make a reservation just 

from the very start that this effect is practically unobservable ( at least, in direct experiment~ and therefore in most ap­

plications of the theory ( stationary problems, problems of scattering ) it may he neglected. However, this effect .is di­

rectly related to the problem of the local microcausality of the theory: the packet spreading may be considered in the 

framework of field theory, satisfying the usual causality condition ( see, e.g/3/ }* • 

It is shown that the above effect is allowed by ordinary quanta! postulates. 

One can attempt to find a way out from this trouble by forbidding the treatment of such observables as the coordinate 

operators which we use to describe the packet localization. There is another form of the scalar particle theory, which 

is similar in some respect to the Dirac theory of electron/51. The investigation of a spreading Dirac particle 

reveals, however, analogous difficulties and ,apparently, more drastic attempts are to be made to overcome them (seej4h. 

l. Spreading of the scalar particle packet. 

The evolution of a physical system consisting of one isolated scalar particle isexhaustedby the free motion. This 

problem is solved in terms of the field theory ( although in our case such a theory is equivalent to the non-second-

quantized one, se/7/, ch. 7}. For the sake of simplicity only one scalar neutral field 'f(1,t) is borne in 

mind which interacts with nothing. However, we might consider any inodel of interacting field ( scalar field with spinor 

one, e.g. ) satisfying the usual causality condition/3/. 

l. Owing to the vacuum definition 

---({) (+) ... I - o IW <-> ... I (x,t) 0>=< I (x,t)=O 

and therefore the wave function of our particle ( one-particle F ock amplitude ) in the coordinate representation 

(l) 

is a positive frequency solution of the Klein-Gordon equation ( 0 +m
2

) 41(-;, t )=0 , see/7/, 7 c. It can be 

expressed in terms of 41 at the moment t by the formula (see 171, ch. 7 , (81) ) : 
0 

* . 
The relatlvlstlo covariance of the theory by itself does not ensure the relattvlstlo causality. Theories with relativla• 

tic form factors or nonlinear ones may be an example (see, e.g./4:/ ). 
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By inserting (4) and (5) into (2), we get: 
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Formula (5) can be also obtained in the following way: ¢ 0 ( k) being given, one can find 

¢(~ t) =fliP [ -i y k 2+ m2 t] ¢_{k) ,see/7 I, ch. 7 (41), and go over to the coordinate representation for obtaining 
0 

if>(~ t). 

By means of (5) we can check that If> ( 1, t) obeys in fact the first order equation ( see/7 I, ch. 3 ) ·• 

ss--· 
. a If>('* r . a 2 ~ -+ J-a-r- ...,t)= (-J.at-J +m l If> (x,t) (6) 

Th~fore, we need not .specify separately _a_ If> (~ , t0 ) ( it is sufficient to know ¢ ( k ) at 
a~ o 

t ·= t ). Eq. (6) is relativistic covariant in just the same sense as the Dirac equation in the form 
0 . 

;_a_ t/1 = ( it ~ + ;3m ) t/J or the Maxwell equations. 
at 

Till now the presentation was made in the representation of the covariant coordinate x • It will be used in§.2 

However; the operator x is non-Hermitia/6•71. For the scalar particle we know only one satisfactory 

coordinate operator- the Newton and Wigner q coordinatel12, 11. It is non-covariant hut only in the sense that 

it is transformed in accordance with the non-tensor representation of the Lorentz group ( a known example of like 

quantity is the usual three dimensional velocity ). 

In the q - apace we have as before k =- i _a_ ,. a q,. 
1131 and therefore Eq. (6) and formula (5) are of the -

same form aa in the x -apace: 

-+ 1 f 
If> ( q , t) = ( 21r )J/2 

md3 k (k2 2 V..,..{qk e·iyk
2

+m
2

t -+ + m ) II': ¢ (k ) 
yk2+ m2 o 

(5') 

~ -+ 2 2~ -+ 
j_u_lf>(q,t)=[(-iL) +m] if>(CJt) 
at aq (6') 

The norm in the q -apace is of the forml13,141 
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2. Consider the particular form of the initial state 

+oo U:r 

=~ J dk' 
Ir 

-- --·-~ ---........ ... 

sin
2

ka v'"i) = 
kJ 

(7) 

.. 
-'I· 

N and N = ( 2 rr 3 a ) 
1 2 

are the normalizing factors; 
.. 

E = V k 2 T m! <1>
0 

( q, 0) is the localized function of q 

(see, e.g/81, page 131 ); 

{ 
for r < 2a 

0 for r> 2a 

and describes a wave packet which is localized inside the 2a -radius sphere and has zero average momentum. The 

center of the packet is at rest and its spreading is described by 

+oo ikr 
<I> ( ;, t) "' _N2 f d k I 

z r -oo 

-iEt 
l 

formula (5) with t 
0 

= 0 : 

(8) 

There are no such integrals in the tables of Fourier transforms/9/. But according to general reasons ell cannot be 

zero at any point during the finite interval of time/2,10/, This holds for the points I ~ I > t + 2a too. The 

geometric locus of the points r = t + 2a is called by us a light fronL This is a sphere whose radius increases 

at the velocity of light ( we use the system of units c = 1 and h=l ). 

Estimate the behaviour of <I> ( r, t) at r > t + 2 a (out of the light front ). The integrand of (8) is analy-

tical in the upper half plane with the cut from im to i oo , see Fig. 1 ( one might draw the cut ( im 1 - im ) 

but only with the specified cut one has such a branch of the function v k 2 
+ m 

2 
which equals + lv k 2

+ m
1 I for 

all real k ). In this case on the arc B b ]m [y k 2 + m2 > 0 and on the arc A a 

On the line ( b, im ) where k is pnrely imaginary k • i q we have 

exp ( -i v k 2 + m2 t) = exp i v q2-m2 1 t and on the line ( im, a) we have 

exp (- i v k 2 + m2 t) = exp (-I v q2
- m

2 1 t). 

a 8 

K 

A 8 
Fig. 1. 
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According to the Jordan lemma, at 

more the integral over A a ) and 

r>t+2a 

llcr 

l"'(dlct --
00 -qr 

=-2Jdqf 
... 

the integral along the arc B b tends to zero (the 

,y 2 -2 
- k+mt. 2 1 s1n ka 

---"[{ 

2 
(9) 

sh qa 
sh..; q2

- m2 t 
q 

Owing to the fact that the integrand of I is positive I and .. <I> ( r, t) = N
2 

1/ir are non-

vanishing at r > t + 2a .Let us estimate I from below. By replacing y q2- m 2 by a larger func-

tion q - m I is reduced to the sum of integral exponential functions. Using the asymptotic representatiol\ 

of these functions ( see, e.g. /11/ ) at r - t - 2 a> > Am ( Am = · 1/ m is the particle Compton 

wavelength ) we get 

2ma -2ma 
t -mr f e 

I> L;;. ~ ·I + 2 2 
zm- (r-2af-t 2 (r + 2a) - t 

_2_} 
r2- t2 (10) 

2 
Thus, out of the light front the probability density 

observed there. 

!<I>(r,t)! is non-vanishing and the particle can be 

3. We state some generalizations of th'e particular problem solved. 0£ course, besides sin 
2ka 

----p- /E many 

"other functions cp
0
(k) may be indicated which describe in the momentum representation the localized pac~ 

(in particular corresponding to smoother 

Fourier transfonn/8,9/. For all of them 

<I> ( q, 0) e.g. sin 
4 ~a yE ) . See the tables of 

0 I k 
<I> ( q, t) will tend to zero out of the light front more rapidly than exp(-mr) • .. 

If instead of the initial cf>_ (k) 
11 

for which ~ = 0 we take ¢11 (k)= ¢
0 

(k+"A) then we get initially 

the localized packet ( with the zero average coordinate 
.. 
qav- = 0 

.. 
•), with the average momentum 11 • 

We emphasize that the relativistic consideration ensure the motion of the packet center at a velocity not greater 

than that of light. 

2. The Hypothetical Experiment on the Signal Transfer at a Superluminary Velocity. 

... 

We saw that out of the light front the probability density is appreciable onlY at a distance of several Compton wave­
-11 

lengts Am .. 1/m from the front edge. The lightest particle, electron, has Arrf" 3.86 • 10 em. (In the 

present paper we consider non-zero rest masses only ). It seems therefore that the effect cannot be observed in real 

( at least direct ) experiments. It is reasonable to put the question, if there exists this trouble at all ( perhaps it is 

wtslly m~sked by the uncertainty relation, for example ). We show that the quantal postulates do not forbid the fol 

lowing hypothetical experiment to be made. 

From point A (see Fig. 2) to point G and D two signals are transmitted simultaneously at equal velocity. 

Ia trivial: Instead of cp ( k) I cp (k) exp ( ;1;. {l q ) 
o o av 

• The Benerallzatlon to the oaae if .j O 
av 

should be_ 

<l>(q,t)-<l>(~+q,t) If <l>(~t) 
c av 

corresponded taken. To euoh an Initial funotloa then will correspond .. 
to ¢ (k) 

0 
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Having received the signa\. the generator G produces one particle during one second. This particle has Am 

equal to one million km (we call it a Jl -particle). As a result, by the end of this second, there is one free 

Jl -particle in some region near G • The dimensions of the region cannot exceed 0.3 million km, since accordi• 

to the theory of relativity, during one second the particle cannot move off &om the production point lty more than 0.3 

million km. The second signal puts in motion detector D for a period of one se'cond .It gives a pulse, if the 

Jl -particle falls into its volume. Let the distances AG AD and GD be equal to 1.5; 1;5 and 3 mil 

lion km,respectively. 

According to the theory of relativity D must not give any record during its work. However, according to the 

solution of the problem of a spreading of a localized packet under the given cdnditions there is the non-vanishing proba­

bility of the record and such a record will be a signal transmitted at a velocity greater than the light one. Such a 

result was obtained in spite of the fact that at all the stages we took into account the theory of relativity (namely 

'preparing' the initial •tate and using the relativistic theory of a spreading of this state ). 

We discuss possible objections conseming such an experiment. We note first that the IJIIantal postulates ( see, 

e.g./7/, ch. 1) do not yield the particle mass spectrum and do not forbid, consequently, the existence and the 

treabnent of Jl -particles. 

1. Does the quantum mechanics allow the localization of a particle in a region smaller than Am ( and al•o the 

detection of the coordinate with an accuracy not worse than Am ) ? 
2 

We would remind of the well known interpretation of the wave function: I J/1 ( cz) I · is the dea.ity of pro-

bability t\lat the device measuring the physical quantity "' Cl give• the value cz for it • Thus, the use 

of the symbol q implies the existence of some abstract device which imparts to q an exact physical meaning • ..-
The problem of the realization of such an device bears no relation to the hypothetical experiment since ene dis-

cusses the intrinsic contradiction in the relativistic quantum meclaanics, i.e. contradiction which exiata in the 

abstract 'physical world' of this mechanics ( 'world' which is constructed according to the ~antal relativistic theo-

ry postulates). 

The examples of Gedanken experiments are known in which coordinates of some particles cannot be measured 

with accuracy better than Am /16/. However this does not prove the existence of this limit of the measurement 

accuracy: 'Ob femer dieser Grenze fur die erstgenannten Teilchen eine prinzipielle Bedeutung zukommt/16/ oder ob 

sie durch indirecte Methoden umgehbar ist, liisst sich durch elementare Uberlegungen nicht von vomherein entschei-
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den'* ... We may attach to this limit a principle importance only after constructing such a mechanics which results 

automatically in the impossibility of exact measurement of the coordinate, i.e. in the ideal physical world of this 

mechanics, by definition, no device could exactly measure .the coordinate. 

Thus, the problem of localization of a particle in a region less than .\ m is exhausted by the concrete l!onstruc­

tion (7) of such a state from the positive -frequency functions (referred to the moment t = 0 

The localized state may be referred to a certain moment of time. Even if time is considered as an operator ( see 

Pauli/17/ p. 1, ~8) this possibility follows from the fact that q and p commute with t • The 

fact that the state with definite · q coordinr · ~ in the .x: representation is non-local does not mean that it is impos­

sible to prepare and measure the localized states in the q- space/13/. They can be constructed as some superposi­

tions of plane waves, for example. Assuming language of the q coordinate w; must express the packet localization 

and the measurement in D in terms of this coordinate. 

2. In the hypothetical experiment use is made of only those devices which localize or detect coorrlinates. A simul• 

taneous measurement of momenta or energy is not required. Therefore the uncertainty relations are of no importance in 

this experiment. 

We notice that the instantaneous transfer of a signal is due to the stage of the quanta! free motion but not to the 

pmparing and recording stage. 

3. Fierz/19/ and Ma/20/ state that the non-vanishing of the causal function ~c outside the light cone does not 

lead practically to the trouble of an instantaneous transfer of a signal. We will show that the authors give examples in 

which this trouble is absent ( or is almost absent ). It is natural that these examples do not exclude another example 

<. our hypothetical experiment ). ,:;·· 

Fierz, in his approach, instead of the initial state specifies the photon source i ( x!L ) in a certain space-time 

region vz • The coordinate .x: is used as a parameter characterizing the space position of the ( external ) 

current. 

Let particles be produced during the finite time in the finite volume: 

J(.x:IL )• F (1) f (t) 

{ 

COIIBI in the interval - T< t<+ T 

f (t)>:. 
(11) 

0 outside 

+«> 
For example, f(t)• J ezpiEt sin ET 

E 
dE --

For the sake of simplicity of calculations we may assume F( ;) to be proportional to 8 (;) • If a region V y 

is situated as is shown in Fig. 3 the current j ( Yp. ) in this region can only absorb particles. The integral 

f d 4y J ~.x: j(y) ~c(y-.x:) j(.x:) = J dt f ~.x: j(y) &+) (y -x)j(x) 

v,.. v 
" 

v,.. v,. 
(12) 

* Thla remark of Paull (/IT/, p. t, ~~)may be Illustrated by the following notes. Using tbe proton microscope we are not able to 

meaeure the coordinate of a slow electron even with the accuracy 1886 .\ ( see1191: 6.12 ). On the other hand, photons emitted b 
Ill 

by atom• or neutrbaoa and electron• emitted by nuclei are localized In reslona far smaller than their wave length. 
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vanishes, only if 
(+) 

<l>(y) = (d 4
x li. (y-:x)j(x) • 6 in the region Y., . It may be shown that 

<l>(y)=/0 in this region. Using the device of the type of Fig. 2 we are therefore able to transmit sipals 

with the superluminary velocity ( Y corresponds to 
][ 

G and to D 
It 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

5] / 
/ 

/ 
/ 

/ 
/ -- ----- -- ----------

/ 

Vx / 
/ 

/ 

/, 

/ 
/ 

/ 
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However it may occur that the !J. c non-causal properties do not exhibit themselve.. S. T.Ma transforms the 

integral <l>(y) = f d
4 

x !J. ( y-x) j(x) so that the non-causal properties of lie tum out to be carried to 

a redetermined source: j (x) is replaced by i ,._ (x) , i+ (:x) is the positive•frequeney part of i ( z) . If the 

source is such that j ( x) ;., j+ (x) then ll c can be simply replaced br a trully causal function 

b. ret • Tbirring in his book/2l/ has shown that if i ( Zp. ) .. 8 ( l) I+ (t) then 

~ 

f d 4x !J.
0
(y-x)j(x) .. 1+(t-jyj) 

I 7 I 
(13) 

like for the classical electromapetic wave. If the line width of the source is small compared with the main frequency 

(just as in all practical cases of emission ) then the source may be considered with a large degree of accuracy to be 

a positive-frequency current. The spreading effect will be very smau/19/. 

Nevertheless, strictly speaking, it is impossible to transfer a sipal by means of j + ( x) • It cannot be 

a localized function of time*. For the sipal to be transmitted one must locally change the time part of the current 

i+ (x) ~ jf (x) = 4 (x) + f (x) 

but then if (x) will not be a rositive-frequency function*. ( The time depeudence of i+ (x) can be changed 

only for all times simultaneously). 

a. Dirac particles packet spreading. 

As in § 1 we start with the presentation in terms of the field theory. The Fock amplitude 

* It It were ao. then Its frequency Fourier component would be an analytical func,lcn of 'he frequency and would 

vanlah In the frequency ln,erval ( -oo , 0 ) only when " Ia ldenUcally aero. 
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(1,(}) .. .. 
'~'a (x,t)=(4l,.p(x,t)'l'), 

o a 

satisfies the Dirac equation and since 
(+) 

.p ~ = 0 a o 

.p = .p (+) + .p (-) 
a a a (14) 

then 

( 1,0) .. ·312 
2 

.3 -iEt ik; •a (X, t) ... (277) l: f d k ViiiTE ( "'o ' b, (i:) ljf) w/ (k) ' e (15) 
t=l 

The Schweber notations are use/
71

, ch. Sb; .Pa~) is the fermion destruction operator; ( <P , b (1) 'I' ) 
~~ r 

is the fermion F ock amplitude in the momentum representation. 'l'a (;, t) describes the state with positive 

energy. In the field theory this follows from the definition of the vacuum 4> 
0 

• In the non-second quantizad theory 

of a fermion one may directly require that the wave function describe a fenaion rather than a superposition of a fermion 

and antifermion. 

It may be checked that ·'· (1,0) 
'I' (x, t) 

a 
satisfies Eq. (6). However, the demonstration of the contradiction with 

the theory of relativity is now more difficult than in the scalar case because there is no initial state .p (1,0)( X, 0) 
a 4 

such that the Dirac density p (~0) = l: t/1' (l O) ¢. ~ O) 
a=1 a a 

( indices (1,0) being omitted ) is a localized 

function of 
.. 
X ( vanishing outside the finite volume ). Not dwelling on the proof of this fact we indicate cases whtn 

the number of fermion& in a certain region, at a certain moment of time, turns out to he larger than the maximal number 

of particles allowed by the theory of relativity in the situation under consideration. We explain this by the example of 

the one-dimensional case 

~-

(4> 
0 

.. 
, b r (k) f ) = 4>, ( k) = 8 r,l 8 ( k,. ) 8 ( ky ) c ( k ,. ) (16) 

s:~ 

so that 1/la (;, 0) = .Pa ( z, 0) • • Let the fermion be, at first, near the point z = 0 • The number 

of particles which we have at the moment in the region 2~ z 

that we have had at the moment t= 0 in the region 2 ~ z + 2 t 

, see Fig. 4, cannot exceed the number 

More exactly, the quantity 

z
0 
+~z z0+~z + t 

8 =f p (z,t)dz- f p(z,O)dz (17) 

z0-~z z0 -~z-t 

must be negative. Indeed, according to the theory of relativity the value of a £hysical quantity in a certain region at 

a certain moment of time is to be defined only by a physical situation in near regions, at near preceding times. 

t 1-- _ _ _ _ _ _ _ C ~ A 2 A~ _ D_ ___ _ 
, I ' 

"' I ' / ' 
,"' I ' 

" t I t ' A " Llz + 1 Ll~ + ' B 
/ ' 

2o :.! 

Fig. 4 
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It is clear that this criterion of the relativistic causality is rather rough. Let 

c (k"'J=v..!__ .y~ I 
m E+m 

1 
T 

• 3 
Bin k. a .( L-1) 1 

k. ma 

The norm factor is not written down. We assume that ma <<1 {the first component .p
1 

( z, 0) 

the region « Am ) As the point z 0 we take the point in which p ( .lr, 0) •·0 

(18) 

is localized in 

so that to render 

the second integral in (17) a rather small quantity ( z 0 is equal approximately to 3/2 (_1_) A >.>A ) 
aaa aa m 

When z • zo are large we can calculate 8 approximately. When t • 2/l.z << A . we have 

6 ·2mz 5 
8-a e 0 (ll.z)'l(mz) >0 

0 
Besides this example, we calculated numerically the quantity 

DO DO 

fl. f p ( .lr, t) dz- f p (., 0) dz 

with the initial £auction 

z +t 
0 

c ( k. ) ., / E j 2 E ( 2 i 
m E+m 

sin 5A.k. 
k • 

Then p ( z, 0 ) vanishes at the point z = Zo = 13.1 A m 

_ e"' sin'sA.· k. 
k. 

m 

(19) 

) (20) 

The only difference between 6.- and 8 -criterion is that the points B and D {Fig. 4) in cue of fl.­

criterion are moved to infinity ( it is easy to understand that the fl. criterion is less rough). The results of calcu­

lations carried out by the collaborator of the Mathematical Department of the Laboratory of Theoretical Physics of the 

JINR Om SangHa are given in Table. The accuracy of calculation is the following: the first figure after point i~ 

correct. The normalization of the initial state is such that Ill. I is of the order of unity. fl. is positive 

for all chosen t . 

Table 

r = t I Am 0.1 0.2 0.5 1 2 

0.1 0.26 0.72 0.88 0.45 .... 

4. Attempts Made to Overcome the Causality Trouble 

1. Till now we consider the localized initial states. Let us show that the causality trouble cannot he avoided by 

introducing a postulate that only non localized states are permissible. This postulate would restrict the superposition 

principle but would not preveut from describing sufficiently exactly all the physical real states. 

If the propagation velocity of physical processes is finite then the number of records in D { Fig. 2) during one 

second must depend on the initial physical situation in· the sphere YD only (with the center at the point D ) with 

11 



the radius not exceeding 0.3 million km. Therefore two non-localized states which have identical initial wave func-

tions in the region V , hut differ from one another outside V , should yield the same number of records in 
D D 

D. To show that the postulate does not mend matter, it is sufficient to give examples in which the numbers of records 

are different. Let one of the states be described by a certain function «11
1 and the second one by ell = ell + L 

where L 

For ell 
1 

is the state localized near G 

the number of records at the moment 

:l L 

( L =0 in the sphere V ). 
D 

at the moment t= 0 

will be proportional to I ell ( q , t ) I 2 
and for ell 

1 D :l 

. The numbers will be different of course if, e.g., It ( q , t) I»] ell ( q, t) j 
D 1 D 

to I 2 2 
«~~1 I +I L I+ 2 Re L* «11

1 

( so that the interference term may be neglected ). 

2. In the present paper we have considered the theory of scalar particles ( in the form represented in the book by 

Schweber/7/ ), The results of §1 and §2 are directly applicable to the Foldy-Wouthuysen equation for an electron 

( see/7/, 4f ), Besides, Eq, (6) can be written for the particle of any spin/22{ It has turned out that in the case of thet 

Dirac equation there is an analogous causality trouble as well. Therefore it is worthwhile to mention here possible 

attempts to avoid it. 

Knighl21' defines the localized states in another way ( so that in particular, the number of particles in such states 

is not definite ), The spreading of such states does not lead to a contradictory with the theory of relativity. However 

Knight did not change the definition of vacuum and the current-current interaction is carried out as before by the func­

tion L1 c , i.e. in a non-causal manner, see ~ 2. We emphasize that it is just due to the usual definition of vacuum 

that only a positive-frequency part of the field operators survives in definition (1) and as a result ell ( 1, t) spreads 

according to the 'non-local' equation (6). 

There must be quite a different situation in a theory in which it would be possible to measure ( or localize ) the 

coordinate only with an accuracy Am , see ~ 2 1 sect 1. But we have no such a theory. There is no realization 
.,:~c-

ret for far more radical attempts to eliminate totally the microscopic notion of coordinate /23/ and to retain it as a 

statistical notion only, se/24/. 

The author expresses his gratitude to prof. M.A.Markov, prof. Ya. A.Smorodinsky, D.A.Kirzhnits, V.Ya.Fainberg, 

V.N.Ritus, I.T.Todorov, L.G.Zastavenko and I.V.Polubarinov for many useful discussions of the present work. 
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