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Abstract 

A modified 'isobar approximation' is proposed, where the 'isobar' is described by means of a Regge pole. Rules 

are set up for the calculation of Feynman diagrams containing Regge poles. Most properties of usual diagrams - in 

particular, the rer.ipe of calculating i~aginary parts-remains valid for these generalized diagrams. 

r.noMOKOW 

TEXHV1KA nMArPAMM V1 noniOCA PE.ll)KE 

A H H 0 T a U H H 

8 pa6oTe npe.11naraeTCH MO.llHQlHUHpOB8HHOe "H306apHoe npH6nH:>KeHHe", B KOTOpOM 

"Hao6ap" onHCbiBaeTcH c noMOWbiO nomoca Pe.ll:>Ke. YcTaHaanHBaiOTCH npaBHna .11nH pac'leTa 

.llHarpaMM <t>eHMaHa, co.llep:>KaWHX non10ca Pe.ll:>Ke. MHorHe caoAcTBa o6bi'lHbiX .llHarpaMM , 

B '18CTHOCTH, cpe.llCTBO pac'leTa MHHMbiX 'l8CTeft OCT8eTCH cnpaae.llnHBbiM .llnH 9THX o6 o 6WeH

HbiX .llH8I"p8MM. 

Pa6oTa H3.llaeTCH Ton&KO Ha aHrnHACKOM H3biKe. 
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l. Introduction 

The role that Feynman 's diagram technique has played in the development of field theory is well known to every -

body. It allows to group the terms of perturbation theory in a suitable manner, so as to select contributions to a certain 

matrix element almost automatically. 

In recent time, the diagram technique h'as been suitably amplified in order to allow writting down _at least symbo

lically -quantities that appear in dispersion theory / !/. These generalized diagrams are constructed in such a way that 

if one expands into a perturbation series the amplitudes ( the 'boxes') entering Cutkosky's diagrams, one arrives at a 

certain class of Feynman diagrams, all of which co?tain a definite number of particles at a certain section. Up to now, 

one can deal partically with generalized diagrams, containing at most two particles in the intermediate states. 

It has been proposed repeatedly (see e.g. refs / 2•3/ ) to approximate many particle intermediate states by consider· 

ing aggregates of two, three .. . particles, capable to form a bound or quasi-stationary system, as one composite' particle', 

and thus reduce the problem to the calculation of diagrams with a lower number of particles. ('isobar approximation'). 

It is known, however, that such an approximation for the two-particle intermediate states fails to yield the correct ana -

lytic properties of the amplitudes, in particular, it is impossible to continue the expression obtained in this way to a 

crossed channel. 

The correct analytic continuation is obtained by describing the composite system by means of Regge-poles rather 

than by means of propagators of the Breit-Wigner-type/4/ . 

It is very plausible that if one wants to calculate diagrams (either in Feynman's, or in Cutkosky's ,sense) in the 

isobar approximation for many particle intermediate states, one has to replace the 'Breit-Wigner-propagators' by 'Regge

ones'. In what follows, we describe the rules according to which interacting two-particle systems, described by means 

of Regge-poles, can be included into the usual diagram technique. These rules follow immediately from the partial wave 

decomposition of the 'truncated' two-particle Green function (the one-particle singularities corresponding to external 

'legs' being split off and some other simple properties of the latter, which are briefly summarized at the beginning of 

Sec. 2. The use of the rules is illustrated by a simple example which, by the way, shows, how Cutkosky's rules for cal-

culating the discontinuity of an amplitude can be extended for the case when we have Regge-poles in intermediate states. 

Finally, we discuss some questions concerning the existence of singularities other than poles in the angular momentum 

plane. 

Extended Feynman rules 

Regge-poles share many of the properties of ordinary particles. Consider e.g. the Fourier transform of the truncated 

four point Green function, G in a theory with interaction Lagrangian g cp:J . 

The following properties of G can be established ( Cf. ref. 5 ): 

1. The asymptotic behaviour of G is determined by a Regge-pole. 

2. The trajectory of the leading pole is independent of the squares of external one particle momenta. 
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3. Th e res idue of the leading pole is factorized just like for amplitudes on the mass shell*. 

Assumin g that thes e relus ts a re true in general one is naturally led to the following rules in constructing diagrams 

containin g Regge-poles. 

a) To a Regge-pole in an intermediate state with momentum k and trajectory a ( k 2
) there corresponds a 'pro-

pagator' 

1 Omm' 

rz;pr (j - a ( k 2)) ( j + l + a (k 2) ) (l) 

( the sign in the nominator depends on the signature of the Regge-pole ). 

b) To a vertex: Regge-pole ... n particles with momenta and helicities p
1 

v
1 

••• pn v n respectively ascribe: 

41 

( 2 11) gf (p . •• p )<jmk IP v ••• p v > 
I 1 n 11 nn (2) 

where g is a phenomenological coupling constant, the function 1
1 

( p
1 

•• , , Pn ) is an essentially kinematic factor, 

exhibiting the behaviour of the residue near threshold. The bracket can be easily recognized to be a coupling coefficient 

of Clebsch-Gordan series of the Poincar~ group / 8/ . Note in particular that the bracket contains a 8 function assuring 

cons ervation of four-momentum. .(1£ in the ket in eq. (2) one has more than two particles, additional degeneracy labels 

mus t be introduced, wh ich are suppressed here. Correspondingly, one will have several trajectories). 

c) Sum over the magnetic quantum numbers m , and integrate over j along a contour, usual in the Watson -Sommer-

feld integral , with the weight: 

(2i)-1 2i + 1 

sin j 11 

d) Usual F eynman rules ( integration over internal momenta, etc. ) remain valid. 

Le t us remark that the continuation of the relativistic Clebsch-Gordan coefficients (eq. (2) ) in j presents no 

diffi culty . as the latter can be ex; essed in terms of hypergeometric functions / 8,9 / . 

In the case if the Regge-pole is coupled to two s pinless particles at both sides, the rules stated above can be con

siderably simplified. In fact, the Clebsch-Gordan -coefficients are then proportional to associated Legendre functions of 

the firs t kind. 

One can carry out immediately the summation over the magnetic quantum numbers, make use of the addition theorem 

for Le gendre fun ctions and integrate over j • As a result of these operations one will be left with a Legendre function 

of th e firs t kind, of index a (e) while the factors ( 2j + 1) in the nominator and ( j + a + 1 ) in the denominator 

compens ate each other. 

* The anal ogous properties o f the Green fun c tion, when the e x ternal particles are on the maee sheJJ , are k nown for a long tim e . 

( See e . g . re r / 6/ ) and other lite rature quote d there) . Although the prop e rti es 1) t o 8) have bee n prove d In ret/ 61 for a o e rtaln clas s 

o f di agra ms, we believ e that th e y are mo re g e n e ral. Note in parti c ul ar that one -particle singularltles of Green functlon111 show 

properties, close ly analogo u s to thoe e e num e rate d abo v e1 71 . 
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So, we obtain the following, simplified rules: 

a) To a Regge-pole with momentum k and trajectory a ( k) coupled to spin less particles with four-momenta p , p 
l 2 

on the one side, to those with four-momenta on the other one, ascribe the 'propagator': 

l 
sin a ( k 2

) rr (3) 

where z is the cosine of the angle between the momenta 1} and p 
3

. in the centre of mass system ( c.m.s.) of the 

'particles' 'l' and '2' . 

b) To a vertex: Regge-pole ~ two spin less particles with momenta p 
1 

, p 
2 

ascribe the factor 

where q stands for the modulus of the relative momentum of 'particles' '1' and '2' in their c.m.s. 
12. 

c) Apply usual Feynman rules of integrating over internal momenta etc. 

~~ / WI The factor q 
12 

corresponds to the function £
1 

( Pz •• , pn) in rule b) ( see ref. ). 

·For the sake of convenience, let us quote the invariant expressions of q 
12 

and z 

2 
where s .. ( p + p ) and the function A is defined as follows: 

1 2 

2 2 2 
A ( x, y, z) = x + y + z - 2 ( xy + xz + yz) 

For z , the cosine , we of course obtain: 

Here 
2 

t=:(p -p ), 
3 1 

z 

Po = ( q 2 + P 2 ) 'h 
3 34 3 

(4) 

(6) 

(7) 

Let us remark finally that 'propagator' for a Regge-pole in the form of eq. (3) has been conjectured already by Frautschi 

et al: and by Gribov and Pomeranchuk/ ll/ , for the special case, when all the external particles are on the mass shell. 

3. Example 

Let us agree in the following to denote ordinary particles by straight lines, Regge-poles by wavy ones. For the sake 

of simplicity, we consider spinless particles of unit mass, one Regge-pole with trajectory a (s) , coupled to two 

particles at both sides. 

The reader can at once verify hinself that f~r the simple pole diagram ( scattering of particles with the exchange of 

a Regge-pole) one obtains the familiar expression , commonly used now in high energy physics (cf. Ref. 11 ). 
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Let us go over to a somewhat less trivial example and calculate the contribution of the diagram of Fig. 1. 

-*2 

-k, 
/ 

~ P, 

For the sake of simplicity we calculate its imaginary part in the s -di.rection. (For the notation see Fig. l. ). 

Our simplified rules are applicable, so we find for Fs , the imaginary part in the s -directio/
13

/ 

where 

1 dz 1 dz 2 A ( s, z 1 ) A* ( s, .Z
2

) x F (s,t)=-- ff 
s 1611 2 J-k(z, z1 , z2 ) 

X ( S - 4 ) 'n 8 ( - k ( z, Z 1 ' Zo.l ) ) 
s 

2 

z=1+2 (p4 -P,) = 1+2 
s-4 s-4 

2 

z1 = 1 + 2 ( P1 - k1 ) = 1 + 2 _ _ t1_ 

s-4 s-4 

2 

z
2 

= 1 + 2 (pf.-kl) 1+2 
s-4 s-4 

The functions A ( s, z
1

) , A ( s, z
2

) are given by (cf. eq. (3) ) : 

t 4 a(t J 
A ( s, z ) = g211 ( ~ ) 1 

1 4 

-Ia (t ; 
p ( _ 1 _ 2 __ s_ ) 1 + e 1 

a(t1J t1-4 sin a(t1) 11 

6 

(8) 

(9) 

(10) 

4 



and correspondingly for A ( s, z
2 

) by writing t 2 instL .. J of t 1 

Inserting eq. (10) into eq. (8) and taking into account eqs. (9), one obtains an expression, which for 

goes over to that derived by Amati et al / 14/ in a somewhat different context. In particular, if one takes the partial 

wave projection of lj; ( s, t) in the t -channel, one finds a cut in the angular momentun/ 14/ . In order to calcu-

late F
5
t ( s, t ) the spectral function, we can proceed as in ref/ 13/ . \Ve remark that A ( s, t) as given by 

eq. (13), satisfies a dispersion relation in ( or equivalently in z ). Ignoring subtractions, we write for s >-4: 

A ( s, z) = 1/ TT I dz' 
(II) 

z' - ·z 

with 

-1 
A z ( s, z ) = ( 2 i ) [ A ( s, z + i 0 ) - A ( s, z - i 0 ) ] 

Inserting eq. (14) into the expression of A (z) ( eq. (11) ) and finding its jump across the cut in the t- ~lane, wt 

finally arrive at the familiar expression: 

F.,(s,t)= 1 (( dz 1 dz 2 8(k) 
16" 

2 y k (z, z 1 , z 2 ) 

(12) 

3. Discussion 

In our opinion, the lesson one can learn from the foregoing calculations is that a Regge-pole is in no way worse from 

the point of view of diagram technique than a 'particle'. One can, of course, object that the diagram technique developed 

here is of no practical use, because , we do not know the trajectories of Regge-poles in field theory. However, if we 

u•;e any approximate expression for the trajectory ( e.g. a semiempirical formula, or a perturbation expansion possessing 

the correct analytic properties, then all our considerations remain valid. In particular, we see that the jump of a 

diagram across a cut can be calculated essentially according to Cutkosky's reciple / 1/ if only the Regge- trajectory in 

the intermediate state has a correct spectral representation. 

A possible field of application of the diagram technique seems to be the search for cuts in the angular momentum 

plane. Aher the work nf Amati et al / 14/ it seems probable that cuts ( or possibly other singularities as well ) do exist, 

although th -:y do I!Ot necessarily follow from general principles, like unitarity / 15,16/ . The application of diagram 

technique may give useful hints, where such singulatities may appear. 
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