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Abstract

A method is given for reducing ‘algebraic’ operations with complex angular momenta (addition, recoupling

: !
etc ) to ordinary angular momentum algebra, by expanding the matrix elements 9, (R) for complex
mm

j into an orthogonal series, The generalization of vector coupling coefficients and their sum rule for complex

total angular momenta are treated as examples.

I". domokowu

AHT‘EBPAHLIECKI/IE‘- [MPOBJEMBI B TEOPHHW KOMITJIEKCHOTO
YyriaoBoro MOMEHTA

ArRBRoTanunsg

INaeTca Meroa ceeaeHHs "anrebpamvyeckKnx” omepanuifi C KOMIJIEKCHBIMH YTJ/IOBHIMH MO-—
MenTaMm /cClloXeHHe, nepecTpoiika K T.d./ K OGLuHOM anreGpe yrioBoro MOMEHTa myTeM

! .
pas3ioXeHAs MATPHYHLIX 31E€MEHTOB Dmm’(R)  Onu KOMOAEKCHHIX j B OPTOrOHANLH I

paa. B kasecTme npumepos paccMaTpupaeTcd oGofuieAHe KO3(pHHUIUEHTOB BEKTOPHOrO ClO-

JKeHusl ¥ HX NnpaBuia CyMMbl O71d KOMIJIEKCHBIX MOJIHBIX Yyrl10BbIX MOMEHTOB.

PaboTa Hanaercs TONLKO Ha AHrMHACKOM 43EhIKe,

.



1. Introduction

The theory of complex angular momentum has played a considerable role in later time in predictiné asymptotic
behaviour of scattering amplitudes, their connection with the exchange of bound and quaéistationary systems etc*.

Fyom a certain point of view the main idea of the theory can be stated as a suitable re-ordering of an ordinary
Legendre series so as to allow analytic continuation outside its convergence ellipse.

The idea could be applied immediately to ‘field theory with spinless particles in the two-particle approximation,
and indeed, it has been shown that the partial wave amplitudes are meromorphic functions of the angular momentum

/12/,
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There has been, however, certain confusion, as soon as one wanted to treat many-particle mtermedlate states.
The main difficulty consists in the fact that one has to deal with several angular momenta, coupled together som€
(or all ) of which has to be ‘Reggeized’. It is not clear from the beginning, what one has to do in this case with

Clebsch-Gordan coefficients, which occur e.g. in the unitarity condition etc.

In the presént work we propose a solution to this problem by reducing it to the algebra of ‘ordinary’ angular
momenta. The main point in our argumentation is that the geometncal factors (vector coupling coefficients etc) with
complex angular momenta can ‘be expanded into a convergent series according to ‘ordinary’ quantities. Thus nddmon,

- reccupling etc. of complex angular momenta can be performed by operating with ‘well-behaved’ entities only. In what
follows, it will be sufficient to deal with the continuation in j of single valued representations of the rotation

group, as usually orbital momenta are ‘Reggeized’.

2. Expansion of states with complex angular momentum

All the geometrical problems we have to treat can be reduced to continuation in the total angular momentum
quantum number of matrix elements of the irreducible representations of the rotation group. The latter can be written

as a function of the Euler angles:

5)‘:""’ (aB»y)= e d:lm,(ﬁ)' e imy a

where

d' . (B)=C(sinB/2)" (cosB/2)? x

(2
x F(Y%(p+q)+j+1, Y(p+q)—-j; q+1;sin’ B/2).

Here C is a normalization coefficient ( being a simple algebraic function of j ). )
p=|m’+m|, g=|m'+m]|
F(a b;cz) isahypergeometric function. If j= integer of half-integer, F in eq. (2) reduces to a poly-

nomial**,

&
The main results are summarized in the corresponding reports of the International Conference on High Energy

Physics, Geneva, 1962. We refer the reader to the Prooeedings of th}s Conference for a general survey.
- .
In what follows, we make use of standard expressions; the reader may consult any textbook on the so called

quantum mechanics of angular momentum or on the theory of group representations for reference.



If we continue eq. (2) in j ~, then in order to mainfain the single-valuedness of D in the Euler angles a
and y , we still musthave m,m’=integer, however, without the restriction |m| < j R SR
In general, the hypergeorﬁetric function will be singularat B=n but it will be expandable into an orthogo-
nal series. -

We choose the matrix elements of the finite-dimensional, irreducible represen‘tations of the ordinary rotation group

as our basis system, i.e. we write:

fD’, (aBy)= 2

’,

' £
<jm|lu> m’m,(aﬁy)<ﬂp'lim'>. (3)

( Here and in what follows, letters j -denote complex, f -ordinary, integer of half-integer-angular momenta ).
Eq. (3) is the Clebsch-Gordan series for ~ § ' (a By)
A mm

The expansion coefficients are of course given by the integral:

20+1
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<imllp><tp] jm'>= rar® ()DL, (R)
. mm j13 . (4)

where R is an element of the rotation group
dR = dasin dfBdy.

Taking into account eg. (1), we immediately see that the right hand side of {4) will be proportional to 8m 8m' ,
p Cm

and making use of Dougall‘s expansion/s/ for l;m (cosB) | we find:

. [
<jmllp ><tp’ljm’>=8,, 8,7, —1 x (-1) (2 +1)

il w (i=-0(j+l+1) )
Eq. (5) determines < jm {Eu> up to a phase, which, however, is unimportant®.
The reader can immediately verify that for j - n (n>0 integer)

<nm|2p><f‘p’lnm >=6m# am,#»ang )
as it should be.

3. Continuation of Clebsch-Gordan coefficients in the angular momentum

As an application of the expansion found in the previous section, we show, how one continues a vector coupling
coefficient in the total angular momentum quantum number. *

Problems of this kind occur in treating many-particle intermediate states in crossed channels of a scattering
arnplitude/4/.

We start with the definition of vector coupling coefficients:

* - .
Eq. (5) can be found either directly by calculating the integrai (4) or, alternatively, by making use of the fact that

the expansion coefficient is not only dlagonal.ln m , but independent of it. So it can be found for same spepial

value of m + 8.8, m =0 . This iz the way we followed.



<l b lin><ip’llp;typy>=

2j+1 i- ¢ £ i ' ) (6)
=217 [(dR9® (R)D  .(R)D  (R)
L [dRD, R, L (R) Ty ot |
If here one of the angular momenta ( j , say ) is compelx, we insert the expansion (4)-(5) for the corresponding matrix
element; and analogously, if we have to deal with several complex momenta we have to insert the expansion for every

9 with a complex angular momentum. Let us illustrate the procedure for the case, when only j  is complex.

We have:

<t p, z:“zl“‘><i“”1 wy b=

2j+1
=—L8;Tzz <]y,|lp.><2y,|jp.>x

2

9" & o 9
x [dRD, (D, ®D,

R)

( We made use of the reality of the expansion coefficients (5) ). Remembering (6), the latter equation can be written

as follows:

<A21 B, 22 y.,|)'y. ><ju Hl My 2, B> =

-(2)+1)3 <ip |t p><lulin>(20 417 x
x<lopr G pa | p><Cplly py lyp, >
or, finally; with eq. (5) and making use of the reality of the vector coupling coefficients for integer ¢
< 21 w, L, #zliu >< jul 21,;, e’,“’,:
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Eq. (7) of course determines the continuation of the vector coupling coefficient up to an arbitrary phase. The latter

can be chosen to correspond  to that at integer values of j , in most expressions, however, we have to deal

/4/)-.

Let us remark that the sum of the right hand side of eq. (7) is finite, as the ordinary Clebsch-Gordan coefficients

with the modulus squared of the vector coupling coefficients, s0 that the arbitrary phase drops out (of. ref.j

vanish, unless the angular momenta & , €3 , [ satisfy the traingle inequality:

16, —€, 1< € < +t,.

At this point we can generalize the so-called sum rule for the vector coupling coefficients.

As is well-known, the latter states for integer ( or half-integer) £ , £, , €

2 .
s (<t,0 tm>) =2L+1 o
m 10 Lo |tm 206,+1 : ®



Combining, this expression with eq. (7) we immediately find:

z:*< 6,0 Lypljn><jull0Gu>=

21+22 [}
2j+1  sinjm g (=1) (20+1) (9

2€,+1 nz=lzl_82l(j~e)(j+z+l)

“We remark that the sum of the right hand side of eq. (9) can be expressed with the help of polygammafunctions
(cf ret./% Ch.1). '

In fact, we have:

Z,+Z2 [ ¢
s (-1) (2€+1) =3 (=1)¢( 1 1 Y=
e=|g-t,| (i=0)(j+l+1) ¢ i-0 j+t4
oN k
g,-¢ -
=(=-1)1" 2 (~1) + (jo=j=1)
k=0 i=18 -0l k

where .
2N = ﬂ, + 22‘-—| ﬂ,— ¢

.
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Hence, with the help of egs. 1.7 (32) and 1.8 (1) of ref./3/ we have:

E <210 ZQu“ju><]‘ul‘elo 22ﬂ>=':

2j+1 sin jm £, -t 1 (10)

= (_1)’ 2 .
20, +1 7 i=1t —81

-G (g~ +1 - i) (i~ -i-1)1}

+G (L+ L+ 1~j) ~

Expressions like eq. (10) turn out to be useful when one estimates sums over products of vecrtor coupling coefficients

with several complex angular momenta.

4. Discussion

One sees from the foregoing sections, how geometrical entities are to be continued in angular momenta. The same
proceduré can be applied to other quantities as well, like Racah coefficients or to transformation coefficients between
two different angular momentum representations ( e.g. to the transformation coefficient between a helicity representa-
tion and an (LS) representation) . The unicity of the continuation can be proved by the application of standard unicity
theorems from the theory of integer functions, as it has been done in the case of the continuation of partial wave
amplitudt;s. (Ct. ref./5/).

If one has several complex angular momenta, then some of the resulting series may not converge for the whole

‘domain necessary. In such cases a further analytic continuation procedure, like that leading to eq. (10}, combined

- with a contour integral representation of the series in question, should be applied.

6
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