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Abstract 

The notion of the spin of intera~ting field is discussed. For the interaction of high spin fields such require-

ments are stated under which every interacting field transfers a single angular momentum, i.e. , i.t has one definite 

spin. The corresponding conditions select a certain limited class of interactions (theories of the class A ). 

Examples of such theories are given. 

B.VI. OrHeseuKHA, VJ.B. nony6apHHOB 

0 B3AVIMO.UEVlCTBYIOlllVIX non.HX C OnPE.UEnEHHbiM CnVIHOM 

AHHOTI!UHSI 

06cy>KAaeTCSI nOHSITHe cnHHa saaHMOAeltcTsyiOwero nonS!. CcpopMynHposaHbi Tpe6osa­

-HHH K B38HMOAeHCTBHIO 'ISCTHU Bb!CWHX CnHHOB, npH co6n!OAeHHH KOTOpbiX KS )KLIO e B3SHMO­

AelkTBYIOWee none nepeHOCHT TOnhKO OAHH MOMeHT KOnH 'IeCTBa ABH>KeHHSI, T . e. HMeeT OA HH 

onpeAeneHHbiA cnHH. CooTBeTCTBYIOWHe ycnoBHH BbiAenHIOT HeKOTOpbilt orpaHR'IeHHbi lt Knacc 

saaBMOAeltcTBHlt ITeopHH Knacca AI, npHMepbi KOTOpbiX npHBeAeHbi. 



l. General Considerations 

l. In the theory of interacting fields the spin of a field is defined, in fact, as the number of dynamically indepen-

dent components / !, 2 1. As a rule , the Heisenberg field operators have superfluous components. The restriction 

of the number of degrees of freedom and thereby the selection of some definite spin of a fi e ld is achieved by imposin g 

a supplementary condition (referred hereafter as S.C.). Generally speaking, these S.C. are dependent on interaction 

and are different from S.C. for free fields. 

It is worth while to note that for fields with spins 0 and ~~ S.C. are simply absent ( the number of components is 

equal to that of degrees of freedom) in any case with or without interaction. 

The question arises as to which physical consequences the differences in the S.C. lead 

We consider, as an example, the process COITesponding to the diagram in Fig. l, where the initial and final states 

are connected by one .virtual line of the field we are investigating ( in the general case with all the radiative correct-

ions). 

v-i.r-t.ucal. 1-it~.e. 
under ~&ider~~io~ 

i 

Fig. l. 

It is well-known that if an intermediate particle possesses spin 0 ( or ~) it is able to transfer the only angular 

momentum 0 (or~): the amplitude of such a proce~s contains the partial waves corresponding to the total angular 

momentum 0 ( or~) only. 

In the simplest theory of the neutral vector field, where the S.C. have the same form as in the free case 

(l) 

the quanta of the vector field can also transfer single angular momentum equal to unity. 

Generally speaking, this is not so: in a number of theories the virtual .quanta are able to trasfer several angular 

momenta. So, in the .simplest pseudovector theory the S.C. is . 

(2) 

(A is the coupling constant with the spinor field t/1 , C is the constant expressed in terms of the masses of both 

fields). In spite of the fact that (2) reduces the number of the dynamically independent field components A 11. to 3, 
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this field, nevertheless , transfers the angular >nomenta 0 and 1: the amplitude of the process of Fig. l has the partial 

waves corresponding to hoth values of the total angular momentum. This is due to the difference between S.C. (2) and 

S.C. (1). 

1.2. In the general case th~ field transfers several angular momenta . lf ow!' vcr, a ny field ( for instance, the tensor 

one ) with a finite number of components is able to transfer only the limited number of angular momenta. 

The answer to the question as to which set of the angular momenta can be tran s ferred by a ceratin field is given 

• 
by the operator of the square of the spin 8 1 for the given field 

,.1~ lL m mnn 
S · n. fX7 .-- p"

2 
m>..p m>..app Ju ~ (3a) 

= Yz s s - p"2 s, s, p p 
pu pu "P "u p u 

(3b) 

It has been built up of the generators of the transformation for the field operator 

P>.. ~-ia>.. (4) 

mpa = xp Pu -xu Pp + spu (5) 

where s fX7 are the generators of the Lorentz rotations of the field components. 

The eigenvalue spectrum of the operator 8
2 

for the given field (i.e., when s are fixed ) gives the 
pu 

spectrum of the angular momenta it transfers ( § 3). Generally speaking, the field can possess several spins ( = 
transfer several angular momenta). Using $'2 one can write down a condition under which the field has one definite •• 
spin: it must be an eigenfunction of s' 2 with the given eigenvalue s ( s+ l) . 

So, when we speak about the quantum number 'the spin of the field' we confront it, in accordance with the princip­

les of quantum mechanics, with a certain operator, that is, operator (3). 

1.3. It appears reasonable to divide the theories of particles with higher spins into two classes: 

••• A) The theories in which each interacting field, just as the free one, has the only spin. 

B) The theories in which no definite spin can he ascribed to the interacting fields . 

It will be proved in the following that theories belong to the class A if and only if the interaction is cho s en 

so that it does not change the form of the S.C. i~ comparison with the free case ( It is meant, of course, that in th e 

•••• free case the S.C. single out only one spin. ). 

"' The c omponents of th e · spin operator c an b e detfn e d, for in s tan ce , a s 

,, -2 -2 
spq=mpq+p (ppma>..P>.. -pump>.,P>., ) = spa + p (pp sa>..P>.. p s \ p, ) ( s' 1

=!(2 s s 
u P" " pa pa 

**Suc h an appro a c h to s ingl e o ut s pin 1 of the v ecto r Cield was dis c u s s e d in o ur pap e r / s- 6/ 

"'"'"' In a co mpl e t e analogy with th e fi e ld s with s pins 0 and ~ . 

.......... 
Note al s o, that if no S.C . s ingling out o ne s pin are imposed, w e ar e face d with th e dirrl c ultle s con cerning e ith e r i nd e finit e 

metric, or th 6 positiveness of energy. 
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How can we account for the fact that in th e th eories of th e class B, the interacting field , though it has the same 

number of degrees of freedom as the free one, transfers, nevertheless, a greater number o f angular momenta? 

It is this problem (in a slightly different form) which was raised by Byers and Pei erls 
161 

and e lucidated by 
/ 7/ 

Kemmer tor the theories of the vector field. The field components transferring the extra angular momenta are expressed 

in terms of the independent field compon en ts. For instance, S.C. ( 2) implies that a part of the pseudovector field with 

spin 0 is a combination of t/J • It was pointed out by Kemmer that th ere , apparently always exists a certain canoni cal 

transformation leading to new fields which obey the same S.C. as in the free case. However, after such a transformation 

the theory takes on a rather complicated, non -local form. Thus, th e th eory of the class B can be reduced to the th eory 

of the class A by introducing the non-localities and other complications. 

1.4. The operator of the square of the spin for the closed quantum mechanical system or for the system of fields is 

one of the invariants of th e inhomogeneous Lorentz group. It has been discussed in different aspects, in connection 

with the classification of the representations of this group / S-ll/_ 'Th e application of th e operator of the squared spin 

to free fields turns out to be rather helpful , as far as it unites all th e S.C. and allows to get them in a uniform fashion 

( § 2). The free field with a definite mass and a definite spin is transformed according to the irreducible representation 

of the inhomogeneous Lorentz group. It is an eigenfunction of th e invariants of this group. 

1.5. Unlike the operators of the free field, the operators of the interacting field are no longer transformed under one 

irreducible representation of the inhomogeneous group. Indeed, the interacting field corresponds to some eigenvalue 
2 

spectrum of the invariant of this group-of the operator of the squared mass - p = 0 . Indeed, th e interacting 

1 field operator in the momentum space is different from zero for time-like, for space-like, for isotropic, and for zero 

* 4-momenta . Actually it is this fact which makes the interaction between the fields, their transmutation one into 

another possible. 

As far as the second invariant-spin- is concerned, in the existing theories the spectrum of its values for the in­

teracting field turns out artificially restricted in practice because use is made of the fields transforming according to 

** the finite dimensional irreducible representati ons of the homogeneous Lorentz group . However, with such restrictions 

*** the spin spectrum of the interacting field has, as a rule, several values 

ln the theories of the class A the spectrum of the spins of each field is the simples t: .iust as in the free case it con-

sists of only one value. At the same time each field will be always an eigenfunction of its own operator 

this sense one can speak that the spin of each field is conserved. 

* 

s' 2 
• In 

In particular, there appear non-zero masees for th e inte racti n g e l ectromagnetic tiel d. This Is the reason fo r t h e appearance 

of the Coulomb lnte l'actlon. 

ll* If thi s purely mathematical postulate i s re j ec t ed, then theories are c onceivable in which the free field has only spin 0 (or ~) 

but the interactin g iteld po ssesses eo mo others spins in additi o n . 

*** 
N everth e l ess , o n e can consider that th e wave fun ctions o f the phy s l cai. o n e-parti cle states are transformed according to the 

irre ducibl o re prflsenta tt o n or the Inho mogen eo us group. Let u s emphasize that a ll th~ re~ quantum num be rs ( for instance, c harge, 

Iso to pic s pin, parity e tc) co in c ide bo th fo r th e free and Inte racti n g fie ld s anrl are the sam e as the o n e -parti c l e states have. Only 

th e mass is diffused with th e necess ity . 
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1.6. It is practically more convenient and mathematically more correct to carry out all the considerations concer­

ning the interacting field not with the field itself (say, A (x)) , but to cons ider the matrix elements 

< 0 I A (x) I Ill j > ( 6) 

where lllj are the physical states which are the eigenfunctions· of the operator of the square of the 

spin for a system of interacting particles (of the total angular momentum in the centre-of-mass system ) • ( § 3 ) • 

This matrix element corresponds to the diagram Fig. 2. 

V i.r'tUCl. t \.l.n.e.. 
oJ. t\\e. fi.l..cl ~~) 

"' 
Fig. 2. 

rec:tl rG.r-t:ic.\.e~ 

s.tCJ-t~ <D j . 
U\. 

The field A (x) transfers, by definition, those angular momenta j for which the matrix element ( 6) is diffe­

rent from zero. In the theories of the class A there is one such value (the field has one spin ) • Note that if the real 

particle of the field A(x) with a definite spin decayed into a system of particles in the state Ill j , then the 

matrix element would be different from zero only for i coinciding with the spin of the free field. 

Obviously, the analysis of the diagrams of Figs.1 and 2 lead to the same conclusions about the spin of the field, 

since the diagram like that drawn in Fig.2 is a part of the diagram of Fig. I. 

1.7. In Sec.4 it was shown that the class A is not empty Examples are given for the theories of particles with 

spin 1 belonging to this class. The close connection between the notion of the spin in the conventional space and 

the isotopic invariance is also indicated there. 

1.8. As for zero masses, we make only the following remark. The found limitations on the matrix elements cannot 

be expressed in terms of the operators ( 14) or ( 17) if there are physical states with zero mass. In this case the in­

teracting field will have a definite spin if for it the S.C. are fulfilled for the matrix elements between the physical 

states. For instance, such a situation takes place in the Fermi electrodynamics. In all the gauge-invariant theories 

of the vector fields one can impose any restriction on a p. A p. , as this quantity is quite arbitrary and is not deter-

mined by the equations of motion. The restriction < '~'Phys I all Ap. I Ill Phys > = 0 allows to carry out 

the quantization according to Fermi. Therefore, the gauge-invariant theories of the vector fields are those which 

describe only the quanta with spin 1. These problems were discussed in our previous papers / 4 •51, and the present 

work arised as the development of such ideas. 

2. Formalism of Higher Spins on the fiasis of the Operator sA2( Free Fields) 

2.1. The application of the operator of the square of tl,e spin seems expedient even in the case of the free fieltl 

since this leads to the unified standpoint on all the S.C. and brings them together. 

The field A is transformed according to the irreducible representation of the inhomogeneous Lorentz group, if 
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... /.!_ 

(7) 

(8) 

where the m (mass) and .s (spin) are the given numbers. 

2.2. We start with the inte ger spins. We shall work in the tensor formalism / 
121

, where the tensor of the s-th 

.. rank ¢, is used to de scribe the spin s. In th is case matrices .s in Eq. ( 5) has the form 
.-1 1l:l' .. ll 8 (XT 

( s J =-i(a a - a a ) a a .•• 8 
pa p. t . .. p.. ; Yr. 11 • Pll 1 a~~1 p111 , ap. 1 p. 111 :zll , v3 ll. Y 8 

(9) 

.. .. .... ..... ............. ....... ... ... .. ..... ...... .... ............... ....... -

- i a, " a, 11 ... b, 11 < aP, a a~~ - apv· a a, ) • 
r-z z r-:z :z ,.. e-z •-I ,.. • • • ,.. • 

Then the operator s':Z i s written down as 

(lO) 

As long as the representation we are considering is reducible , 
_.2 
s is not a unit operator, l'.nd its eigenvalue 

spectrum consists of the numbers n ( n+ 1 ) where n = 0, 1, 2 , ... , .s . We are interested in the eigenfunctions 

with the m'aximum eigenvalue 

( 11) 

It is convenient to work in the p-representation , where, by (7) , P
1 

= -m2 f. 0 , and to go over to the rest 

system. In this system the operator of the square of the spin ( 3 b) looks like 

s' :1"' 1h s.. s •• ( r, .s = 1, 2, 3,) (12) 

and for the tensor field it is written down as 

II "'4 2 
if 

otherwise 

+ a:n the terms with different choice of p. 1 111 and p. 11 Ilk } (13) 

where v is the number of pairs ( ll 1 11 1 ) in whi ch there is, at least, one four. 

The analysis of Eq. ( 11) leads to the well-known / 
12 

'
21 

s. c. 
/ 

a) cp totally s ymmetrical tensor 
P.z .... 1'. 

b) cp" " ll , ... " "' 0 J • 
c) a cp =0 

" "" :1 .. .. .. " • 

(14) 
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2.3. Now we consider the half-integer spins in the y- fonnalism suggested by l1arita and Schwing':/ 
13

/, 

and Tamm (see I 14 ' 151 ) . In this formalism the spin s"' k + ':h is described by the tensor of the k - th rank which 

r/J,. • The matrices 
,.. 1 .... j.L lc spa 

for rfr read. 
J.Lr .. J.L~c 

J.lk or, briefly, has one Dirac spinor index a rjJ a J.L1 

(Spa ) J.Lr·I.LJ<iYI .... yk = 'hapa oj.L 1/ ••. . ~ 1/ -
1 1 lc lc 

-i(o . o -o 8 )8 .... 8 
P J.11 Ul/1 PY1 aj.L 1 j.L :J11 2 j.L ley k (15) 

.. ............... ········· ············· ·· ·············· ············ ······· ········· .. 

-io 8 
J.I1Y1 j.L2Y2 

0 (8 0 -8 8 
J.l k-1 yk-1 PJ.L1c Ul/k PYk aj.L 1c 

I a pa i(Y. y -8 )\ 
p a pa 

Again it is simpler to make the calculations in the rest system, where 

(5'2) =[3/4 +2(k-v)] 8 , .. . o + 
j.L1 .... J.Li 1/1 .... 1/k J.Lfl j.LI<Yk 

+{(-'"•·:· if j.L 1/ .,r 4 }.,., 1 1 
.... 8 + 

otherwise 

fJ.Irl/lc 

+<h«•~• io whi<h • v M"oplmd by " v , " v ... "• v } + 11 22 J3 k 

v, "41 + fJ.1 ~ VI V2 1L1Y2 fJ.z 'i fJ.sVJ rlr k 

+ 
0 otherwise {l

-2 ( 0 0 - 0 0 ) 0 ···· 0" y if f.L1 fJ. 2 VI 

+ .n ,,, "'=· "'" dill"'"' ''"'" of "• v, ood "• ., } (16.) 
where v is again the number of pairs ( IL v ) in which there is, at least, one four. In the present case 's' 2 

I I 

has the eigenvalues r(r + 1) where r = ':12, 3/2 , ... . , k + ':h • We are seeking again for the eidenfun ctions s 2 

with the maximum eigenvalue. The analysis of Eq. ( 11) gives the well-known S.C .. for half-integer spin fi eld: 

a) .p totally symmetric 
IL .. .. fJ. 

1 lc 

b) y "' =0 
ILl IL1fJ.2 .... fJ.Ir 

c) a r/J c 0 
l'-1 IL11'-2 .. .. fJ.1r 

In case of the half-integer spins, use is usually made of the Dirac equation instead of the Klein-Gordon one (7). 

It is quite natural tht1t the same interpretation of the S.C. on the basis of the operator of the square of the spin is 
I 16 1 

also possible for the field operators in the Gelfand-Yaglom formalism. 

3. Interacting Fields with lligher Spins. 

3.1. "'ow we proceed to the analysis of the interacting Heisenberg fields </:> and rfr,. ... with any spins. 
fJ. 1 .... ,.. 1 . 

Let <I>JP be the ·state vector of the many particle system which has the total 4-momentum P IL ( P 
2 
< 0 ' ~ > 0) 

and the spin (the total angular momentum in the c.m.s.) 

fl 
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"2 
S <lljP = j( j + l) <lljP 

(we are not interested in the spin projection ) . The operator 

,.., .. ,-2 
M -P 

pa 

,, 

... , ,, 
M M 

pa pr 

(18) 

"2 
S has the fonn 

" 
,, 

(19) p 
a 

p 
T 

and M are the generators of the transformations and the Lorentz rotations for the state vectors 
pa 

(they are con~tants of motion of the system of interacting fields). The relationship of these operators with the opera· 

tors P>., and mpa ( 4) and ( 5) for some field A(x) follows from the Lorentz in variance and is well-known 

( 20) 

m A=[A,M] 
pa pa ( 21) 

3. 2. It can be easily seen that the matrix elements 

< 0 I ¢. , (x) I $ 1'P llt1!2 .... ,.,.. >and < 0 I r./Jiltll:r ··llk (x) I <ll jP > 

are generally different from zero for j = 0, 1, ... s and j = lj;~, 3/2, .. • k+1/:~>respecti vely. 

Indeed, with account of the translational in variance, viz., 

iPx 

< 0 I ¢ llr··llo (0) I $ jP > ( 23) 

" Eq.-ns (3),(21) and the vacuum property .Upa I 0 > = 0 we see that 

( 24) 

=<01¢ 
llz ····ll. 

"2 
(x)S l<ll. >=j(j+1)<0I¢ 

JP ll r ll • 
(x) I <l>jP > 

In virtue of ( 21), the operators p >.. in ' s' 2are replaced by the c-numbers ~- The problem concerning the eigenvalues 

of the operator s' 2
, if applied to such matrix elements, is solved .just as in the free case. (see II 2 ) . In particular, 

the spectrum of the eigenvalues has the form n ( n+ 1 ), where n = 0, 1, "' ' s . 1lence it follows, that i = 0,1, ... , s. 

Similarly in case of the half-integer spin j = 1/2, 3/ 2, ... k + 1/ 2. 

3.3. The aim of thi>; paper is to get the conditions under which the field transfers only one angular momentum. 

i.e., for the only value must be possible . .lust as in the free case we choose as this only value the maximum one, 

* t.e., s 

The conditions which single out the matrix element corresponding to this maximum value are written down for 

the ' integer spins as follows_ 

a) 
(25) 

b) 

.--· .. --· ·- - --- - -- -
Othrr pn ~!" thllltlf"~ wf111rarl to the equival e nt rrprn ~ fmtatlnn~ for the rtcld~ with the dnrJnftr :"pin In Y.htnh thn 

llf'l~rnhf'l'~ o p.-rator v.lll h1t.Vf' mnr,. Vf"r.tor lndlcns than It i~ necr s !"ary for dr~C"rlblnlr( thf'! ~.:!vnn ~pin. 
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c) < o I allz ¢1ltll2·"1l• (x)l<t' jP >=0 (25) 

Since the vectors of the physical states c'bjP fonn the complete s ystem, then, from the hypothesis about the 

locality, covariance and positive definiteness, by the Federbush-Johnson theorem / 17,18/ it follows, that conditions 

(25) must he satisfied for the field operators themselves. In other words, the interacting field describing one integer 

spin s must obey the same S.C. as the free one, i.e. , the S.C. (14)· 

Of course, the reversed statement is always correct: from conditions (14) follow conditions (25) . 

Thus, if and only if the interacting field ¢. (x) obeys the same S.C. as the free one does, we can ( and s hould) 
llr·ll. 

speak that it has a definite spin s . 

• By making a reference to Federbush-Johnson's theorem we get rid of the necessity to consider the matrix elements-

i(P-P)x I () < c'b . 1 ¢ cxJ 1 c'b . p > = e , 1 < c'b . P I¢ <o> 4> i p > 26 
11 P1 llz··'ll• 1, 2 lz l llt···llo 2 ' 

In this case the analysis will essentially depend on whether the vector ~ - ~ is a time-like, isotropic , space-

like or a zero one. These four possibilities correspond to the four different classes of the represetations of an inhomo­

geneous Lorentz group. Each time they require a special approach. 

By arguing in a similar manner in the case of the fields 1/J (x) which have, apart from the vector indices, 
llzll r·ll k 

one more Dirac spinor index, we are led to the conclusion that for the field 1/1., ., to describe the onl y va lue of 
,..1 • • • ,.. k 

the spin equal to k + ~ it must obey S.C. (17). The theories of the class A are those in which every field sati s-

fies conditions (14) or (17) detennining the fields with the only value of the spin. 

4. Theories of the Class A 

The equations for the free fields which contain all the S. C. singling out one value of the spin are well-known**. 

These are all the equations of Gelfand and Yaglom/ 16/ , in the tensor formalism- Proka's equation for spin 1, Rarita­

Schwinger's equation for spin 3/ 2. One can also point out the following equation for spin 2 

~ c D ¢1l11 -all a.\¢ All - a:v a,\ ¢,.,.A) + ~ co ¢ 11,.,. -a11 a,\ a¢,\,.,.- a,.,. a,\ ¢
11

,\ > + 

+ 8 a, a "' - 1/ 3( 0 0 -a a ) m - m 
2

¢. = 0 Jill 1\ p "7\p IJ.II ll II rpp IJ.V 

We know the following examples of theories of the interaction belonging to the class A: 

(27) 

1) All mutual interactions of spinor and scalar fields, and their electromagnetic interactions also, because con venti o­

nal manner switching on interaction with electromagnetic field guarantees spin 1 for the latter *** 

2) The theory of the neutral vector field interacting with the conserved current (see, e.g., 131) 

0 A - a a A - m2 A = - j ,· a j = 0 
1J. IJ.II V IJ. IJ. J.l.IJ. (28) 

3) Yang-Mills's theory / 19/ and all its generalizations indicated by Gell-~lann and Glashow/ 20/ 

I 2 I , I 
all G J.LII - m A II = - Jy a,.,.i;=o 

(29) 

-.. ':to .. -+ 
In t h e < al e or th~ field with opln S , the se matrix e l e m e nt s ar e non-z e r o Ir Iz + 1

2
+ s = 0 (a cco rd i n g to the co n -

v o ntl o nal rul e or addlnR the an11ular mom e nta) • 

•• Su o h Rquatl o n s ar e e qui v alent to th e co nditi o n s d ete rm i nin fl; th e i rredu c ibl e re prese nta tion or th e i nh o '!' o g e n Po u s 

Loren t .. 1ro up ( tor ln s tan oc, (7 ) and ( 8) ) . 

••• It t11 wo rth whil e to not e , that due to aaug e lnva rl anc e virtual photon ha~ ~pin J eve n In theo rl e.!l or the olase B . 

10 
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where 

( the notations are the same as in / 20/ ), 

With account of the current conservation , the S.C. (l) singling out spin 1 is the consequence of Eq. (28) and 

/ 5/ . 
(29) . Thus, the class A IS no t empty. 

This problem can he reversed: how to s wi ch on the interaction so that the theory would belong to the class A, 

i.e., so that not only the fields with s pin 0 and Y,, but all the rest ones would possess a definite spin. 

For the fields with spin 1, we succeeded in solving an inverse problem/ 21/ and in proving that the onl y theories 

of the class A with the dimensionless coupling constants are those in which the equations of motion look like (29). 

In other words, only for the following cas es we can switch on the interaction with the vector field so that the spin of 

this field would be equal to unity 

a) if the vector field is neutral and it is coupled with a some conserved current 

b) if the three vector fields form the is otopic triplet , while the theory as a whole is isotopicallv invariant: 

c) If there are some other higher symmetries. 

The possibility b) reveals a close relation of the isotopic invariance with the notion of spin in the usual space. 

We are making a similar analys is for higher spins. 

It should he stressed that there exist interactions which do not belong, certainly, to the class .\. The electromag­

netic interactions of charged particles of higher spins first of all, refer , to them. These interactions violate the isoto-

pic invariance and do not allow, therefore, to ascribe a definite spin to the interacting fields with spins > 1 · 

In conclusion we thank ~1 . A.!\1 arl. o v and B.N. Valujev for discussions. 
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