ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ
Лаборатория теоретической физики
P.Suranyi

REGGE POLES AND FIRE BALLS

REGGE POLES AND FIRE BALLS

Abstract

The behaviour of the amplitude of inelastic processes is calculated assuming the existence of Regge poles. The asymptotic behaviour of the cross section of the emission of n particles is shown to be $\sigma_{n} \approx \frac{C n}{\log \left(\frac{s}{s}\right)}$. The two centre emission of particles is found to give the largest contribution in the asymptotic region. s_{0}

П. Шураньи

ПОЛЮСА РЕДЖЕ Н МОДЕЛЬ OГНЕННЫХ ШАРОВ

А н н О т а ция

Определяется поведение амплитуды неупругих процессов, предполагая существование полюсов Редже. Получвется поведение сечения образования n частиц: $\sigma_{\mathrm{n}} \frac{\mathrm{Cn}}{\log \left(\frac{8}{8}\right)}$ Показывается, что асимптотически наибольшии вклад дает рождение частиц в двужо пентpax.

Several authors ${ }^{\prime} 1,2,3^{\prime}$ have investigated recently the behaviour of inelastic scattering amplitudes in the Regge pole approximation.

Miyazawa and Suzuki ${ }^{\text {/ } / \text { / proposed a model of inelastic interactions using a single vacuum pole exchange approach }}$ (Fig.1).

Using the optical theorem they obtained the behaviour of the imaginary part of the amplitude for forward acattering:

$$
\begin{equation*}
\text { - } \quad \operatorname{Im} A\left(s_{1} 0\right) \approx \int d s_{1} d s_{2} f\left(s_{1}, s_{2}\right) \frac{\left(\frac{s_{s}}{s_{0}} \log ^{2 a\left(t_{\max }\right)-1}\right.}{\log)} \tag{1}
\end{equation*}
$$

where $\quad t_{m a x} \approx-\frac{s_{1} s_{2}}{s}, s_{1}$ and s_{2} are the total four momenta squared of the particles exchanged in the upper and lower vertices correspondingly.

The upper limit of the integrations is given by the condition $\sqrt{ } s>\sqrt{ } s_{1}+\sqrt{ } s_{2}$. If we wish to obtain a constant total cross section, we have to choose a mass distribution of the following type (apart from logarithmic factors):

$$
\begin{equation*}
f\left(s_{1}, s_{2}\right) \approx \frac{1}{s_{1} s_{2}} \tag{2}
\end{equation*}
$$

In the paper of Coutogouris, Frautschi and Wong there is a similar proposal, only they assumed the residues of the Regge poles in the inelastic interaction to be factorisable.

They obtained the following inelastic amplitude splitting up both the upper and lower vertex functions:

$$
\begin{gather*}
A=g\left(s_{n_{2}}\right) s_{n}^{a(t)} g\left(s_{n_{-n_{2}}}\right)=g\left(s_{n_{1}-n_{2}}\right) s_{n_{3}}^{a\left(t_{t}\right)} \quad g\left(s_{n_{2}}\right) s_{n}^{a(t)} \times \tag{3}\\
\times g\left(s_{n_{n}-n_{1}-n_{3}}\right) s_{n-n_{1}}^{a\left(t_{2}\right)} g\left(s_{n_{3}}\right)
\end{gather*}
$$

(here s_{i} is the total four momentum squared of the i appropriate particle).
This procedure may be continued until we obtain a picture (fig. 2), in which each particle is emitted from different vertices. This picture is very similar to the multiperipheral model of Amati et al./4/, only instead of the exchange of the one pion propagator the exchanged particle is a Regge pole.

Nevertheless one can raise two objections against this picture. The first one is that the amplitude obtained by Contogouris et al is unsymmetric. The $s^{a(t)}$ propagator (the centre of the chain) corresponds to a soction of the chain, which is arbitrarily chosen.

A more serious objection is that this model gives $f\left(s_{1}, s_{2}\right) \approx s_{1} \cdot s_{2}$ in formula 1, which would give a cross section proportional to s^{2}, as is easily seen from formula 3.

It was proved by Ter-Martirosyan $/ 3 /$ for the case of 3 particle production that one has to write the amplitude as $\left.A=s_{12}^{a(t)} \quad s_{23} a_{12}\right) \quad$ if both s_{12} and s_{23} are large $\left(s_{i k}=\left(q_{1}+q_{k}\right)^{2}, \quad q_{i}\right.$ are the four momenta of the emitted particles). If we generalise this picture to n particle production we must add a factor $a_{i, j+1}$ for the i th propagator of the chain $\left(t_{1}=\left(p_{1}-\sum_{k=1}^{1} q_{k}\right)^{2}, p_{1}\right.$ and p_{2} are the four momenta of the particles in the initial state). At the vertices there appear the usual residues continued in the external masses.

Our picture is wholly symmetric in the sections of the chain, and as we shall see it removes the difficulties connected with the behaviour of the total cross sections.

In the chain each second propagator must be a pion-Regge pile due to the G parity conservation.
We have for the n particle exchange term the following contribution to the imaginary part of the elastic scattering amplitude:

$$
\begin{equation*}
\operatorname{lm} A_{n}(s, t)=\left(A_{n}(1) A_{n}(2) \delta\left(\Sigma \quad q_{i}-p_{1}-p_{2}\right) \prod_{i=1}^{n} d^{4} q_{i} \delta\left(q_{i}^{2}-\mu^{2}\right)\right. \tag{4}
\end{equation*}
$$

where $A_{n}(1)$ and $A_{n}(2)$ are the n particle production amplitudes.
We adopt the following notations:

$$
\begin{gathered}
s_{i}=\left(\sum_{k=1}^{n} q_{k}\right)^{2}, \quad s_{i,+1}=\left(q_{i}+q_{+1}\right)^{2}, \\
t_{i}=\left(p_{1}-\sum_{k=1}^{i} q_{k}\right)^{2}=\left(p_{2}-\sum_{k=+1}^{n} q_{k}\right)^{2} \\
t_{i}^{\prime}=\left(p_{3}-\sum_{k=1}^{i} q_{k}\right)^{2}=\left(p_{4}-\sum_{k=1+1}^{n} q_{k}\right)^{2} \\
s_{1}=s, \quad s_{n}=q_{n}^{2}=1, \\
t_{0}^{\prime}=t_{0}=1
\end{gathered}
$$

Here p_{3} and p_{4} are the momenta of the outgoing particles.
Using the delta function of the momentum conservation we integrate over q_{n}. We introduce new integration variables instead of ${ }^{4}{ }^{4} q_{i}$ in the following nanner:

For

$$
q_{i} \rightarrow s_{1+1}, t_{i}, t_{i}, q_{i}^{2} .
$$

where

$$
\begin{gathered}
t=\left(p_{1}-p_{3}\right)^{2}=0 \\
d^{4} q_{i}=\frac{\pi}{2^{2}} \frac{\delta\left(t_{i}-t_{i}\right) d t_{1} d t_{1}^{\prime} d s_{i+1} d q_{1}^{2}}{\sqrt{\Delta\left(s_{1}, t_{t-1}, 1\right)}}
\end{gathered}
$$

$$
\Delta(x, y, z)=x^{2}+y^{2}+z^{2}-2(x y+x z+y z)
$$

With the help of delta functions we can integrate over t_{i}^{\prime} and q_{i}^{2}. If we expand the Regge exponents in series around $\quad t_{1}=0$, and we keep only the linear part we can integrate over t_{i} as well.

We finally obtain the following expression:

$$
\begin{align*}
& \ln A_{n}(s, 0) \approx \frac{\pi^{n+1}}{\sqrt{s^{2}-4 s} 2^{3 n-1} a_{+}^{3}(0)^{\frac{n}{2}-2} a^{3}-10 \sqrt{2}-1} \times \tag{5}
\end{align*}
$$

where f is the Regge residue, $a_{+}(t)$ and $a_{-}(t)$ are the Pomeranchuk and pion trajectories respectively. (For i even we have + for i odd -).

$$
s_{i, i+1} \text { and } t_{i \text { max }} \text {, the maximum value of the momentum transfer (forward scattering), may be given as a }
$$ function of s_{i}. The region of integration is given by the following condition: $V s_{i-1}>1+\sqrt{ } s_{i}$

In formula 5) we must integrate essentially over the possible values of n two dimensional q_{i} vectors in their c.m.s., with the subsidiary conditions: $\quad \Sigma_{i 0}=\sqrt{ } s, \quad \Sigma q_{i 1}=0, \quad q_{i 0}^{2}-q_{i 1}^{2}=1 \quad$, where we denote the one dimensional space like component by q_{11}.
 s, and we calculate the contribution to $\operatorname{Im} A_{n}(s, 0)$. The value of a_{1} is not too essential, the main point is whether $s_{i, H 1}$ depends on s or not. However in any case we must have at least two vectors with $a_{i_{1}}=a_{i}=1 / 2$.

It is easy to see the behaviour of $s_{1, H_{1}}$

$$
\begin{aligned}
& s_{1,1+1}=O\left(s^{l_{i}-a_{i+1} \mid}\right) \quad \text { if } \quad q_{i 1} \cdot q_{i+1,1}>0 \\
& s_{1,1+1}=O\left(s^{a_{i}+a_{i+1}}\right) \quad \text { if } \quad q_{i, 1} \cdot q_{i+1,1}<0
\end{aligned}
$$

Let's define formally $\quad a_{i}$ for vectors pointing in the direction of $\quad \vec{p}_{2}$ to be negative so $q_{i o} \approx O$ (s $a_{i} \mid$). Then we always have

$$
s_{i, t+1}=O\left(s_{n-1}-a_{i+1}\right)
$$

For $a_{i+1} \leq a_{i} \quad$ we obtain the condition $\sum_{i=1}\left|a_{i}-a_{i+1}\right|=1 \quad$ because $\quad a_{i}=-a_{n}=1 / 2$. The behaviour of $\quad t_{i \max }$ is very simple in this case, $\quad t_{i m a x} \rightarrow$ for $s \rightarrow \infty \quad$ if $\left|a_{i}-a_{i+1}\right| \neq 0$ and $t_{t_{\max }}=O(1) \quad \operatorname{lif}^{\prime}\left|a_{i}-a_{i+1}\right|=0$.

Using the fact that $\quad a_{+}(0)=1, \quad a_{-}(0)<0 \quad$, the maximum contribution is obtained if $\quad a_{i} \quad=a_{i+1}$ for i even.

Then we have

$$
\begin{equation*}
\pi\left(\frac{s_{t, H 1}}{s_{0}}\right)^{2 \alpha_{ \pm}\left(t_{\text {lmax }}\right)}=s^{2} \cdot c \tag{6}
\end{equation*}
$$

where c is independent of s.
It is not difficult to show that the exponent of. s on the right hand side of formula 6 decreases if we exchange two particles i and $i+1$ (with $a_{i}>a_{1+1}$). For this exchange we have some $\quad t_{\ell}$ max $\rightarrow-\infty$, the corresponding $\quad a\left(t_{\text {fmax }}\right) \quad$ going to -1 , which always decreases the power.

We then see that the maximal behaviour of the above product s^{2} is obtained if we have k groups of parti cles in which all the exponents a are the same, so $\left(\Sigma q_{i}\right)^{2}$ for the particles of a group is independent of s. In the first and in the last group we have always an odd number of particles. In these groups $\quad\left|a_{i}\right|=1 / 2$.

The most interesting case is when the number of groups is equal to two.
Then $q_{10}=c_{i} s^{1 / 2}, \quad \Sigma c_{i}=1, \quad c_{1}<1 / 2 \quad$. Particles with $i<k$ are in the first group, for $i \geq k+1$ in the second group.

$$
\left(\sum_{i=1}^{k} q_{i}\right)^{2}=O(1),\left(\sum_{i=k+1}^{n} q_{i}\right)^{2}=O(1)
$$

The above equations must be understood in the sense that these quantities are independent of . We have still

$$
\begin{array}{ll}
s_{k, k+1}=O(s), & s_{i, i+1}=O(1) \quad \text { for } i \neq k \\
s_{i}=O(s), & \text { for } i \leq k, \\
s_{i}=O(1), & \text { for } i \geq k+1
\end{array}
$$

So to obtain the contribution of the above region of variables q_{1} we must perform the following substitution of integral variables in integral 5 :

$$
\begin{array}{ll}
s_{1}=d_{i} s \quad \text { for } \quad i \leq k \quad d_{t}>d_{2}>\ldots>d_{k}, \quad d_{t}=1 . \\
s_{1}=s_{i} & \text { for } \quad i \geq k+1, \quad \sqrt{ } s_{i}<1+\sqrt{ } s_{t-1}
\end{array}
$$

$\begin{aligned} & \text { Asymptotically } \quad \sqrt{\Delta\left(s_{1}, t_{1-1}, 1\right.}=d_{i} s, \quad \text { for } \quad i \leq k \quad, \quad \log -\frac{s}{k, k+1} \\ & \text { after the substitution we obtain for the contribution to }\end{aligned} \quad \begin{array}{ll}s_{0} & \ln A_{n}(s, 0)\end{array} \quad \frac{s}{s_{0}}$
where $\quad R$ is an integral, which is convergent and independent of s.
In a similar way we obtain a contribution

$$
\operatorname{lm} A_{n}^{\prime \prime}(s, 0)=\frac{s}{\log ^{k+1}\left(\frac{s}{s_{0}}\right)} R_{k}
$$

if we have $\quad k \quad$ groups of particles.

Using the optical theorem we obtain the asymptotic behaviour of the cross section of the creation of n particles:

$$
\begin{equation*}
\sigma_{n}(s)=c_{n} \frac{1}{\log \frac{s}{s_{0}}} \tag{7}
\end{equation*}
$$

So the model gives picture which is identical with the picture of the multi-fire ball model, but asymptotically the main contribution comes from a two centre emission of particles.

Exactly speaking the main contribution to the cross section in our model satisfies the following definition of the two centre model:

At a given multiplicity n, there are two groups of particles (with k and $n-k$ particles) in the c.m.s. of these groups the distributions of particles and the distribution of the total energy of the fire ball are independent of s, the primary energy. The distribution of k dres not depend on s as well.

In our model just like in the model of the mentioned authors $/ 1,2 /$ there is a section of the chain, where the energy $s_{k, k+1}=O(s)$, but it is not equal to s. So in formula (1) there appears a factor $\left(\frac{s_{k, k+1}}{s_{0}^{-}}\right)^{2 a\left(t_{m a a^{\prime}}^{-1}\right.}$ instead of $\left(\frac{s}{s_{0}}\right)$ ra(tmax $)-t$. If s_{1} and s_{2} are great in the c.m.s. system of the fire balls $q_{k+1,0}=0\left(s_{2}\right)$, $q_{k, 0} \approx O\left(s_{1}^{1 / 2}\right)$. Transforming back into the total c.m.s. we obtain that $s_{k, k+1} \approx \frac{c}{i_{i}}$ so together with the factor $\quad f\left(s_{1}, s_{2}\right) \approx s_{2} s_{2} \quad$ we obtain the appropriate behaviour for the cross section.

The main defect of our calculations is that we did not take into account the final state interactions of the emitted particles. These interactions may play an essential role for small energies, so the effect of them is essentially a change of the constant in formula 7, but they do not alter the type of the asymptotic behaviour.
References

1. H.Miyazawa and M.Suzuki. Regge Poles in Multiple Meson Production. Preprint of the Tokyo Iniversity.
2. A.P.Contogouris, S.C.Frautschi and How-sen Wong. Regge Poles in Inelastic Scattering. Preprint of the Comell University.
3 K.A.Ter-Martirosyan. Report on the 1962 Intern. Conference on High Energy Phys. at CERN.
4 D.Amati, S.Fubini, A.Stanghellini and M.Tonin. Nuovo Cim. 22, 569 (1961).

Fig. 1. Diagram for the contribution of many particle intermediate states to the imaginary part of the amplitude in the model of Miyazawa and Suzuki/1/. We denote ordinary particles by straight lines, Regge poles by wavy ones.

Fig. 2 Diagram for the n particle production amplitude in the model of Contogouris, Frautschi and Wong ${ }^{/ 2 /}$ and in our model.

