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Abstract 

The bel-,aviour of the amplitude of inelastic pro cesses is calculated assuming the existence of llegge poles. The 

asymptotic behavio•1r o f the cross section of th e emission of n particles is sl-,own to be a ~ ~ . The two 

. · f · I · f d ' h I ' b · · h · · n fog(~) centre em1ss1on o part1c es 1s oun to g~ve t e argest contn utJOn m t e asymptotic reg~on. s 0 
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Several authors ·' l.2. 31 have investigated recently the behaviour of inelastic scattering amplitudes in the Regge 

pole approximation. 

\liyazawa and Suzuki ' 1/ propos ed a model of inelastic interactions us ing a si ngle vacuum pole exchange approach 

(Fig.1). 

Us ing the optical theorem they obtained th e behaviour o f the imaginary part of the amplitude for forward scatter-

in g: 
2a(t max) ·1 

( _;__; 
so _ _ __ _ 

log ( _ s _ ) 
so 

(1) 

where S z s 2 
- s- s 1 and s 2 a re the total four momenta squared of the particles exchanged in the 

upper and lower vertices correspondingly. 

The upper limit of the integrations is given by the condition V s > y s / y s
2 

• If we wish to obtain a constant 

total cross section, we have to choose a mass distribution of th e following type ( apart from logarithmic factors): 

1 (2) 

In the paper of Coutogouris, Frautschi and Wong there is a similar proposal, only they assumed the residues of 

the Regge poles in the inelasti c interaction to be factorisable. 

They obtained the following inelastic amplitude splittin.g 1JP both the upper and lower vertex functions: 

g ( ) 
a(t) 

sn
2 

s n x 
(3) 

X 

( here si is the total four momentum squared of the appropriate particle). 

This procedure may be continued until we obtain a picture (fig. 2), in which eac~ particle is emitted from different 

vertices. This picture is very similar to the multiperiphe~al model of Amati et ai ./4~ only instead of the exchange 

of the one pion propagator the exchanged particle is a Regge pole. 

Nevertheless one can raise two objections against this picture. The firs t one is that the amplitude obtained by 
a(t) 

Contogouris et a! is unsymmetric. The s propagator ( the centre of th e chain ) corresponds to a section of the 

chain1 which is arbitrarily chosen. 

A more serious objection is that this model gives 1 ( s 1 ' s2) "' s 1' s 2 in fonnula l, which would give a cross 
2 

section proportional to s , as is easily seen from fonnula 3. 

It was proved by Ter-Martirosyan / 3/ for the case of 3 particle production that one has to write the amplitude as 
a(t ) a(t ) 2 

.4 "' s 12
1 s

23 
2 if both s

12 
and s 

23 
are large (s

1
k =(q

1 
+ qk) q

1 
are the fourmomen· 

ta of th e emitted particles). If we generalise this picture to n particle production we must add a factor sa(tl) 
• I 2 l,l+t 

for the i th propagator of the chain ( t 1 = ( P z -"&
1 

q k , P 
1 

and p
2 

are the four momenta of the particles in the 

initial state). At the vertices there appear the usual residues continued in the external masses. 

Our picture is wholly symmetric in the sections of the chain, and as we shall see it removes the difficulties con

nected with the behaviour of the total cross sections. 
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ln the chain each second propagator must be a pion- Hegge pile due to the G parity conservation. 

We ha ve for the n particle exchange term the following contribution to the imaginary part of the elastic scattering 

amplitude: 

lmAn(s,t) = (i\,(1) An(2) o(~ 
4 2 2 

q 1 -p1 ~p 2 Jn d cqo(q1 -11-J, 
l=t 

where An ( 1) and An (2) are the n particle production amplitudes . 

We adopt the following notations: 

2 2 

sl = (~ qk) sl,t+t =(ql+qt+t)' 
It= I 

2 n I 

tl = (pl-~ 
k=t 

qk) = (p -~ 
2 k=t+t 

2 
qk) , 

I 

t' = ( p - ~ 
I 3 k=t 

2 
qk) = ( p 4 

2 
s 1 =s, Sn=qn=l, 

t'=t = l. 
0 0 

~ 
k=l+t 

2 

qk) , 

!1ere p and p are the momenta of th e outgoing particles. 
3 4 

(4) 

Using the delta 
4
function of the momentum conservation we integrate over q

0 
• We introduce new integration vari-

ables instead of d qi in the following manner: 

For 

where 

4 1T 
d ql = jT 

ql-+ sl+t' t 
I 

2 
t' I , q I 

2 
t=(p-p) = O 

1 3 
2 

0 ( t I - t'1 ) dt I dt; ds i+ 1_ dq I 

..;-KTs1-~ T 1~;; 1 J 

/':;. ( x, y, z) = x
2 

+ y 2 + z
2

- 2 ( xy + xz + yz ) 

With the help of delta functions we can integrate ove ~ f'1 and q: . If we expand the Regge exponents in series 

around f 1 = 0 , and we ke.ep only the linear part we can integrate over tl as well. 

We finally obtain the following expression: 

n-r 
1T 

------3-;;:-;_- , --n_~-~----n_-, -
\(SI:::4s 2 a+ (0)2 a - (OJ2 

[:n An (s,O) = )( 

(5) 

2 n -1 ~)2a:_((ma(1 + ctg 2~) 2 

X ( o (sn-1) f (tn-r , ,al" (dsl+ 1 

so ,. f ( t , t l ) , 
lmax 1-1 maX 

i=t ~ ..]?i:(S;; /-, tl,mu ,1) 

where f is th e Hegge residue, a+(t) and u_ (t) are the Pomeranchuk and pion trajectories respectively . (For 

even we have + for i odd - ). 

s ;, I+ I and t
1 

max' the maximum valu e of the momentum transfer (forward scatteri ng), may be given as a 

function of s
1 

• The region of integration is given by the following condition: V s;_1 > 1 + V s; 

In formula 5) we must integrate essentially over the possible values of n two dimensional 

c.m.s., with the subsidiary conditions: ~ q io = V s, ~ q ii = f), q/o- q~/ = 1 

denote the on e dimensional space I ik e component by q 
11 
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qi vectors in their 

, where we 



In any case we have q, 
n-I 2a± (t1 J tO 

TT ( S 1,1+1 ) milx 

I 0 

< vs 
- - 2-

We choose 

We should like to estimate the behaviour of the factor 

q to be in the region of 0 (s"t 
lo 

), O<a < '12 
- 1-

for an'y 

s , and we calculate the contribution to lm An ( s,O) . The value of a I is not too essential, the main 

point is whether s 1, I+ 1 depends on s or not. However in any case we must have at least two vectors with 

a = a1 = %. 1r 2 

It is easy to see the behaviour of s 1, I+ 1 

s = o r s I", - ",+,I J 
1,1+1 

if .qi+I,I > O, 

8 1 + 11 1+1 
sf,H-t = O(s ) if < 0 0 

' Let's define formally a. 
1 

for vectors pointing in the direction of p 
2 

to be negative so 

Then we always have 

For a I+ 1 

The behaviour of 

and tlmu=O(l) 

Using the fact that 

for 1 even. 

Then we have 

S I, I+ I 
n-1 

we obtain the condition I 
I = 1 

I ma.x: is very simple in this case , 

if I a I -a I+ I I = 0 • 

a + (0) = l, a_ (0) < 0 

si,I+I 2a±(tlmaxJ 
TT ( ----- ) 

s 
0 

where c is independent of s 

-a I= l 
I+ I 

t -> f) 
I mBX' 

because a 1 = -an= '12· 

for s -> "" 

the maximum co ntribution is obtain e d if a 1 =at+I 

2 
=s . c 

(6) 

It is not difficult to show that the exponent of s on the right hand side of formula 6 decreases if we exchange 

two particles 

corresponding 

and i+ l ( with a1 > a I+ 1 ). For this exchange we have some tl mlJx -+ - oo 1 the 

a ( t I mu ) going to -1, which always decreases the power. 

We then see that the maximal behaviour of the above product s 
2 

is obtained if we have k groups of parti -
2 

cles in which ·all the exponents a are the same, so (I q
1

) for the particles of a group is independent of s . In 

the first and in the last group we have always an odd number of particles. In these groups 

The most interesting case is when the number of groups is equal to two. 

Then 
y, 

s . Particles with < k are in the first group, for 

> k + l in the second group. 
k 

2 
n 

(I q I ) = 0 (1) ' (I 
1=1 l= k+I 

2 
q I ) = 0 (1) . 

The above equations must be understood in the s ense ' that thes e quantities are independent of s . We have still 

S k, k + I = 0 (s) , s,, I + 1 = 0( 1) for if, k' 

s I ~ 0 (s), for i ~ k' 

sl 0 (1)' for i > k + 1. 



So to obtain the contribution of the above region of variables q 1 we must perform th e following substitution of 

integral variables in integral 5 : 

S I = d 1 S for < k d, > dl > ... > d k a,= 1. 

S I = s 1 for ~ k + 1 V S I < 1 + V S 1-1 

Asymptotically J7;. (sl tl_ -, -,-1-= dl s for <;_k Iog _~ k,k+J k "' Iog~-

so after the substitution we obtain for the contribution to lm An( s,O) 
so s o 

lm A' ( s,O) = _s_ R 
" log(~ 

• 0 
where R is an integral , which is convergent and independent of s 

In a similar way we obtain a contribution 

if we have k 

s 
lmA"(s,O) = Hr (~ 

n log so 
Rk 

groups of particles. 

Using the optical theorem we obtain the asymptotic behaviour of the cross section of the creation of n particles: 

1 
a (s) = c 

n n log ~ 
s 

0 

(7) 

So the model gives picture which is identical with the picture of the multi-fire ball model, but asymptotically the main 

contribution comes from a two centre emission of particles. 

Exactly speaking the ma in contribution to the cross section in our model satisfies th e following definition o f the two 

centre model: 

At a given multiplicity n , there are two groups of par!icles (with k and n-k particles) in the c.m.s. o f these 

groups the distributions of particles and the distribution of the total energy of the fire ball are independent of sJ th e 

primary energy. The distribution of k does not dep end on s as well. 

In our model just like in the model of the mentioned authors / 1•2/ there is a section of th e cha in , where th e "nergy 
s k k + I 2 a ( I m a r>-1 

s k, k + l 

instead of 

= 0( s) , but it is not equal to 
) - I 

( 
S )<i. (I 

_ ) max . If s 1 and 
so 

s . So in formula (1) there appears a factor ( --'-s- ___ ..) 
0 y, 

s 2 are great in the c.m.s. system of the fire balls q k+ ,, 
0 

=O(s 
2 

), 

q k .o 
0 ( s 'I• 

I 
. Transforming back into the total c.m.s. we obtain that S k, k + I 

. , c __ . . 
I 2 

so together with the factor f(s 1 , s 2 ) "" s1 s 2 we obtain the appropriate behaviour for the cross section. 

The main defect of our calculations is that we did not take into account the final sta te interactions of the emitted 

particles. These interactions may play an essential role for s mall energies , so th e e ffect of th em is essentially a change 

of the constant in formula 7, but they do not alter the type of the asymptotic behaviour. 
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Fig. 1. Diagram for the contribution of many particle intermediate states to the ima gi nary part of the 

amplitude in the model of Miyazawa and Suzuk/1/ . We denote ordinary particles by straight lines, Regge 

poles by wavy ones. 

Fig. 2 Diagram for the n particle production amplitud e in the model of Contogouris, Frautschi and 

Wong/ 2 I and in our model. 
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