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Ahatract 

A quuioptical approach iD the quaDtum field theory ia developed. 

A.A.noryaos a A.H. Tasxena.a3e 

•KBA3YfOnTYf"'ECKJ.1~ no,nXO.ll B 
KBAHTOBO~ TEOPYfYf non.R• 

A H H 0 T 8 U H R 

B pa6oTe pa3pa6oTaH xsa3aonTR~ecxaA no.axo.a B XB8KTOBoA Teopaa 

nonR. 

Pa6oTa ne~aTaeTcR TOnbxo aa aHrnaAcKOM R3~xe. 



In order to s tudv the nucleon interaction with nuclei an opt ical nuclear model was advanced according to which the 

nucleon scattering by nuc lei lool..s like the scattering o f l ight by the semi-transparent optical medium. In such an ap

proach the problem of scattering is considered not as the ,..1any-body problem, hut as a problem about the nucleon motion 

in the field de scri bed by the complex potential. T he imaginarv part of the potential describes \he inelastic scattering 

processes. In the light of rresently available data one can definitely say that the optical nr 1~- · model for nucleon s cat· 

tering gi ves a true picture of th e reality. It is quite evident tl.a t this model is of a phenomenological nature, and ;to auc· 

ces s in each concrete case depends,in the main, upon a fortunate choice of the complex potential. 

The Aim of this paper is to develop the quasiopti cal a pproach to the problem of elementary particle scattering a ccord 

ing to the concepts o f the quantum field theory. \l.'e shall see tha t the princ iples of th e quantum theory make it possible 

to construct the generalized complex potential dependent on veloci ti es. The imaginary part of the generalized potential 

characterizes pos s ible inelastic processes. Such an approach is ge nera l enough and allows to consider both the problems 

of scattering and those o f the bound states. 

The introduction of the potential into the quantum fi eld theory was discus sed earlier. For instance , in !lefs .f l / the 

potential was introduced as a subtraction constant in the dispersion relations. According to such a definition the poten-

tial depends only upon the momentum transfer and the particle masses. 
f\. 

In llef./2/ , the potential was defined as a difference between the imaginary part of the amplitude and a certain in-

tegral of the double spectral iun ction of elasti c scattering. In this definition the potential is a fun ction of the variables 

• • t and of particle masses. 

In Ref/ 11, the problem of introducing the potential dependent only upon the momentum transfer and the particle 

masses was also discussed from another point of vi ew. The potential in this approach was chosen so that the Schro-

dinger equation should lead us to the relativistic S matrix. It is quite obvious that such a potential has a limited 

meaning ( as is pointed out by the authors of
11/ themselves). The problems of elementary particle interaction 

a ccording to the conc ept of the nuclear optical model wete treated in a paper by O.I.Blokhintsev et al / 9/ . 

Oefore we proceed to obtaining the Schrodinger equation we extend in 0 1 the Lippmann-Schwinger method to the 

problems with the complex potential. 

In f 2 we will discuss the problems dealing with the 4-time Green fun ctions. 

ln f 3 the properties o f the 2-time Green fun ctions and of the generalized complex potential will be studied. 

ln f 4 a method for constructing the Schrodinger equation with the complex potential will be worked out. 

In fs an approximate method of summing the perturbation theory graphs will be de veloped. 

1. Lippmann-Schwinger' s \lethod in Problems with Complex 

Potential 

Let the system he described by the Schrodinger equation 

i _a .;,(t) • ( H + H ) 1/1 (t) 
at o ' 

H - u - ; r, r ~ o . 
I 

Using the unitary transfonnation 

"'(t) -
·IH t 

e o fj,(t) 

3 

/ 1.1/ 

/ 1.2/ 



we pass to the interaction represe11totion 

where 

WJ.L • H1 (t) ¢ ( t) 
at 

fB t · fH t 
8 (t)ze 0 He " • CJ(t)-ir(t), 

I I 

With the ai! of Eq. / 1.3/ , we have 

r(t)~ o . 

a < ,p• (tJ ,p(t) > ,. - 2 < ,p• (tJ r (t) ,p (tJ > ~ o 
a t 

/ 1.3/ 

/ 1.4/ 

Now we see that the imaginary part of the potential characterizes ine lasti c processes. lntr oduce the operators S 1and S 

¢ ( t) = st ¢ (-oo), ¢ (oo) = S¢ (.._) 
/ 1.5/ 

According to / 1.4/ and / 1.5/ we get 

+ 
s

1 
s

1 
~ 1, 1 s ~ 1. / 1.6/ 

or + + 
S • l + iT, i(T-T) + TT ;O . 

/ 1.7/ 

The presence o f in elastic processes in the system leads to the violation of unitarity of the S -matrix. 

Let ¢ be the eigenfunctions of the operator R 
a o 

R 0 ¢ • E ¢ 
a a a 

/ 1.8/ 

If it is a ssumed that the interaction H 1 is switched adiabatically on and off at t .. -oo , t •oo , respectively, 

what is easily accomplished by introducing th e fa ctor exp (·€ It I) , then the eigenfunctions ¢ at t • + 00 win be 
a -

the eigenfunctions of the total operator 11 as well. In the final fonnulas we have to go over to the limit l .. 0 

With account of these remarks, we have 

¢(t) • ¢a-i f H(t) ,P(t)dt 
fJ -oo I / 1.9/ 

. • +oo ..(\t\ 
IT¢ = - I r e H ftJ ¢ (t) dt 

/3 -oo 

lien ee 

i Ta/3 = ( 4fo. T ¢{3) = - ; f e -(I •I -
* fH t -IH I 

(¢ e 0 R e 0 

a 1 
s, ¢/3) dt -

oo • l( B - H ) t ~1 rl 
= - • J ( ¢ H e a 

0 S <Pa ) dt 
a I I fJ 

/ 1.10/ 

Denote 

00 

c• > IP {3 (E) = ( dt e I(B-H o) t-tlrl s, rPf3 / 1.11/ -
4 



then 

Since 

s I ¢ f3 = ¢ rr i r e ~ I II 
-oo 

ll (r) S ¢ {Jdr 
1 r 

then 

- i J dt 
I -flrl 

(e H (r) S ¢{3 dr .. 
I r 

- 2 rr 0 ( E - E {3) ¢ f3 - i r dr I ( dt (> I ( B - H 0) I - ( (t-r) j X 

"oo r 

x exp ( - ( lrl ) 
IH r 

e o 
•IH T 

H e 0 

I 
s ¢ 

r f3 

lt follows from here that 

(+) 

11'{3 (E) .. 2rro (E-Efi ¢{3+ 1 . 
E-H + ll 

0 

or, taking into consideration / 1.11/ . we get 

Supposing that 

we obtain the integral equation for 'I' f3 

1 'I' c f/J + ___ _ 
f3 f3 E + i<-H 

/ 1.12/ 

/ 1.13/ 

/ 1.14/ 

/ 1.15/ 

/ 1.16/ 

Solving this integral equation we find ~~~~ and ar: able, with the aid of ( 1J2/ , to cal culate the scattering matrix Taf3 

The integral equation / 1.16/ may be regarded as a formal solution of the differential equation 

/ 1.17/ 

which corresponds to outgoing waves. 

Solving Eq. / 1.16/ by iterations , we get the expansion 

5 



1 1 1 'l'/3 e ( 1+ . H1 + . H, - -.-- li1 -+ ••• ) 
El u - H0 E /3 + H - li 0 E l' f - H 0 

which can be written a s 

q'a- (1 + ~ II 1 )¢/3 
,_. E{f ' l- H 

From here, taking account of / 1.12/ , we have 
+ 

T {3=-2 "¢ ( H1 + II 
1 

1 H1 ) .p 8 ( E - E ) 
a a Ef3+it-H {3 a {3 

H the interaction H 1 is a fun ction of energy, and 

H
1 

( E +if)- H
1 

( E- it ) •- ii (E) 

where 1 (E) ~ 0 

then, by repeating the above arguments, we get 

'P • .p + 1 H (E + il) IJI 
{3 f3 E lif- H0 t {3 {3 

In the relativistic problema we shall be concerned with the equations of the fonn 

( E
2 

- F
1 

(p) - V (E) ) t/1 • 0 , 

where V(E) • u(E) + if'(E), f'(E) ~ 0 

E > 0 , F 2(p) • ml + ~ z. 

In this case, as can be easily seen, we arrive at the integral equation of the form 

1 
' ·¢+ 2 2, 

f3 f3 ( E +if) - F IP) 
{3 

V( E/3+ il) 'P{3 

here the amplitude T a/3 is equal to 

* 
T {3•- _ 1_ 8 ( Ea - E{3) 211 < .p ( V + V 1 :-.r.:- V) ¢ > 
a 2Ef3 a (Effit)2 -F.._V {3 

/ 1.18/ 

I 1.19/ 

/ 1.20/ 

/ 1.21/ 

/ 1.22/ 

/ 1.23/ 

/ 1.24/ 

/ 1.25/ 

In virtue of the invariaoce under rotation group, the total momentum is conserved. Hence, the scattering matrix can be 

tednced to a diagonal form. The partial amplitudes in this case may be put aa 

'1/lE)+ 2i8t/E) 
s,(E) • e 

where fljE) characterize inelastic scattering processes. 

6 



2 The 4-time Green Functions and Bethe-Salpeter Equation 

For the 4-time Green fun ctions , in case of idtntical particles, Bethe and Salpeter derived the following equation 

G' ( 1,2; 1',2') • G' ( 1,2; 1',2') + 
0 

+ (G0 (1,2; .3,4)K( 3, 4;5,6)G'(5,6;J',2')dx dx dx dx 
3 4 I f 

/ 2.1/ 

the expression for the kernel K being obtained by expanding in a power series according to the coupling constant. 

For simpli city we are concerned here with the scalar particles on ly. 

Representing the function G• as 

G• ( 1, 2; 1',2') • (1+ ~,) G ( 1,2; 1',2') 

where P 12 is the commutation operator, and 

G0 (1,2; 1',2') = D( 1, l ')D(2,2') 

and taking into account the symmetry of a lcemel 

K ( 1,2; 1',2' ) .. K ( 2,1; 2', 1') 

we get the following equation for the G-function 

G(1,2;1',2? .. D( 1,1 ')D(2,2') + 

+ (D(1,.3) D (2,4) K (3,4;5,6) G (5,6;1',2') dxJ dx
1 

d1e
1 

d1e 
1 

Hence, the equation for the four-dimensional wave function takes on the form 

'1'(1,2) ,. ( D (1,3) D (2,4) K (3,4; 5,6) '1'(5,6) d1e
3 

d1e
4 

d1e
1 

d1e
6 

This equation is applicable both to scattering problems and to bound states. 

Eq. / 2.4/ in the momentum representation reads 
_, 

G(~ ,p,.·q
1
,q,) .. (2rr) D(p

1
)D(p,) B(P, - q

1
) 8(p,- q,)+ 

_, 

/ 2.2/ 

/ 2.4/ 

/ 2.5/ 

+(2rr) D (P,)D(I)) ( dq'z dq; K (P, ,p,;q; ,q;) G(q~ 'q; ;qz,q,J /2.6/ 

h can be rewritten in the following symbolic fonn 

G·G + GKG / 2.7/ 
0 0 

One can easily get from here the expansion 

/ 2.8/ 

In the next paragraph we shall study the properties of th e 2-time Green functions G ( t, i ; t, x ; rJ• ; ,;• J 
1 , 1 , 

7 



Let us establish the relationshi p between the Fourier-trans form of the 2-time functi on G (p, P ; q, P ; p', p'; q', p') 
0 0 0 0 

and that of the 4-time . Junction G ( p, q, p', q 1 ) 

G(x x·x .. y·x 1 x1·x1 y .. 1 ) :(G(x y·x1 y 1
) S(x -y )8(x' - y 1 )dv dy 1 

o' ' o' ' o' ' o ' ' , ' o o o o "'o tt 

Substituting into this expression 

ipx + iqy- ip 1x 1 -iq'y 1 

G ( x, y; x1, y 1) : f e G(p, q; p 1, q1 ) dp dq dp 1 dq I 

and having in mind, that 

G (X X . X y .. . % 1 x1 • % 1 .. y I) 
0 , 0 , 0 , 0 

-ip; -iqJ;•+ip 1; 1 +i"tl'y 1+ip x -ip1 x 1 

=f e oo oo G (~, p; ~ p ; jl',p 1 ;if', p 1
) djf dif' difdtf'dp dp 1 

0 0 0 0 00 

we get 

G ( ~, p; ~ , p; tf',p I ; if', p1
) - ( dr dr 1 G ( i1, p -(; ct ( ; ;1", P 1 

- t I;~. t 1
) 

0 0 0 0 0 0 

The momenta entering this expression satisfy the conservation law. 

p + q • pi + q' Po • P~ 

/ 2.9/ 

In the centre- of- mass system of p + q • 0 

menta p , p' and on the energy of the system 

the Fourier transform of the 2-time function depends both on the mo-

E • So, it can be put as G ( P, p'; E) • Integrating both sides of the 

expansion / 2.8/ and using /2.9/, we get the following expansion for the Fourie'l'-transfonn of the 2-time Green fun ction 

It follows fro m here for the - ,..., -J - J 
G "' G 

0 

G 

,...._1 
G 

~1 
-G 

0 

~~ 

G+GKG+GKGKG+ 
0 0 0 0 0 0 

function that 

~~1 
G KG ·G 

0 0 0 

--1 ___., ~-1 ~-1 r---/ -~-1 ~ ,-..1 
-G ·GKGKG · G + G • G.'CG·G • GKG • G 

00 0 00 00000 00 

3. 2-Time Green Functions and Their Properties 

/ 2.10/ 

/2.11/ 

Here we shall be concerned with a study of the spectral properties of the 2-time Green functions. It is not so diffi-

cult to establish these properties, as far as we are dealing in this case with one variable, and the problem is actually 

equivalent to the study of the analytic properties of the amplitudes with a fixed source/ 3/. The 2-time Green functions 

are also nsed in the problems of statistical physics/ 4/ . 

Let A and 8 be some operators which are, generally speaking, a product of the field operators. 

8 
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f the 

on 

I 

iffi-

ally 

ions 

Consider the Green function of the fonn 

Kc(x,x') = < 0 I T (A (x) B(x')) 1 0 > 
I 3.1/ 

Before proceeding to the study of the spectral properties o f the fun ction / 3.11, we investigate the analytic struc-

lure of the retarded and advanced functions 

K., ( x, x') = 0 ( t- t') <0 I A (x) B (x') I 0 > 

13.21 
K8 ( x, :t'j =- 8( t'- t) <0 I A(x) B(x') I 0 > 

Here by x and t• we mean the groups o f variables 

13.31 

Let us find the Fourier- transfortns o f the functions 13.21 

• ... iEr ( I K, ( x, x'; E) - ( e 8 r) < 0 A(x) B(x') I 0 > dr 

• ... iEr 
K8 ( x, x' ,· E) ~- ( e {} (- r) < Ol A (x) B(x') I 0> dr / 3.41 

where 
r = t - t' . 

It can be seen &om 13. 31, that the function ~ is a na lytical in the upper half~plane E , and the K
8

- in the lower 

half-plane. Let us calculate the di Herence between the fun ctions Kr- K
8 

1 (E) • ~ ( f(- !() - 'h ~ o (E- E) < 0 I A (O,t)! nxn I B (0,-;')10 > 
•-' r a n n 

1 3.51 

Since En~ 0 , then the functions K r and K8 coincide for the real values of E < 0 . Thus, there exists a 

single function K ( E; t, t') holomorphic in the complex plane E cut along the real axis E ~ 0 . For the ... ... ... ... ...... 
Fourier-transfonn of this fun ction with respect of the var iables x .. ( xt, z,, ... ) and r • ( x~, x~ , .. · ) we get the 

following spectral representation 

1 oo l•b (E') 
K, ( E; >., >.') = -,- ( dE ' -:-:----::----,- -

" ' 0 E'-E-i l 

1.,/E') 
K ( E; >., >.') = _ 1_ ( dE' .. . 

'IT I 0 E'- E + it 
Repeating the aoove arguments for the functions 

we obtain 

where 

'(' (x,x') =- {} ( t- t') < 0 I B (x') A(x) I 0 > 
r 

·~ ( x, x') = 0 ( t '- t ) < 0 I B(x') A(x) 10 > 

0 
I (E ') [(' ( E,· >.,>. ') = - __ 1_ (d E' b a 

' • . 'IT I -- E' - E + i ( 

! (E) - ~ I o ( E + E) < 0 I B (0, ;.) I n >< n I A (0, ;)10 > 
ba n n 

9 

13.61 

13.71 

13.81 

13.91 



With the aid of the representations / 3.6/ and / 3.8/ , we get the followin g sp('c tral repreeentat ion for the Green fun ction 

Kc 

Ke(E;A,>. 1 )•-l _ fdE ' [ I.,(E') + l, j-E') 
11i o E'-E-i€ E'+E-it /3. 10/ 

In the case of the 2-time Green function we are interested in 

+ + 
G ( t X. t; . t' x'. t• x"1) - < 0 I T ( ..J.(t x) ..J.(tX l ..J. (t' ;») ..J.tt• ;·)I 0 > 

I , , J I , t' , 2 'I' , J '#' , , ¥' , 2 'f'\ , 1 13. 111 

the operators A and B are equal 

+ + 
A (x) - cp (t, X I) cp ( t, ~). B (x ') - cp ( t', 1;) cp ( t', 1~) / 3.12/ 

and, hence, 

.. .. .. =' I") .. .. .. .. > I ,( E; x
1

, x_; x' , x ) • ~ l: 8 ( E - E ) J x ,x ; x' , x' 
a s I l n n a " I l I l 13.131 

* ... -+ · ... .... (n) -+ _. ... ..,. 
I,.( E; x1,~x~,x~) • ~ ~ 8 ( E + FtJ r., ( x,. x1; x;, x~ J 

where 
(n) -+ _. -+ -+ -+ + -+ -+ + -+ * 

1 ( x
1 
,x i"'

1
, x~) • < 0 I cp (O,x 

1 
) ·cp (0, x,J I n > < 0 I cp ( O,x'1 ) cp (O,x~) I n > ., 

or for the Fourier tranafonna 

( n ) -+ .. -+ -+ 
I., (E;A,A }-~; 8 ( E- En) 1.,. ( ~ , p2 ;p~ ,p;) 

• / 3.14/ 
I ( n ) .. -+ ;!) .. , 

1,. r E; A, .\ ) - ~ 1: 8 ( E + E J 1 ( -P , -P ; -P 4 , - P J 
• n n a l> 2 I • I 

but in the centre-of-maas ayatem 

(n) -+ -+ -+ -+ (n) -+ -+ :1 -+ 
I ( p ,p ;p' , p' ) • I ( - p , - p ; - p , -p' ) 
a l> I l I 2 a l> 2 I l I 

/ 3.151 

Therefore: 

* 
I ( - E; A, A I ) - 1 ( E; A, A I ) ,.. . .. 13.161 

Using /3.101 and /3.161, for the 2~time Green function we get the following spectral representation 

* 
G r E; A, A' ) . ~.f dE' [ r. ,.(E'; A, A

1

) 

17 I 0 E'- E-; ( 

1 
11

(E'; A, A 1 ) 

+ • 
E' + E-i( / 3.17/ 

The operator I ab ( E; x, x' ) is positive-definite since the form 

• • 
< I.,(EJ > • f 1/1 (~) 1/1 (x;) 1. 11 ( E; ;1 ,;,;;~ , ;',) 1/1(;'1) .U;;Jd;'1 dl2 JiJ1 d~ 

< r.,. (E) >- < 1.1 E) > • / 3.18/ 

has a definite sign. Let ua establiah some properties of the operator 1.,. . According to/ 3.13/ , we have 

10 



.on 

/ 3.19/ 

front here 

( n ) ~ _. ... ... 
I ( P ,p ;p' ,p' J 

• I> I 2 I 2 
/ 3.20/ 

or in the centre-of-m11ss system 

( n ) ... ... *(n) -'>1-+ 
I ( p, p' ) .- I ( p, p ) 
•b ab / 3.21/ 

Therefore, by Eq. / 3.14/ we have 

I ( - E; A, A ' ) = I ( E; A ', A ) 
II• • II / 3.22/ 

or takinp; into account / 3.16/ 

• 
1. 11 (E;A,A')= ~!E; A', A) / 3.23/ 

On the other hand, 

1 ( rt) r p , ;; ; -p· • rJt , ... r"> r - it , _., ; -71 • -P' ' 
• II I 2 I 2 •II I 2 I 2 / 3.24/ 

I Aut, aince 

13,25 1 

then 
( rt ) ( rt ) .. .. .... 

1 ( p ,p ;j} , ;P ) • I ( p' ,p' ;p ,p ) 
•II I 2 I 2 •• I 2 I :J 

/ 3. 'lf>/ 

6/ 
It foll owa from here that 

I (E;>..,A ' ) • I (E;>.. ',>.) 
•• •• / 3.27/ 

Acc0C"11ing to / 3.23/ and / 3.27/ the apectral representation for the function G ( E; >... A') can be put as 

17/ 

-G( '} E (-d .,.,, l.~o( E '2;A,A ' ) 
E; >..,>.. - -;-r- "" E''- E 2 

0 

/ 3.'lJ3/ 

where 

(n) 

I ( E 2 ;>..,>.. ' ) = '£8(E!.E: )0(EJ1d ... " 
18/ 

/ 3.29/ 

From (3.18) it ia aeen that the operator 1. 11 ia positive-definite. 

Since the imaginary part of the operator G has a definite aign, one can establish that the imaginary part of 

11 



- -1 
of the operator G will have a definite sif:'ll. e itht>r. 

Indeed, let A and 8 be two non-commutoting operators. and 

D : A + i(8 +c), oO. 

8 > 0 ( in the sense of / 3.18/ ). 
= 

Writting D as 

- - -'h -'h --
A + i ( 8 + ( ) = V B+ 1 [ ( 8 + ( ) A ( 8+ € ) + i l \1 8 + c 

we have 

-1 11 -'h -1~ -r~ J 

[ A + i(8 + €)] 2 (8 + d _ (8 + d A( 8 +c) - i 
(B-;;-fh A(8 +d-1 A ( 8 +c)~-~--

From here 

-1 -1 -1 
lm D ,. - [ A ( 8 + c ) A + 8 + e ] < 0 

4. The Equation for a System of Two Particles 

-'/l 
( 8+d 

The Fourier-transfonn of the 2-time Green functi on G satisfies the following equation 

... ... - _.. ... ... ....... f i ( p, q; E) G ( q, p'; E) dq • 8 ( p- p') 

/ 3.30/ 

/ 3.31/ 

/ 3.32/ 

/ 4.1/ 

The expression for the opera tor I may be obtained in the framework of the perturbation theory. In this s ense, the 

situat ion here is alike that with the Bethe-Salpeter equation /2. 1/ where the kernel K is also found from the pertur-

bation theory. The algorithm for constructing the operator I is given by /2.11/ . The equation for the wave fun ction 

of a system of two particles is 

fi ( p,p';E) l(p') dp' = 0 / 4. 2/ 

Making use of / 2.11/ the equation for I may be written as 

-+ .... ... .... .... ..... 

( E 2
- p'- m2 ) I (p) • f Y ( p, p'; E) I (p') dp' / 4.3/ 

\" 

d 

th 

/< 

We have shown earlier that using the Lippmann-Schwinger method and starting from Eq. / 4.3/ it is possible to con- C<> 

s tmct the scattering matrix. It can be easily eeen that this scattering matrix has the same fonn as that usually defined sit 

in the quantum field theory. Indeed, since 

+ + 
G ( t, p; t,if; r, p-t; r,q') a< 0/ 1 (cp(il,t) cp(if,t) c/J(i/',r) cp(j/',r) I O> 

/ 4.4/ 

then, taking into account the conventional relationship between the operators and the state vectors in the Heisenberg 
wh 

representation and in the interaction representation, we get 
ma 

12 
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/ 3.30/ 

/ 3.31/ 

/ 3.32/ 

/ 4.1/ 

J sense, the 

} from the pertur-

e wave function 

/4.2/ 

/ 4.3/ 

ossible to coo-

usually defined 

/ 4.4/ 

he Heisenberg 

+ + -l 
G (I, r) ~ < 0 I S ( ""• I) ¢ (p, I)¢ ( q, t) S ( t, r) ¢ (11', .') ¢ ( fJ' , r) S ( r, -oo) I 0> S0 

Then, with the aid of the adinbatic hypothesis about the switching on and swi tching off t he interaction, we may go 

over to the limit r •- oo 

1/J(t) ~ lim G (t,r) , __ 
At the same time the function 1/1 (t)obtained is a solution of the homogeneous equation 

which at f-+-oo represents a plane wave, while at t-+oo -a scattered wave. 

So, passing to the limit 

amplitude 

, we arrive at a conventional expression for the matrix element of the scattering 

lim 1/1 (t) ~lim G ( t,r) = p v p p' q q1 <0 I a(p') b(q') S: (p) ~ (q) I 0 > 
, ... _.,., 0 0 0 0 

(-+.., 
1-> 00 

It follows from here that a ccording to our definition of the potential the s cattering amplitude constructed by the 

Lippmann-Schwinger method leads to a customary expression for the scattering amplitude in the quatum field theory. 
... .. , 

The generalized potential is a complex function of the momenta p , P and of the energy o f the system E 

The imaginary part of this potential has a definite s ign /3.17/ and characterizes the absorption in the system, i .e., the 
.. -1 

inelastic scatterin g processes. Since it follows from Eq. / 4.1 / that I. .. G , the potential is an analytic function 

of E , and its spectral representation results direct ly from the spectral representation /3. 12/ for the 2-time Green 

fun ction. 

So, we have shown that in the framework of the concepts of the quantum field theory the system of two particles 

may be described by an equation of the Schrodinger type with complex potenti al which can be constructed according 

to the algorithm developed in the frameworlc of the perturbation theory. The description of the system of two particles 

with the aid of Betl.e-Salpeter equation has some shortcomings. 

For instance, it is absolutely obscure what ·physi cal condition is necessary to formulate with respect to the relative 

time of two particles in solving this equation. Nor is it clear how to intCfJ>ret from the physical point of view the 4-dimen,.innal 

wave function because its norm is not positive-definite. It is quite obvious that the approach to the description of two particles we 

developed above is free from these shortcomings. To summarize, several remarks should be made. 

\1aking use of the results of f 1, with the aid of the generalized complex potential V one can show that the matrix elements of 

the scsttering amplitudes in any order of the perturbation theory coincide with those obtained in a usual manuer. 

On the other IJand, the potential V allows to depart beyond the mass sl1ell and to get the equation for the 2-time Green function 

/ 4.1/. The situation with this side is the same as that with the Bethe-Salpeter e'l'Jation which pennita, on the one han~ to describe 

correctly the matrix elements of the scattering amplitude within the perturbation theory, and, on the other, to go oul.llide the mass 

shell and to find the 4-time Green Function. 

Let us illustrate the method developed above by the interaction of the form 

+ 
II 1 = ~ ¢ ¢ A ( x.) 

where ¢ is the field operator of scalar particles with the mass M , and A is the field operator of scalar particles with zero 

masses. 
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In the lowest orders of tlo<' perturbation th eory the following irreducible graphs will give the contribution to the 

kernel: 

I 
p~ 

p' .. 

P.,.' ( I 
I 

~ ~ 
I 

p_' ' 4 I 

"" 
1'-

~-...,.--..~ P. ~,, 

I '" <P. /---
f! p_ 

~=r~~r: ]~~~-[ 
P!. P.. P/ P ... 

I I I 
P+ P. e ~{,.,.... .... -, 

'-c 
f ·P. P.,. ~ i " /1. 

I ¢ 
~ < 4 P.' Dl ' .,. , ' b ... -o+~ __..:•:-......-c,'-- P, 

r - _,., r- .. 
, _ ~ I " P-

where p+ is the initial momentum of a posi tively charged particle, and P _is the ini tial momentum of the nega· 

lively charged particle. 

1t can be seen that the generalized potential has the real and imaginary parta. By / 2. 11 / and 14.3/ in the lowest 

order of the perturbation theory, for the real and imaginary parts of the potential we have: 

-+-+ 
2

- .. z - ·l ...... 
Re V (p,p ';E) • e G

0
(p) G

0 
(p') (( d< d(' Gofl·,p ) Gofl ', p) 

. [ 1 - _ 1_] 
rP - iJt) 2 - (<-£' ) 2 2E 2 

lm V (p, ji'; E ) • e 4G. 1
(PJ a"}p') ( die O(k~ l>((E-k) ~ I ,.(PJ I,.(iJ') 

0 0 

where 

•I -+ ( 2 ..1 'l -+ :II G ( <•P) • ( 111 E+ <) - pl. m•J l ( 7S E - <) - pa.. m J 
0 • 

... .. 2 • ... 2 l .. 1 
I (p) • ( d < G (<,p) [ < - (p -k ) - m ] 

" 0 

" Tl-te real part of the potential determines the energy levels of the system, the imaginary part characterizes the inelastic 

process es and on being averaged, coincides with th; probability of breaking up the system into two s calar quanta. 

5. A \lethod of Surrming the Graphs 

( 

wi 

rec 

en 

so 

IS 

bo 

SCE 

the 

Ow 

amr 

As was shown in ' 5 ' , the perturbation theory terms contain the information about th e bound states of the s ystem of mar 

two particles. Tlte problem as to hov. to get thia information from the perturbation theory is far from being trivial. The 
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ion to the 

of the nega-

a the lowest 

es the inelastic 

ar quanta. 

of the system of 

ing trivial. The 

diffi cu lty is that in the l plane appear the cuts which ma~e th~ picture essentially compli cated/6/. This should be 

token into consideration if one want s to single the Regge singularities out of the perturbation theory. The mechanical 

mixing of the pertur bation theory terms may lead to erroneous conclusions. 

On the other hand, it should be borne in mind, that the perturbation theory terms which are essential for describing 
2 

the bound states a re proportionol not only to the '.mtall coupling constant e 2 , but to the r "'"' !ter e as 
~ vw 

well ( W is th e binding energy). This parameter is no t at a ll srnall in thi s case. Therefore, it seems worthwhile to 
,171 

develop a method of summing such terms and to get the expansion in a small parameter e . Such a method 

is, in fact, the description of the bound s tate with the aid o f the Schrodinger equation / 4.3/ with the complex potential 

which,in contrast to the expansion tem•s of the scottering omplitude, no longer contains the terms of the form e 2 

---vw-
This approach is general enough as long as it leads, on the one hand, to the relativistic $-matrix, and, on the 

other, allows to depart outside the energy she 11 end to construct the 2-time Green function. 

Here we consider a less general problem of constructing the generalized potential which leads to the matrix ele

ments in the quantum field theory. Such a formulati on of the problem is ambig• <'us since there may exist a fairly wide 

class of potentials so that the equation 

(E 2 .. 2 2 r .. 2-+12 2 .. .. , .. 1s 11 
- p - m ) 1/J(p) - V ( p , p , E , ( p - p~) .p (p') dp' · 

will lead tJ the same scattering matrix.' The question arises as to how to choose the simplest potential satisfving th is 

requirement. In what follows we shall develop the method of constructing the complex potential dependent only upon 
2 

energy and upon relative momentum ( p - p' ) • In this mann er we reduce the problem of s umming the graphs to the 

solution of the Schrodinger equat ion with the complex potential depending on the variables E and ( P- p') 
2 

• It 

is worthwhile nothing that s uch a reconstruction of the perturbation theory s eries makes it possible to describe the 

bound state. 

Refore proceeding to the construction of the potential, we dwell upon the discussion of some properties of the 

scattering amplitudes. Following \1andelstam, the amplitude M ( s,t) can be represented as 

M ( s, t) ., u ( s) + 
1 

• oo oo R l ( s•, t ' ) 
u,rs)+ u,[u)+ f ds ' ( dt ' ~ 

._, 4 M 2 (s '-s)(t' - t) 

00 00 
1.(1 R 1 (s' u ' ) 

+ r ds' r dt' • 
- oo 4112 (s'-s) (u'- u) 

the functions R 
1 

and R
2

are expressed in terms of the \landelstam spectral func tions as 

R1 (s, t) • p
1

(s,t)8 (s -4M
2
)8(t-4U 1

) -

-p (t,u)8(u-4 M
2

) 8(t-4AI
1

) 

' 

R ( s, t) • p ( s, u) 8 ( s - 4 M 
1 
J 8 ( u - 4 M 

1
) - p ( t, u) 0 ( t - 411 

2
) 8 ( u - 4 M 

2
) 

' 1 3 

/ 5.2/ 

/ 5.3/ 

Owing to the in variance under the 3-dimensional rotati~n group one can, instead o f the amp I itude A/
7 

introduce the 
(+) ( -) 

amplitudes M and M acting correspondingly on the even and odd states . They can he determined in th e foll owing 

manner 

15.4 1 
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where ¢
8 

denotes the even state 

and ¢ designates the odd one 
a 

¢ (q) = ¢ (-~ 
s s 

¢ {q) = - ¢ (-q'J 
a a 

. / 5.5/ 

/ 5.£/ 
(+) (-) 

Thus, one can regard the even and odd s tates independently. Since the operator M acts on the even states, and II 

on the odd ones, then, by / 5.2/ , the following spectral representations can be given for them 

,j+}s, t) • u,(s) + u
2
(t) + u/t) + f ds' rdt' R,(s',t'fr R fs', t') 

- 4M2 ('s'-s)(t'-t ) 

(-l 00 00 

M r s, t) • ~ (t) -u ,(t) + f ds' f dt' Rtfs ', t') - R, (s', t') 
- 4M2 (s'-s)( t'-t ) 

/ 5.7/ 

As far ae the amplitude ie divided into the even and odd parts, we construct two generalized potentials V+( s, t) 

and V_(s,fcorrespondingly. The potential can be re constructed by the given expansion of the scattering amplitude in the 

perturbation theory, if us e is made of the expression for the scattering amplitude (see the formula / 1.25/ ) 

where 

M • v+- v _ ___ 1_ _____ v 
EI(E+it)2-F lj - v 

T • - - "-l> ( E1 - E t) 14 , V • v/ E • 
E' 

Representing II+ and v + as an expansion 

(+) (+) (+) 
M ~ llo + Ill + ... 
(+) (+) (+) 

V • v
0 

+ v
1 

+ ... 

and substituting into the expression of form / 5.8/ , we get 

/ 5.8/ 

/ 5.9/ 

v ( E, p -p') • r/+)+ ,j.+)_ Af+) 1 .v (t ) 
+ 0 I 0 E((E+i€)2-F~p)] 0 / 5.10/ 

A similar expression can be obtained for the potential v _ . l n the given case the variable E s tands in the denomi-

nator of the potentials ~and V- which makes the investigation at the point E• O diffi cult. In order to avoid this, 

it is convenient in a number of cases to determine the potential in Eq. / 5.1/ as follows: 

( E
2- p2

-m
2
) r/J(p) - 1 

-v-;:P;;:: .. ,;;:::+=m:;;, =-
(W (~,~~ E 2, (p-p' )2

) r/J(p ') dp' / 5.11/ 

Then Wis related to the scattering amplitude by 

II • W + W __ 1 w / 5.12/ 
~ [(E+i€) 2- F~p) ] - W 

In a similar manner we find 

16 



/ 5.5/ 

/5.cf/ 
(-) 

tales, and II 

/ 5.7/ 

amplitude in the 

5/) 

/ 5.8/ 

/ 5.9/ 

/ 5.10/ 

:ls in the denomi-

ler to avoid this, 

/ 5.11/ 

/ 5.12/ 

W ( E, p - p') .. M(+) + t/+)_ M(+) ·---'1~----
+ 0 I 0 

Jif2+ m2[(E+i£) 2- F 2
] 

/5.13/ 

Note, that the third tenn in the expressi ons/5.10/ and / 5.13/ takes off from Ill the part of the amplitude which is due 

to the Coulomb scattering. 

From / 5.10/ and / 5.13/ we aee, that the potentials in this approach is determined only by the n .. trix e lements of the 

scattering amplitude. As soon as in constructing the potential, the latter was required to be consistent with the matrix 

elements of the perturbation theory as well as to be dependent only upon the energy and relative momentum, the depar-

ture beyond the mass shell with the aid of the given potential will fail to describe truly the s ituation in the quantum 

field theory. 

In conclusion we should like to note that, as long as the potential in the quantum field theory is complex and energy 

dependent. in order to clear up how far Regge's ideas can be applied to the quantum field theory, it seems extremely 

desirable to investigate the analiticity in the f plan e by resorting to the Schrodinger equation with the complex poten

/ 5/ 
tial having definite( see/ 4/) analytical properties by the variable E , and in some cases (see ) by the variable t , 

as well / 8/ . 
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