

Abstract

A computer programme has been devised which calculates traces of y -matrices by algebraic means,

60 that the results are obtained in closed form .The programme deals with traces of the types

voa
tr «, 4, ...

-~ A - A
Gn.a . tr f> “vu?a Ap.a . tr 3‘“’ ac“:"'yr“ Ay .- 3’“ An.3 -

The input expression may be of a complicated arithmetical form containing parentheses ad libitum. The

programme also performs multiplication of traces of the types

te 3, 4. .. SRR T2 S SR S g"' troa, &yt g trd 4, 5’.- Ao .

'

.10, Katsep

BLIYMCAEHHWE WIYPOB M3 TAMMA-MATPHLL HA
3JEKTPOHHOM BBIYMCAWUTE/ABHOM MAUIMWHE

AHHoTauus
CocTapneHa nporpamMma Ons 3MeKTPOHHOH BbLIYHCNHTENbHON MALUUHbI ON1 BbiUUCIe™

HHg LWNypoB M3 Y —MaTpHlu anrebpanyeckuMm o6pasoM, Tax HUTO pe3ynbTaTel MOMy4anTcd

» A
B 3amkHyTo#t dopme, [lporpamma obpabaTpiBaeT LINYPsl BHOOB 17 Qv 4, -o %nea,

-

» .. én.;. DBpoonumoe Bblpaxenue

A - oA o
te p a0 Baa o T gkt A el L PO

MO eT HMeTb CIOXHbIA apHdMeTHUECKHRA BHO, BKIOYAdA nobyo xoMGHHALHIO CKOBOK.

Kpome sToro nporpamMma yMHOXaeT LUNypbl BHOOB

~ al -~ - . A
te o, S Baa trb, bs b S T N T F T A . g Koy -

,

1. Introduction

The calculation of traces of Dirac y -matrices is an elementary but often very tedious step in the evaluation of
Feynman diagrams, so that it is desirable to have the work done by an electronic computer. There are in principle two
means to realize that. Firstly traces can be calculated purely numerically by choosing determined values for each com-
ponent of all contributing four-vectors, multiplying by the corresponding 7 -matrices and then multiplying successively
the resulting 4 x 4 -matrices/l/. The second way is to adapt the rules for traces reduction’ 2’ which are common in
hand calculation to a computer programme. Both methods have their advantages and disadvantages.

The numerical method gives only a point to point construction (e.g. of a scattering cross section), whereas it is
often desirable to have a closed formula. The numerical approach is further not very suitable to account for known ortho-
gonality restrictions between some four- vectors (e g. tranaversal photons). The main advantage of the numerical
method lies in its comparatively high speed in calculating very long traces, as it requests for each additional operator
only one additional matrix multiplication, with the result that the computer time rises linearly with the length M of the
trace.

On the other hand, the algebraic method gives closed expressions which often allow for explicit cancellation of
terms, deals easily with orthogonality restrictions, but becomes unworkable for very long traces (n > 18) . As the
number of permutations to be evaluated rises as (n — 1) !' we meet here with an exponential rise of the effort with tha
number of operators, if the special structure of the trace does not allow a previous reduction.

The aim of this paper is to discuss the principles of a programme of the second (algebraic) kind.

2. Principles of the programme

The general expression of a trace

N
tha xS A o
through the scalar products of the four-vectors <, reads/2/(n even)
tr 3,8, . B, = 2 (aia,,)(a., a,5) 0. (a;,. 4 a:n)
o0 4 2 o (2)
. - ..on- "
[p: S5ign (‘.D Gy iy o Aea) asxf‘ar (at) = arg,

where the summation runs over all pairings of the four-vectors. The sign is determined by the parity of the corresponding

permutation.

The adaption of this formula to the computer is done as follows;
We relate to each scalar product (at) (excluding those which are known to vanish) a group of four binary units
on a determined place in the computer’s memory. The values 0000 to 1001 then characterize the powers (ab)® to (ab)9
of that scalar product in the result. The pairings are determined by the corresponding permutations of the initial opera-

tor combination. The permutations for itselves are generated successively for each length of the trace (see Appendix 1)

The contribution of a permutation to the result is simply found by group — wise addition of the numbers coding the

powers of each scalar product.

xample: [or the trace

(3)
the permutation
-1 23 4f 57 @
leads to the following product of scalar products
ted)(cdifec) (o), (5)

[.et further the places..0001 be reserved for (4) and 0001... for (.4) and let be (¢¢) = 41 (so that the powers of

(22) need no explicit mention). Then the result of the permutation (4) is represented by the two lines (results block):

e e
.
©
<

(6)
tio first denoting the numerical coefficient, the second the powers 1 resp. 2 in the expression €d)’ (es) L (H
necessary several lines can be reserved for the powers).

Ihe successively arising result blocks are arranged in a results field, such that each power line shows up only one
time. and the incorporation of a further block with the same powers is realized by merely adding the numerical factors.
I the given expression contains several traces, their results are in the same manner superimposed in the results
field. This behaviour can be blocked by marking the different traces with different general coefficients denoted by dif-

ferent numbers in an additional stroke of the results block.
If the trace contains solitary y*-matrices combined through 4”” there must be introduced symbolic operators

43 for the y-matrices bearing the indices of the first, second ... metric tensor.

Vvample : The trace

{7

iw owritten as

which cun be treated according to the general scheme discussed above with the additionally programmed rules for inter-

preting the scalar products:

1) - -/LA\} . = - (v«c) .- ®
following from
PR M)(("J = (m()
d o Y (9
and
(Ap) . = & (10)

following from

(11)

In order to speed up the calculation, there have been taken two means:
1. Before going into the calculations described above, the programme tries to reduce the length of the trace by
anticommuting identical operators in adjacent positi ons, as far as this can be done without generating additional terms

(i.e. as far as the anticommutation involves only operators with zero scalar product) and then using the formula

fr . >0 = (az) Er . (12)

2. If the current permutation led to a zero scalar product the programme jumps to that permutation which as first
does not contain that scalar product.

If the trace includes y’-matrices, they are first of all anticommuted in the first position and pair-wise cancelled,
such that we must discuss as new case only that of one y-matrix in front of operators . .

The‘y’—-traces are handled in the following way:
The programme takes successively 4 operators from those backing the 7 and combines they (if they are all different as
the result is zero otherwise) into a pseudo-scalar .
The residual operators are then handed over to the main programme. The election of the 4 operators is directed by spe-

cial ¢ y7-permutations®, generated by a method described in Appendix 2 If we e.g. apply the /”permutation

1035 ¢%67 (13)

onto the trace

try’:x\,zl‘ie‘{-g‘\ (14)

we find the splitting

t’“\“’ bu ¢y dyfy tr S5k (15
into pseudo-scalar and residual trace.
The pseudo-scalar isfurther ordered — thereby eventually changing sign — into rising order of the numbers coding
the contributing operators and then represented as a particular line in the results block.
If the trace is multiplied from outside by a further pseudo-scalar, the product of the two pseudo-scalars will be
expressed through a combination of scalar products.
Care has been taken to simplify the input of the trace. For this end it was devised especially a programme which
disentagles any arithmetic expression containing parentheses ad libitum (see Appendix 3).
A simplified block diagram of the programme calculating traces is given in Fig. 1.

In another variant, the programme can be used to multiply traces, represented by results fields described above.

Thereby contractiows through §** e.g

g”” tr aZ‘y"Z tr :"J (16)

can be carried out,

Appéndix 1: The " - permutations

The calculation of a trace containingn y*-—matrices demands the successive generation of (n ~1) !! permuta-

tions corresponding to the possible pairings of the n operators together with the determination of the sign of these per-

mutations.

Let e.g. be n =6. Then the 5!!= 15 permutations may be arranged as follows:

+ 01 23 45 + 01 35 24
-01 24 35 :

+01 25 34

~-01 34 25 + 05 14 23

The block diagram of an algorithm doing the work for any n is given in Fig.2. (The shortcut, possible if a scalar pro-

duct vanishes is not indicated). Ao --- Ap -~ An-1 denote the addresses containing the 0% ... p'" . (n-2)*"

figure of the permutation ;[A] means the contents of A.

Appendix 2: The y° —permutations

n
If the trace contains a y° —matrix in front of n y*—matrices, one must construct (") permutations

determining the different possibilities to extract 4 operators out of the n for combination with the y® into a pseu -

doscalar.

In the case n =6 they read:

+ 0123 45
- 0124 35
+ 0125 34
+ 0134 25
+ 2345 01

The 7° —permutations are generated by the algorithm described in Fig.3.

Appendix 3: Decomposition of parenthetic expressions

The input expression may consist of operators,numerical factors, general coefficients, pseudoscalars,and arith-

metical operators +, — , (, and). The programme accepts all combinations of arithmetical operators which

make sense.
The input expression is first treated by an initial transformation, which includes translation of the numerical
factors into the binary system, replacing the "

-~ " by + (~=1), and supplementing parentheses around solitary
groups multiplying parenthetic expressions (e.g. a (b+c) » (a) (b+ ¢c)).

The result of the transformation is then successively worked up according to the block diagram Fig.4.
To each group between two subsequent arithmetical operators it is related a binary digit in the *'scale’’, which
77177

contains in the initial state everywhere and may extend over several addresses if necessary, At each entry the

search for ”’1” in the scale starts at far left. At each crossing arithmetical operators the *’pin’’, a binary *’1”’ sur-
rounded by zeros is shifted by one place to the right. Furthermore at each parenthesis, some counters are operated,

necessaty to determine the range of the parenthesis considered (these counters are not explicitely shown in Fig.4).

The method used has the advantage, to demand no memory space for the accumulation of intermediary results. Each

additional arithmetical operator requires only one further bit in the scale.

References

1. G.LKopylov. Preprint JINR D 821 (196)).

2. J.M.Jauch, F.Rohrlich: The Theory of Photons and Electrous. Addison-Wesley, 1955, p. 436 .

Received by Publishing Department
on November 24, 1962.

| start l

|

>{ decornpose parenthetic

expression J

L.s‘p//'z‘ in trace, psevdoscalar , and coefficient]

Y

try simplification
by anticommutation

1o

]
g9 2

yes

Y

- Y 5— perrhuz‘az‘/'ons

Solit in
trace and pseudoscalar

Y

\

&= permutations

/

multiply psevaoscalars

F two
\F
| seek (ab)
\
s no
((av)=1a2)
es
Vy |
Jump over permutations o
with some (ab) i (ab)
} Y Y

multiply by pseudoscalar(s)

)

and coéeffrcient

accumulate on
results freld

Y A

119 \F{astl & —permutation ?)

] yes

no ({Esz‘ &5 —permutation)

Fany

V yes

70

(last troce

2)

Y ves

[order and print results field |

Y

l stop I

Fig. 1.

8

entry

o e ——{r=]
programme

first inittal permutation t0 moin
Irs - _
JE—— [AP] Jej Qépé n-1 ——__-pf*og/'amme
sign
/ .
e ‘J_ 72 yes _ no permutation
f\._'[_).__'_._J ™ left

no

\

[A¢]<[,4p], p<g€n-1

Seek smallest

70

[
——{p=p-2]

‘————-(o“uch Ag found .?)-—

¥és

[
[An] =[44]

\

put numbers at right
of Ap in rising order

to main
programme

change sign |

Fig. 2.

initial permutation

to main

first
niry T1[4,] =P 0£p£n-1 [T programme

entry
sign +
from main 0=3
praogramrme
\
[Ap]=[Ap]* 1=
‘—_—‘([Ap] =n+p =3¢)—ﬂ p>p—1
!
no yes no
\
=022
[Aq”] =[,4q]1‘7 P
pEgs? ges
\ no permutation
p 0dd? left
yes no
\ \
change sign—2—[Ap] 0dd ?)
yes
\ \
write remaining numbers +0 main

nto A4 An_’
in rising order

pr'ogr'amme

Fig. 3.

10

first
entry

from main
programme

———d

write in scale
“1. everywhere

i

put pin in position
10000000....

{

seek first arithmetical operatar
shift pin by one digit

—{ aperator found 2)—L2.

no

yes

———{pinon .17 in scale ? }—

no expression
teft

yes

seek next arithmetical operator

shift _pin by one digi

+

remember group between found
and next orithmetical operator

| clean useq ,1”in scale j—————l

seek next arithmetical operator

shift pin by one digit

te main
progromme

———————@es arithm. operator contain ,)" ?JL
yes
(is this ,) "2} no
no
yes
immediately before immediately before no
cleoned 1" in scale ¢ cleaned ,1" i scole 2
yes o yes
write ,1"in scale for write ,0° in Scale for
all groups as far os alt groups as far as
reaches multiplication reaches multiplication
to the left to the left
remember next group seorch further expressions
for which scale contains ,1* multiplied from right,
shift pin correspondingly
(P)) no to main no to man
found * programme found t programme
yes yes
[c/ean used ,1" in JcalL}——J remember next group
for which scale contains .1°
yes no_ to main
found ? programm

