
06bE,llHHEHHbH1 HHCTHTYT Sl.UEPHbiX HCCJlE,llOBAHHM .

Jla6oparopHS1 reopeTHlJeCKOH <f>H3HKH

Hans Jurgen Kaiser

E - 1131

TRACE CALCULATION ON ELECTRONIC COMPUTER

Jly6Ha 1962 r.

*

Hans Jiirgen Kaiser *

E - 1131

TRACE CALCULATION ON ELECTRONIC COMPUTER

On leave from lnstitut fur Theoretische Physik Te chnische Universitat Dresden, Gennan Democratic

Hepublic.

Abstract

A computer programme has been devised which calculates traces of ¥-matrices by algebraic means,

so that the results are obtained in closed form .The programme deals with traces of the types

A

t' &.:." c "' t4n . A . t r 1 •; ~~ ,1 .. ~

~, p'l " "' Jl' ~ t r d ,1 . ''• .. 1 . . 1 .. S I . .
~

an-l

The input expression may be of a complicated arithmetical form containing par en theses ad libitum. The

programme also performs multiplication of traces of the types

~ A -'

tr- U., c."\.. L1 t1> ~ tr i . . £. .. .t ... -" , ... - t~ r.:'. .~ •.. y"" ..
A

(.{..,._'1.. tr J,~ j,~
~

f' .. .L..,. . 2.

f'.lO. Kal!.3ep

BblY.VJCnEHYIE WnYPOB l-13 rAMMA-MATPVIU HA
3nEKTPOHH0!-1 BblY.YICnVITEnbH0!-1 MAWYIHE

A111IOT8UIISI

CocTasneaa nporpaMMa ,anSI sneKTpoaaol!. BbiqHcnHTenbliOl!. MBWI!llbi ,anSI BbiqHcne-

lii!SI wnypos 1!3
t -MaTpi!U anre6paHq9CKIIM o6pa3 0M, T8K qTO pe3ynbT8Thl nonyqaJOTCSI

B 38MK11YTOI!. tPOpMe, nporpaMM8 o6pa68Tb!B89T wnypbl BI!LlOB t~ (i, ;. ""·"' .
,. ' i' 1 ... (\ ~ ~.

t~ ~ ~ .. : .. - ·· .,,. ... ~ .. ¥}1 ~ r~o-J • 8BOLli!M09 Bbip8)!{9HI!9

M0)!{9T I!M9Tb CnO)!{llbil!. ap11tPM9TI!qeCKIIl!. BI!Ll, BKnJOq8SI n106y10 KOM61!118UIIIO CK060K,

KpoMe sToro nporpaMMa yMliO)!{aeT wnypbi BI!LlOB

., A

t,.. "•
A
c.:. tr i~ £ ... "~ - · ~1-" t.- ;., ;,. .. Kr . . " t,."\ ,._, t~ i. l .. y' .. i.., .z.

1 • Introduction

The calculation of traces of Dirac 'I -matrices is an elementary but often very tedious step in the evaluation of

Feynman diagrams, so that it is desirable to have the work done by an electronic computer. There are in principle two

means to realize that. Firstly traces can be calculated purely numerically by choosing determined values for each com

ponent of all contributing four-vectors, multiplying by the corresponding (-matrices and then multiplying successively

the resulting 4 x 4 -matrices / 1/ . The second way is to adapt the niles for traces reduction / 2/ which are common in

hand calculation to a computer programme. Both methods have their advantages and disadvantages.

The numerical method gives only a point to point construction (e.g. of a scattering cross section), whereas it is

often desirable to have a closed formula. The numerical approach is further not very suitable to account for known ortho.

gonality restrictions between some four- vectors (e ~.transversal photons). The main advantage of the numerical

method lies in its comparatively high speed in calculating very long traces, as it requests for each additional operator

only one additional matrix multiplication, with the result that the computer time rises linearly with the length tt. of the

trace.

On the other hand, the algebraic method gives closed expressions which often allow for explicit cancellation of

terms, deals easily with orthogonality restrictions, but becomes unworkable for very long traces (n > 18) . As the

number of permutations to be evaluated rises as (n - 1) !! we meet here with an exponential rise of the effort with the

number of operators , if the special structure of the trace does not allow a previous reduction.

The aim of this paper is to discuss the principles of a programme of the second (algebraic) kind.

2. Principles of the progrsmme

The general expression of a trace

~
:!. 2: A,' - .. (1)

;d

/ 2/
through the scalar products of the four-vectors "r reads (n even)

tr
A A .r fp (a ;. a,~) (a,._ a,,~) (a, n- ~ " ' n) ... a, ... a .,~ ..,

(2)

fr (0
·1 .l. 1'1. - -1) A

si' " a = Kr ar (at} = o.'"),"
~ . '· ..:, 1.,

where the summation runs over all pairings of the four-vectors. The sign is determined by the parity of the corresponding

permutation.

The adaption of this formula to the computer is done as follows;

We relate to each scalar product 1 a t) (excluding those which are known to vanish) a group of four binary units

on a determined place in the computer's memory. The values 0000 to 1001 then characterize the powers (ab)0 to (ab)9

of that scalar product in the result. The pairings are determined by the corresponding permutations of the initial opera

tor combination. The permutations for itselves are generated successively for each length of the trace (see Appendix l)

The contribution of a permutation to the result is simply found by group - wise addition of the numbers coding the

powers of each scalar product.

3

Example : For the trace

t (' a t (... i ; : " " (.
(3)

the permutation

_ c1 .2-~ 't ~ ~-7
(4)

leads to the followin g product of scalar products

!<:&){oJ){ ee)("'l), (5)

Let further the places .-0001 be reserved for (a t) and 0001. •. for(, j) and let be (ec) = 1 (so that the powers of

(d) need no explicit mention). Then the result o£ the permutation (4) is represented by the two lines (results block):

J
l

- 1

~ ... - (}I C (~ I (...'

(6)

the first denoting the numerical coe fficient, the second the powers 1 resp. 2 in the expression (<J)
1

(• 6);t • (If

nec essary several lin es can be re served for the powers).

The successively a risln g result blocks are arranged in a results field, such that each power line shows up only one

time, and the incorporation of~ further block with the same powers is realized by merely adding the numerical factors.

If the given express ion contains several traces, their results are in the same manner superimposed in the result!

field. T hi s behaviour can be blocked by marking the different traces with different general coe££icients denoted by dif-

fer ent numbers in an additional stroke of the results block.

If th e trace contains solitary ~" -matrices combined through ,I'• there must be introduced symbolic operators

/i 13 lor the ~-matrices bearing the indices of the first, second ... metric tensor.

E:xample : The trace

")('\ . ~)I " ·'
A

A
t-' :; t j !-' ,\' ')

~ J c .r 'I {7)

is written a s

"
., ~

"' .L iJ /-', " B). A t r <

which can be treated accordin g to the general sch em e discussed above with the additionally programmed rules for inter·

pretin g the scalar products:

r • A) I " A) I"') (8)

following from

~"' ' i«y~')(,y•) .::. ("' <)
(9)

and

(A /1) 4- (10)

4

following from

4-
(11)

In order to speed up the calculation, there have been taken two mean s:

1. l3efore going into the ca \culations described above, th e programme tries to redu ce th e length of th e tra ce by

anticommuting identical operators in adjacent positions, as far as this can be done with out genera tin g addition al terms

(i.e. as far as the anticommutation involves only operators with zero scalar product) and th en us in g the formul a

t r .. (12)

2. If the current permuta tion led to a zero scalar product the' programme jumps to th at permuta ti on wl1i ch as firs t

does not contain that s calar product.

If the trace includes ! ; -matrices, the y are firs t of all anti commuted in the first posi t ion a nd pai r-wise cancelled,

such that we must discuss as new case only that of one ~ ~matrix in front of op erators "- .

The)' ;: traces are handled in th e following way:

The programme takes successively 4 operators from those backing the ,(.and combines the y (if th ey are al l di ff erent as

the result is zero otherwise) into a pseudo-scalar .

The residual operators are then handed over to the main programme. The election of the 4 opera tors is direc ted by s pe

cial ' y"' -permutations', generated by a method described in Appendix 2. H we e .g. apply the ,;'·: permuta ti on

11. 3 ~- 0:.,. {, 7 (13)

onto the trace

; j
/ .

~ J. tr
~ j, ~ i { ~ r < (14)

we find the splitting

)(~.Ao&)l

"" CA •1r f ~ u "' (1 5)
' :h • J

into pseudo-scalar and residual trace.

The pseudo-scalar is further ordered- thereby eventually changing sign -into rising order o f the numbers codin g

the contributing operators and then represented as a particular line in the results block.

If the trace is multiplied from outside by a further pseudo-scalar, the product of the two pseudo-s cal ars will be

expressed through a combination of scalar products.

Care has been taken to simplify the input of the trace. For this end it was devised espe cially a programme which

disentagles any arithmetic expression containing parentheses ad libitum (see Appendix 3).

A simplified block diagram of the programme calculating traces is given in Fig. 1.

In another variant, the programme can be used to multiply traces, represented by results fi elds de s cribed above.

5

Thereby contractDIII through ~ ,., e.g.

~ ... - fr a i ~,.~ h (yl (16)

can be carried out.

Appendix 1: The 1,. - permutations

The calculation of a trace containing n y,.-matrices demands the successive generation of (n -1) !! permuta·

tions corresponding to the possible pairings of the n operators together with the determination of the sign of these per-

mutations.

Let e.g. be n •6. Then the 5!!= 15 permutations may be arranged as follows:

+ 01 23 45

- 01 24 35

+ 01 25 34

-01 34 25

+ 01 35 24

+ 05 14 ~3

The block diagram of an algorithm doing the-worlc for any n is given in Fig.2. (The shortcut, possible if a scalar pro-

duct vanishes is not indicated). A. · · · A p · · • A· - ~ denote the addresses containing the 0~~ ... p•" .. (.,.~)1'

figure of the .permutation ;[A] means the contents of A.

Appendix 2: The ('-permutations

If the trace contains a r' -matrix in front of rt
l'l

¥,.-matrices, one must construct (lr) permutations

determining the different possibilities to extract 4 operators out of then for combination with the y> into a pseu •

doscalar.

In the case n = 6 they read:

+ 0123 45

0124 35

+ 0125 34

+ 0134 25

+ 2345 01

The 1" -permutations are generated by the algorithm described in Fig.3.

Appendix 3: Decomposition of parenthetic expressions

The input expression may consist of operators, numerical factors, general coefficients, pseudoscalars,and arith •

metical operators + , - , (, and) . The programme accepts all combinations of arithmetical operators which

make sense.

The input expression is first treated by an initial transformation, which includes translation of the numerical

factors into the binary system, replacing the " - " by + (-1), and supplementing parentheses around solitary

groups multiplying parenthetic expressions (e.g. a (b + c) ... (a) (b + c)) .

6

The result of the transfonnation is then successively worked up according to the block diagram Fig.4 .

To each group between two subsequent arithmetical operators it is related a binary digit in the "scale", which

contains in the initial state everywhere "1" and may extend over several addresses if necessary. At each entry the

search for "1" in the scale starts at far left. At each crossing arithmetical operators the "pin", a binary "1" sur-

rounded by zeros is shifted by one place to the right. Furthennore at each parenthesis, some counters are operated,

necessary to determine the range of the parenthesis considered (these counters are not explicitely shown in Fig.4).

The method used has the advantage, to demand no memory space for the accumulation of intermediary results. Each

additional arithmetical operator requires only one further bit in the scale.

References

1. G.I.Kopylov. P~eprint JINR D -821 (196]).

2. J.M.Jauch, F.Rohrlich: The Theory of Photons and Electrons. Addison-Wesley, 1955, p. 436.

7

Received by Publishing Department
on November 24, 1962.

start I

1 decompose parenthetic express/on I

split in trace, pseudosca lar ~ and coeff/cient l
I ~ I

try simplification
by anticommutation

t
no (J'5 ?

~yes
I ((S- permu ta/!(?ns I

split in
trace and pseudosca/ar

l t
I ~"-permutations J mu/hp/y pseudoscotors

•
if two

seek (ab)

+
((ab) = 0 ? } no

~yes
jump orer permutations

with some (ab)
'lT (a b)

~
multiply by pseudosca/ar (s)

and coefficient

accumulate on
results field

~
no (last 1ft'- permutation ?)

lyes
no (last ¥5 -permutation

if any :

t yes .
no

last trace ?
+yes

[order and print results ft'eld

~
I stop I

Fig. l.

8

first
entry

Initial permutation
---.---, {Ap}-p O~p~n-1

sign+

from mom
programme

no

no

seek smallest

[Aq}<(Ap]. p<q~n-1

p--p-2

... to main
~-----programme

es

yes

put numbers at right
of A P in rising order

Fig. 2.

9

fir-st
entry

from main
programme

initial permutation
[Ap] · P O~pLn-1

sign+

,...----l {Ap} =n+P -3 ?

no

rfA:,) =[Aq] + 1
L.J~q:{f;.2

yes no

change stgnj• ··- \ - P-)
I I

yes

1 ..., to main
programme

p-p-1

yes no

11es
, ., no permutation

left

write remaining numbers
into A4 ... An-t 1

... tomoin
programme

in r isinr; order

F i g. 3 .

10

first J write in scale I entrv I " 1. everywhere

from main . I put pin in position I programme 1 rooooooo

I seek first arithmeti cal operator I shift pin bv one digit

operator found! no no expressi tm
left

ves

!no

p in on .1 • in scale ~

!lies

---1 seek next arithmetical operator I I remember group between Found I shift pin by one digit and next arithmetical operator

I clean used, f" in scale
j

l
I seek next arithmetical operator I I Shift p in by one dig1t

(operator fOund ~ no ttl main

~ f ·H

programme

l yes

does orithm. operator contain ,r ?

(is thi s •)(.? no

lves l no

(immediately before \ (immediotelv b•fore 2' no
cleaned • r· in scale ? J cleaned ~ 1" in scrrle

!ves no ! flt!S

write , 1" in scale for write • o· in scale for
all groups os for os all groups as far as
reaches multiplication reaches multiplication
to the left to the left

'
l

remember nut group I search further expressions f--
for which scale C"Onluins . r• multiplied from right,

~
I shift pin correspondingtv

~
(found 2 no to main

(found .t nD to mom
programme progrot77m

!ves !vu

e

clt>on used " f" in scale remember next group .j
for which scale CrJntoins . 1·

' to main !lt!S found!
ntJ

progromm

Fig.4.

