
\09bL/ 
_3_ 
A1-D 

( 
. ' 

, . 

06·bE.llMHEHHbiVt MHCTMTYT 51LlEPHbiX V1CC.nE,llOBAHY1~ 

/ 

Jla6opaTOpHH TeopeTH'leCKOH <j>H31fi\H . 

B.A. Arbuzov, B.M. Barbashov, A.A. Logunov, Nguyen Van Hieu, 
A. N. T~vkhelidze, .R.N .. Faustov, A .T. Filipov· 

REGGE-POLES 

AND PERTURBATION THEORY 

II 

E - 1095 . 

r~. t..U+, ,ffJb31 ""' ,vs; r 3.-0t-~o. 

\ 

I 

• 

Jly!5aa 1962 ro.o 



B.A. Arbuzov, B.M. Barbashov, A.A. Logunov, Nguyen Van Hieu, 
A.N. Tavkhelidze, R.N. Faustov, A.T. Filipov 

REGGE-POLES 

AND PERTURBATION THEORY 

II 

• IHW" IIHC: il41 

t.:C t:AOI\I'l1 

HOTEKA 

Jly6Ha 1962 ro.a 

E - 1095 



In recent years the problem as to how to find the singularities of partial wave am­

plitudes in the 1-plane has been widely discussed. In the papersll, 2 1 a method is suggest­

ed to calculate the Regge trajectories by means of perturbation theory. As is shown 

inll, 2 1 perturbation theory contains information about the singularities in the 1-plane. 

However, the extraction of this information is far from being trivial. 

In the present note the structure of the perturbation series terms in the presence 

of branch cuts in the 1-plane is analysed by the example of the electron scattering in 

the Coulomb field. It is shown how the expansions in the charge f or the Regge trajecto-

ries can be obtained in the case under consideration. 

The amplitude of the electron scattering can be represented in the form: 
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where z is the cosine of the scattering angle, P
1 

and P
1 

are the initial and fi nal 

elec t r on momenta, and p 
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We expand in a usual manner the amplitudes 1
1 

and 11 in the partial wav es : 

(2) 

In the given case the analytical continuations of the partial waves throughout the 1-plane 

together with the pole s have the branch points. The amplitudes f; and 
+ 

f e have the cuts 

from -e 1 to e 1 and from -l - e 1 to -I+ e 1 respectively ( " 1 is the fine structure constant f. 
We make calculations starting from perturbation theory up to the terms of the second 

order in &
1 for large s and obtain ( s = - 2 p 

1 
( 1 - z)) : 
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where E - v p 2 + m 2 
, .l. is the photon "mass" introduced to exclude the inf'rared diver -

gence. On the other hand, by applying to t he formulae ( 2) the Sommerf eld-Watson tra ns­

formation modified following Mandelstam1 5 1 we get for l arge z 
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where are the main poles of the amplitudes f:!: in the 1-plane, c ± are the contours . a :!: 

round the outs L±. Comparing the formulae (4) and (6) we note that the expansion in e 2 

of the trajectory a+ (p 2) may be of the form: - 1 + 0(• 2) • However, to obtain this expan-
' 21 sion from t he formula (4) by ~he method used in paper 1 it is necessary to subtract pre-

liminarily the contribution from the cut. To find this c ontribution we turn to formu-

lae (J) and (5). 

2 
Since the expansion of a_(p J should start with -1 but not with zero*, then compar-

ing (J) and (5) we find up to the terms of e 
4 order 

_1 _ J e r (e + !7 ! 
2 ; v" c 1 ( e + 1 ) Sin "e 

- 2 e 'e (p )(-2z) el f - (7) 

• _ • 2 E + m [ 1 + e 
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+ -Using the fact that the amplitudes 'e and 'e can be represented on the correspond-

ing outs in the form (see for example1 4 1) 

f e+ - [ ¢ ( f + 1 ) + ¢ ( f + 1 ) J exp I ; " ( e + 1 ) I 
t 2 (8) 

f e • [ ¢
1 

( f ) - ¢ 
2 

( f ) l up I I "f I 

where ¢ 1 ( f ) is an even function and ¢
2
(f )is an odd one of e , we find the connection 

+ -between the integrals along contours c and c • After simple transformations have been 

made we get 
+ 2 e 

_ 1_ J i.l_l'__±l)_f_LL±--.l:U _ f ( P )( - 2 z J elf -
2 i v " c + yf' ( f + 1 ) Sin " f • 

* This fact is connected with the character of the level structure in the central 
field and,by the example of th~ Coulomb field 1 is easily seen from the Sommerfeld fine 
dtructure formula (see e.g. (61). 
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Subtracting (9) from (4) we single out the contribution from the pole term 

(f 1 - zl2 ) R •- ~(I + e 2 _ m_ !'11 f -.LJ) + 0 (e 4
) • 

s y-p' >.' 

Now followingl 2 1,we get: 
2 

a+ (p
2

) e-J +em y -pT 

(9) 
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(11) 

The other trajectories can be calculated in a similar way. For example, from (J) and (5) 

we hav.e: 
a (12) 

These results can be compared with the conclusions obtained from the Dirac equation in 

the central field: 

dF + (I- K ) _!_+(E-m- V) G = 0 
~ r ( lJ) 

where 
- ( f + I) = e + ~ 

K - e . = e - ~ 
(14) 

and 
•' 

~ 

V ( r) + L v. r" ,--
n • o 

By inserting F and G in the form 

G = r y g 

where and g have no l onger a cut in the 1-plane and expanding g and in 

powers of e ' , with the aid of the successive solution of the equations in each order of 

expansion we obta in, e.g., for V(r) = - ~ 
r 

expressions (11) and (12). We emphasize 

that in the case of t he potentials of the form (14) the cuts coincide with L+ a nd L 

as before. The formula (8) remains valid as well. Thus, the developed method of 

calculating the cut in perturbation theor y ca n be a pplied to a more genera l case too. 

It is ·seen fr om the aforesaid that the contribution from the cut to the terms of the 

perturbatio~ ser ies is of the same type as the contributions from the poles. 

However t his is not always so, e.g. in the ca se of the relativistic scala r partic le 

in the ext ernal fi eld of the type (14) the contribution from the cut in perturba tion t heory 

differs from the pole one by the fact that the fir s t one contains the non- i nte ger power s of 
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• and is therefore easily singled out. In general, from the Klein Gordon equation it is 

easily seen tha~ the term quadratic in the potential is responsible for the cut. In the 

light of the aforesaid it is very interesting to consider similar questions in the quan­

tum field theory. 

In conclusion the authors would express their gratitude to N.N. Bogolubov, D.I.Blok­

hintzev, s.s. Gershtein, Ya.A. Smorodinsky, Q.A. Khrustalev for the interesting discus-

sions and remarks. 
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