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In recent years the problem as to how to find the singularities of partial wave am

plitudes in the 1-plane has been widely discussed. In the papersll, 2 1 a method is suggest

ed to calculate the Regge trajectories by means of perturbation theory. As is shown 

inll, 2 1 perturbation theory contains information about the singularities in the 1-plane. 

However, the extraction of this information is far from being trivial. 

In the present note the structure of the perturbation series terms in the presence 

of branch cuts in the 1-plane is analysed by the example of the electron scattering in 

the Coulomb field. It is shown how the expansions in the charge f or the Regge trajecto-

ries can be obtained in the case under consideration. 

The amplitude of the electron scattering can be represented in the form: 
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where z is the cosine of the scattering angle, P
1 

and P
1 

are the initial and fi nal 

elec t r on momenta, and p 
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We expand in a usual manner the amplitudes 1
1 

and 11 in the partial wav es : 

(2) 

In the given case the analytical continuations of the partial waves throughout the 1-plane 

together with the pole s have the branch points. The amplitudes f; and 
+ 

f e have the cuts 

from -e 1 to e 1 and from -l - e 1 to -I+ e 1 respectively ( " 1 is the fine structure constant f. 
We make calculations starting from perturbation theory up to the terms of the second 

order in &
1 for large s and obtain ( s = - 2 p 

1 
( 1 - z)) : 
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where E - v p 2 + m 2 
, .l. is the photon "mass" introduced to exclude the inf'rared diver -

gence. On the other hand, by applying to t he formulae ( 2) the Sommerf eld-Watson tra ns

formation modified following Mandelstam1 5 1 we get for l arge z 
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where are the main poles of the amplitudes f:!: in the 1-plane, c ± are the contours . a :!: 

round the outs L±. Comparing the formulae (4) and (6) we note that the expansion in e 2 

of the trajectory a+ (p 2) may be of the form: - 1 + 0(• 2) • However, to obtain this expan-
' 21 sion from t he formula (4) by ~he method used in paper 1 it is necessary to subtract pre-

liminarily the contribution from the cut. To find this c ontribution we turn to formu-

lae (J) and (5). 

2 
Since the expansion of a_(p J should start with -1 but not with zero*, then compar-

ing (J) and (5) we find up to the terms of e 
4 order 

_1 _ J e r (e + !7 ! 
2 ; v" c 1 ( e + 1 ) Sin "e 

- 2 e 'e (p )(-2z) el f - (7) 

• _ • 2 E + m [ 1 + e 
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4y -p 2 (E +mf .). 2 

+ -Using the fact that the amplitudes 'e and 'e can be represented on the correspond-

ing outs in the form (see for example1 4 1) 

f e+ - [ ¢ ( f + 1 ) + ¢ ( f + 1 ) J exp I ; " ( e + 1 ) I 
t 2 (8) 

f e • [ ¢
1 

( f ) - ¢ 
2 

( f ) l up I I "f I 

where ¢ 1 ( f ) is an even function and ¢
2
(f )is an odd one of e , we find the connection 

+ -between the integrals along contours c and c • After simple transformations have been 

made we get 
+ 2 e 

_ 1_ J i.l_l'__±l)_f_LL±--.l:U _ f ( P )( - 2 z J elf -
2 i v " c + yf' ( f + 1 ) Sin " f • 

* This fact is connected with the character of the level structure in the central 
field and,by the example of th~ Coulomb field 1 is easily seen from the Sommerfeld fine 
dtructure formula (see e.g. (61). 
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Subtracting (9) from (4) we single out the contribution from the pole term 

(f 1 - zl2 ) R •- ~(I + e 2 _ m_ !'11 f -.LJ) + 0 (e 4
) • 

s y-p' >.' 

Now followingl 2 1,we get: 
2 

a+ (p
2

) e-J +em y -pT 

(9) 

(10) 

(11) 

The other trajectories can be calculated in a similar way. For example, from (J) and (5) 

we hav.e: 
a (12) 

These results can be compared with the conclusions obtained from the Dirac equation in 

the central field: 

dF + (I- K ) _!_+(E-m- V) G = 0 
~ r ( lJ) 

where 
- ( f + I) = e + ~ 

K - e . = e - ~ 
(14) 

and 
•' 

~ 

V ( r) + L v. r" ,--
n • o 

By inserting F and G in the form 

G = r y g 

where and g have no l onger a cut in the 1-plane and expanding g and in 

powers of e ' , with the aid of the successive solution of the equations in each order of 

expansion we obta in, e.g., for V(r) = - ~ 
r 

expressions (11) and (12). We emphasize 

that in the case of t he potentials of the form (14) the cuts coincide with L+ a nd L 

as before. The formula (8) remains valid as well. Thus, the developed method of 

calculating the cut in perturbation theor y ca n be a pplied to a more genera l case too. 

It is ·seen fr om the aforesaid that the contribution from the cut to the terms of the 

perturbatio~ ser ies is of the same type as the contributions from the poles. 

However t his is not always so, e.g. in the ca se of the relativistic scala r partic le 

in the ext ernal fi eld of the type (14) the contribution from the cut in perturba tion t heory 

differs from the pole one by the fact that the fir s t one contains the non- i nte ger power s of 
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• and is therefore easily singled out. In general, from the Klein Gordon equation it is 

easily seen tha~ the term quadratic in the potential is responsible for the cut. In the 

light of the aforesaid it is very interesting to consider similar questions in the quan

tum field theory. 

In conclusion the authors would express their gratitude to N.N. Bogolubov, D.I.Blok

hintzev, s.s. Gershtein, Ya.A. Smorodinsky, Q.A. Khrustalev for the interesting discus-

sions and remarks. 
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