ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ
Лаборатория теоретической физики
B.A. Arbuzov, B.M. Barbashov, A.A. Logunov, Nguyen Van Hieu, A.N. Tavkhelidze, R.N. Faustov, A.T. Filipov

$$
E-1095
$$

REGGE-POLES
AND PERTURBATION THEORY
II

Phys. hett, 1963, ${ }^{2} 4$, wS, p 308-310.
B.A. Arbuzov, B.M. Barbashov, A.A. Logunov, Nguyen Van Hieu, A.N. Tavkhelidze, R.N. Faustov, A.T. Filipov

$$
E-1095
$$

REGGE-POLES

AND PERTURBATION THEORY
II

In recent years the problem as to how to find the singularities of partial wave amplitudes in the l-plane hes been widely discussed. In the papers ${ }^{(1,2 \mid}$ a method is suggested to caloulate the Regge trajectories by means of perturbation theory. As is shown in ${ }^{11,2 \mid}$ perturbation theory contains information about the singularities in the l-plane. However, the extraction of this information is far from being trivial.

In the present note the structure of the perturbation series terms in the presence of branch cuts in the l-plane is analysed by the example of the electron scattering in the Coulomb field. It is shown how the expansions in the charge for the Regge trajectories can be obtained in the case under consideration.

The amplitude of the electron scattering can be represented in the form:

$$
\begin{equation*}
T\left(x, p^{2}\right)=f_{2}\left(x, p^{2}\right)+\frac{i \vec{\sigma}\left[\vec{p}_{2} \vec{p}_{2}\right]}{p^{2}} f_{2}\left(x, p^{2}\right) \tag{1}
\end{equation*}
$$

where z is the cosine of the scattering angle, \vec{p}_{1} and \vec{p}_{2} are the initial and final. electron momenta, and $p^{2}=\vec{p}_{1}^{2}=\vec{p}_{2}^{2}$.

We expand in a usual manner the amplitudes f_{2} and f_{f} in the partial waves:

$$
\begin{align*}
& f_{z}\left(x, p^{2}\right)=\sum_{n=0}^{\infty}\left[(n+1) f_{n}^{+}\left(p^{2}\right)+n f_{n}^{-}\left(p^{2}\right)\right] P_{n}(z) \tag{2}\\
& f_{z}\left(z, p^{z}\right)=\sum_{n=0}^{\infty}\left[f_{n}^{-}\left(p^{2}\right)-f_{n}^{+}\left(p^{2}\right)\right] P_{n}^{\prime}(x) .
\end{align*}
$$

In the given case the analytical continuations of the partial waves throughout the l-plane together with the poles have the branch points. The amplitudes f_{l}^{-}and f_{l}^{+}have the cuts from $-e^{2}$ to e^{2} and from $-7-e^{2}$ to $-1+e^{2}$ respectively (e^{2} is the fine structure constant).

We make calculations starting from perturbation theory up to the terms of the second order in e^{2} for large s and obtain $\left(s=-2 p^{2}(1-z)\right)$:

$$
\begin{gather*}
f_{t}=-\frac{e^{2} E+m}{2 E}\left[\frac{1}{2(E+m)^{2}}+\frac{2 E}{s(E+m)}+e^{2} \frac{E-m}{4 \sqrt{-p^{2}}(E+m)^{2}} \ln \left(-\frac{s}{\lambda^{2}}\right)+\frac{\dot{\theta}^{2}}{s} \frac{2 E^{2}}{\sqrt{-p^{2}(E+m)}} \ln \left(-\frac{s}{\lambda^{\lambda}}\right)\right]+O\left(\frac{1}{s^{2}}\right)(3) \\
f_{t}-z f_{2}=-e^{2} \frac{E+m}{2 E}\left[\frac{1}{s}+\frac{e^{2}}{s} \cdot \frac{E}{2 V-p^{2}} \ln \left(-\frac{s}{\lambda^{2}}\right)\right]+O\left(\frac{1}{s^{2}}\right) \tag{4}
\end{gather*}
$$

Where $E=\sqrt{p^{2}+m^{2}}, \lambda$ is the photon mass" introduced to exclude the infrared diver gence. On the other hand, by applying to the formulae (2) the sommerfeld-Watson transformation modified following Mandelstam $|5|$ we get for large z :

$$
\begin{align*}
& f_{2}=\frac{a_{+}+1}{2 a_{+}+1} \beta_{+}\left(p^{2}\right)(-x)^{a_{+}\left(p^{2}\right)}+\beta_{-}\left(p^{2}\right)(-z)^{a_{-}\left(p^{2}\right)}+ \\
& +\frac{1}{21 \sqrt{\pi}} \int_{\mathrm{c}}+\frac{(\ell+1) \Gamma(\ell+1 / 2)}{\Gamma(\ell+1) \sin \pi \ell} f_{\ell}^{+}\left(p^{2}\right)(-2 z)^{\ell} d \ell \tag{5}\\
& +\frac{1}{21 \sqrt{v} \pi} \int_{c}-\frac{\ell \Gamma(\ell+1 / 2)}{\Gamma(\ell+1) \sin \pi \ell}{ }^{4} \ell\left(p^{2}\right)(-2 x)^{\ell} d \ell+\ldots \\
& f_{2}-z_{2}=\beta_{+}\left(p^{2}\right)(-z)^{a+\left(p^{2}\right)}+\frac{1}{2!V \pi} \int_{c}+\frac{(2 \ell+\eta) \Gamma(\ell+1 / 2)}{\Gamma(\ell+1) \operatorname{Sin} \pi \ell} f_{\ell}^{+}\left(p^{2}\right)(-2 z)^{l} d l+\ldots \tag{6}
\end{align*}
$$

where $a \pm$ are the main poles of the amplitudes $f \pm$ in the l-plane, $c \pm$ are the contcurs round the outs $L^{ \pm}$. Comparing the formulae (4) and (6) we note that the expansion in . ${ }^{2}$ of the trajectory $a_{+}\left(p^{2}\right)$ way be of the form: $-1+0\left(e^{2}\right)$. However, to obtain this expansion from the formula (4) by the method used in paper ${ }^{i 2 \mid}$ it is necessary to subtract preliminarily the contribution from the cut. To find this contribution we turn to formulae (3) and (5).

Sinoe the expansion of $a_{-}\left(p^{2}\right)$ should start with -1 but not with zero*, then comparing (3) and (5) we find up to the terms of *order

$$
\begin{gather*}
\frac{1}{2 \backslash \sqrt{ } \pi} \int_{c} \frac{\ell \Gamma(\ell+1 / 2)}{\Gamma(\ell+1) \sin \pi} f_{\ell}^{-}\left(p^{2}\right)(-2 z)^{\ell} d \ell= \tag{7}\\
=-e^{2} \frac{E+m}{2 E}\left[\frac{1}{2(E+m)^{x}}+e^{2} \frac{E-m}{4 \sqrt{ }-p^{2}(E+m)^{2}} \ln \left(-\frac{1}{\left.\lambda^{2}\right)}\right]+\cdots\right.
\end{gather*}
$$

Using the fact that the amplitudes f_{ℓ}^{+}and f_{ℓ}^{-}oan be represented on the corresponding outs in the form (see for example ${ }^{|4| \text {) }}$

$$
\begin{align*}
& f_{\ell}^{+}=\left[\phi_{2}(\ell+1)+\phi_{2}(\ell+l)\right] \exp \{i \pi(\ell+l)\} \tag{8}\\
& f_{\ell}^{-}=\left\{\phi_{2}(\ell)-\phi_{2}(\ell)\right] \exp \{1 \pi \ell\}
\end{align*}
$$

where $\phi_{2}(\ell)$ is an even function and $\phi_{2}(\ell)$ is an odd one of ℓ, we find the connection betwean the integrals along contours C^{+}and C^{-}. After simple transformations have been made we get

$$
\frac{1}{2 \sqrt{ } \pi} \int_{c}+\frac{(2 \ell+1) \Gamma(\ell+1 / 2)}{y(\ell+1) \sin \pi} f_{0}^{+}\left(p^{2}\right)(-2 z)^{\ell} d \ell=
$$

[^0]\[

$$
\begin{equation*}
=-e^{2} \frac{2 p^{2}(E+m)}{2 E}\left[-\frac{1}{2(E+m)^{2}}+e^{2} \frac{E-m}{4 \sqrt{ }-p^{2}(E+m)^{2}} \ln \left(-\frac{2}{\lambda^{2}}\right)\right]+\ldots \tag{9}
\end{equation*}
$$

\]

Subtraoting (9) from (4) we single out the contribution from the pole term

$$
\begin{equation*}
\left(t_{1}-x t_{2}\right)_{R}=-\frac{e^{2}}{3}\left(1+e^{2} \frac{m}{\sqrt{-p^{2}}} \ln \left[-\frac{3}{\lambda^{2}}\right]\right)+0\left(e^{4}\right) . \tag{10}
\end{equation*}
$$

Now following ${ }^{|2|}$, we get:

$$
\begin{equation*}
a+\left(p^{2}\right)=-1+\frac{\dot{\theta}^{2} m}{\sqrt{-p^{2}}} . \tag{11}
\end{equation*}
$$

The other trajeotories can be calculated in a similar way. For example, from (3) and (5) we have:

$$
\begin{equation*}
a-\left(p^{2}\right)=-1+\cdot \frac{2}{\sqrt{-p^{2}}}+0\left(0^{4}\right) . \tag{12}
\end{equation*}
$$

These results can be compared with the conclusions obtained from the Dirac equation in the central field:

$$
\begin{align*}
& \frac{d F}{d r}+(1-\kappa) \frac{F}{r}+(E-m-V) G=0 \tag{13}\\
& \frac{d G}{d r}+(1+\kappa) \frac{G}{r}-(E+m-V) F=0
\end{align*}
$$

where
and

$$
\begin{align*}
\kappa=-(\ell+1) & 1 & =\ell+1 / 2 \tag{14}\\
\ell & i & =\ell-1 / 2
\end{align*}
$$

By inserting F and G in the form

$$
F=g^{\gamma}, \quad G=r^{\gamma} g, \quad \gamma=-1+\sqrt{\kappa^{2}-e^{\gamma}}
$$

where f and g have no longer a cut in the l-plane and expanding f, g and $a_{ \pm}$in powers of e^{2}, with the ald of the successive solution of the equations in each order of expansion we obtain, e.g., for $V(r)=-\frac{0^{3}}{r} \quad$ expressions (11) and (12). We emphasize that in the case of the potentials of the form (14) the cuts coincide with L^{+}and L^{-} as before. The formula (8) remains valid as well. Thus, the developed method of calculating the cut in perturbation theory can be applied to a more general case too.

It is seen from the aforesaid that the contribution from the cut to the terms of the perturbation series is of the same type as the contributions from the poles.

However this is not always so, e.g. In the case of the relativietic scalar particle in the external field of the type (14) the contribution from the cut in perturbation theory differs from the pole one by the fact that the first one contains the non-integer powers of
s and is therefore easily singled out. In general, from the Klein Gordon equation it is easily seen that the term quadratio in the potential is responsible for the out. In the light of the aforesaid it is very interesting to oonsider similar questions in the quantum field theory.

In conolusion the authors would express their gratitude to N. N. Bogolubov, D.I.Blokhintzev, S.S. Gershtein, Ya.A. Smorodinsky, O.A. Khrustalev for the interesting discussions and remarks.

Referenoes

1. B.A. Arbuzov, A.A. Logunov, A.N. Tavkhelidze, R.N. Faustov. Phys.Let., 2, 150 (1962).
2. B.A. Arbuzov, A.A. Logunov, A.N. Tavkhelidze, R.N. Faustov, A.T. Pilippov. Prepriat JINR IT-1061.
3. T. Regge. Muovo C1m. 14, 951 (1959), 18, 957 (1960).
4. N. Mott, G. Massey. The Theory of Atomic Collisions. 1951, Moscow; see also
R. Oehme. Nuovo Cim. 25, 183 (1962), V. Singh. Phys.Rev. 127, 632 (1962).
5. S. Mandelstam. Annals of Phys. 19, 294 (1962).
6. A. Sommerfeld. Atombau und Spektrallinien. v. II, Ch. IY, 8, 1956, Mosoow.

[^0]: * This fact is conneoted with the character of the level structure in the central field and, by the example of the Coulomb field, is easily seen from the Sommerfeld fine structure formula (see e.g. |6|).

