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Abstract 

In the first part o# this work containing a new version of the results obtained In 1960/1, ll/ a local-optimal 

continuous planning of regression experiments is suggested which Is o:>nvenlent from the practical point of view. 

In the second part it Is shown that in case of the stable conditi~n of experiment the continuous planning is 

asymptotically global-optimal. 

A H H o T a u H H 

B nepBolt 'l8CTH STOlt pa60Thi, co.n;ep)!{8lUelt HOBy!O cpopMynHpOBKY pe3ynhT8TOB, 

I 1 11 I 
nonyqeHHhiX s 1960 ro.ny ' , npe.nnaraeTCH noKanbHo-onTHManbHOe HenpepbiBHoe 

nn8HHpOB8HHe perpeCCHOHHbiX SKCnepHMe HTOB, y.n;o6HOe C np8KTH'leCKOll TO<IKH 3 p e HHH, 

Bo BTopoA 'l8CTH noK83biBaeTCH, 'iTO, B cnyqae ycTOlt'iHBbiX ycnosHA sKcn e pHMe HTa, 

Henpepb!BHOe lln8HHpOB8HHe HBnHe TCH 8CHMITTOTH'ieCKH rno6an bHO -QITTHM8n bHbiM, 

HaCTOHlUIIA npenpHHT H3LJ;a~TCH TOnbKO Ha aHrnnftCKOM H3biK9, 



where c, f are the known function s and 0 = 0
1 

, ••• , () m is the parametrical point under estimation, whose number of dimensions, 

m , is known beforehand. Let, if for measuring the curve 1] (x) at the point x the time t is spent, then the result of measure

ment y = y (.;) be a rando'm ( independent of previous ) sampling from the population y ( x, t, ~ ) with properties 

< y ( x, t, ~ ) > = f y ( x, t, .:; ) p ( ,; ) d .; = 1] (x) , 

2 t ·1 
< [ Y (x) - 1] (x) l > = [ f A ( x, r ) d t ( r) ] = w ·t , 

(1) 

0 

where A ( x, r ) is the measurement efficiency, r is the moment when the measurement is made, ~ is a random parameter of the 

sample. As is known,the best ( having the smallest variance ) estimate for 0 linear in y 
1 
= y ( x

1 
) is e" = M"\' , where M is 

the Fischer information matrix and 

Ma{3= Y- fa (x ) f(3Cx1 ) w 1 ; 

' " 
Ya= ~ fa(x 1)[y1 -c(x 1) ] w1 • 

I 

" " ,, -1 
The estimate () is unbiased < 0 > = () and has the variance -covariance matrix D a ( 0) = < ( 0 - 0 ) ( 0{3 - () {3) > =1~1 ) ., a1, a , a a() 

In combining independent experiments their information matrices are summed up. Therefore the experiment and the corresponding 

Fischer matrix will be denoted by the same letter, the matrices M assumed to be positive-definite and o\M, positive semi-definite . 

Let the parameters() be separated into the group of parameters 9 = 13
1 

, .•• , 0 , we are interested in , and the group of 

nuisance ones w = Orl-
1 

, ••• , () m the measurement of which is not our ai m. We sh all assume th at of two competing ex!Jeriments ~1 1 , 

M 
2 

the experiment 1.1 
2
contains more information about 9 if t'lq = q ( 0 ; M 

2
) - q ( ¢ ; M 

1
) > n , where 

·1 

.\q = -In I D
2

( ¢ )D1 ( cjJ ) I • 
(2) 

q ( ¢ ; M 
1 

) = - ln I k • D 
1 

( ¢ ) I , 

·1 ·1 
and where D1 , D2 are the corresponding rxr submatrices of the matrices M1 1 :,1

2 
and the constant k 'i' 0 is chosen by an arbitrary 

way ( k = 1, If there is no special reservation ) . In particular, If M 
2 

= M 
1 

+ "\ M we shall speak that the experiment ~ M gives 

the information ~ q = q ( M ) - q ( M ) . The main reasons why the experiments can be compared in terms of the information 
2 *I I t ( 2) are given in paper of Stone 8 .' If consideration is restricted to the linear estimates only then these reason s remain also 

valid in the case of the formal application of ( 2) for the non· Gaussian distributions of probability y ( ,; ) p ( ,,; ) d ~ . 

Suppose that at the time moment r the efficiency >.. ( x, r ) is known from the analysis of the experimental con ditions or the 

measurements already carried out. We call the experiment d M "= ~ f (x ) f n ( x ) A ( x , r ) d t ( x ) a local-optimal one 
ap 1 a 1 (' ' 1 1 -

if it gives the maximum of d q ( ¢ ) = ~ [ a q (¢) I at (x,) l d t (X' ) under the condition ~ dt (X I )= c: r ; d t ( X I ) > 0 . 
I I 

Then the suggested procedure of the continuous local-optimal plannin g consists in making at each time moment r the measurement 

at the point X where the rate of accumulation of information q [ ¢ . X, M (r) l = a q [ ¢ , M (r) l I at (x) = A ( x, T) a q [ ¢ , M(r)]l aw(x) 

is maximal. From the point of view of calculation ( see 3 ) the continuous planning reduces to the calculation of the function 

q [ ¢, x, ~.1 (r) ] and the choice of the point ( one of the points ) x for which q ( x ) = max q (x ). 

2. Optimality and variance 

We consider the experiment 

/oM 
M =\ tM' 

1 ~.1) 
2,,, 

X 

•
1 

" (

0

D ; M =D(8)= 
tD' '~ l (4) 

~--------~~--~~--~~~----! 
Stone uses the formula J\,q = 7S In I M 

2 
r,• 

1 
I . The complication of expressions lly the factor Y: seems quite superfluous and 

we do not introduce this factor. 
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I 

where 
6
M , •o are the r x r submatrices related to parameters ¢ = (} 1 , ••• (}, and prime (') means transposed. Calculating 

the variances of the estimates 

we· get 

When x = y the second argument in D will be omitted D [ 71 (x) ] = D [ 71 (x) , 71 (x) ] . Let us introduce the matrix 

" ( "D 26 [ D (8) ] = 
1 D' 

(5) 

We call the quantity 

o < .ry , ¢ ) = o c.;,) - o < 271 ) = f' 2 
tl [ o < e") J f (6) 

a subvariance of the estimate J7 with respect to parameters ¢. In a. particular case when 1 M = () and the estimates ¢' and ;; 

are independent the subvariance coincides with the partial variance D ( f, ¢ ) = Of' "D 0 f . If the nuisance parameters 

are absent ( r =m) the subvariance coincides with the total variance D ( ~. ¢) = D (r/) . In its meaning the subvariance 

with respect to ¢ is a fraction of the variance of the estimate 7) which is due to the ignorance of the exact values of the 

parameters ¢ . 

LEMMA I Let M be an arbitrary matrix having an inverse one D=t.r ~nd allowing the division into the submatrices 

similar to ( 4) so that 2M and 0 D have also their inverse ones. Then, the identity 

holds. To prove thi s ,it is sufficient to calculate explicitly the left-hand sides of (7) and of the obvious equality 

and compare the results. 

~lultiplying ( 7) from the left by .11- 1 we obtain the identity 

0 
) D ' 

0 

from which it follows that 2 
\ (D) is positive-semi-definite and the subvariance D ( f]' , ¢ ) is non-negative. 

Now we consider the increase of q in measuring 71 at the point x , i.e. for 

.~:a {! (r + dt) = M a(3 (r) + fa (x) f~ (x) >..(x, r) dt. 

( 7) 

( 8) 

THEORE~l I. Th e rate of accumulation of information about some group of parameters equals the product of the efficiency 

and the corresponding subvariance 

q(cp,x) >..(x, r) D (i}' (x), ¢), ( 9) 
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Proo.f. We calculate explicitly .the derivative 
0 -I 

• ~ -I D q ~ -a en I u I I at ~ A f' M ( 0 

and use the identity ( 8 ) . The theorem is proved. 

0 ) M-I f 
0 

Obviously, q ( ¢, ::r:) ~ 0, from where it follows that theorem V of pape/81 can be extended to the case of the pre-

sence of nuisance parameters. 

By differentiating both sides of (C)), It is easy to obtain expressions for higher derivatives of the information , e.g. 

a 2q(p) " " 2 2" 2"' 2 - A(x)A(y)I(D[7](X),7J(Y)]) -(D[ 1)(x), 1)(y)]) I (10) a t (x) a t r y ) 

(in differentiating It was taken into account that A (x, r) does not depenc! explicitly on t ). For r: m or x "'. y the deriva-

ti ve q ( ¢ , "'• y ) ~ 0 . For r <m and ::r: f y the function q ( ¢ , x , y ) may have any sign. 

Stone has shown / 8/ that the information is Invariant under the linear substitution of parameters. From theorem I and 

the In variance of variances D (·ry) , D (~') it is obvious that the presence of nuisance parameters does not violate the vali

dity of this result and the rate of accumulation of information is invariant under a linear substitution of parameters Inside the 

groups ¢ and w • Thus, the definition of optimality assumed by us Implies that the specification of the estimate of any 

linear combination of parameters ¢ ( I.e. the decrease of the variance of this estimate some given n times ), is considered 

as an equally useful result. 

In the process of the experiment planned continuously the optimal point x is moving both due to changes of the subvarlance 

D ( ;,' ( x) , ¢ ) and possible changes In the efficiency >.. ( x , r) • We show that for r > 1 some displacements of 

the point x occur even under stable conditions of the experiment >.. ( x , r) ~ A ( x. , r 0 ) "" A ( x ) . 

Let A be independent of and r > 1 . We choose arbitrarily certain points xlt k = ki''" I), and from the mo-

ment r o on we shall measure at the~e points only. 

THEOREM n. If p , the number of points xk , is less than r , after a sufficiently long measurement at each of 

these points none of them will be optimal . 

Proof. For constant A 
-I 

the weight w = ( >.. t ) . From (1), (6) and (9) it follows that 

r a q 1 a t 1 J t I ~ 1 . cu ) 
Considering the case when all t 1 's Increase proportionally, I.e. M ( r + d r) ~ ( 1 + dr I r) M ( r) , 

It is easy to prove the identity 

}; raq lat. Jt =r. 
I I I 

By singling out explicitly those tlt which are Increasing and using ( 11 ), ( 12 ) we get 

( lllBX ~ ) ~ t O > 1: a q t 0 

If lt at I I I -I j, kat; I 

p 

r - }; i...!l_ t,. > r - p > 1 
k =Ia tk 

Inserting in ( 11 ) tk > ~ t 0 
IF k I 

and combining with ( 13 ) we have 

0 - I a q I a t k < ( }; t I ) < max a q I a t I 
lo/" - ~ ~ k 

what proves the theorem. 

The requirement of the independence of A on r Is not necessary. Repeating the calculations ( 11 }-( 13) for 

6 

( 12) 

( 13) 



>.. • f 0 it is not difficult to show that for theorem II to be vaiid it is sufficient to fulfil the condition 
T 

[ r >.. (x 
1 

, r) >..- 1 
( x k , r)] -. oo at r-. oc and for any x 

1 
, x k,i.e. a weak dependence of >.. on r is unessentia;. 

For p ~ m theorem II is certainly not tru/51. If m > p ~ r then an analog of theorem II can be obtained 

under some restrictions on the choice of ¢ and the function >.. ( x) which we shall not consider. In a practically impor-

tant case r = 1 , m ~ r such an analysis can be made by means of the graphical technics developed in /7 1. 

Now we consider a global- optimal elperiment. Let >.. ( x) , M ( r o; and r be given and the times (X I ) ; 

!t(x
1

) = r -r 0 = T can be distributed in any way. 

THEOREM In. For the experiment f,f (r) = M ( r 0 ) + t\ M (T) to be optimal , i.e, giving maximum 

/). q= q[¢, M(r J]- q[¢, M \ ; 0 )]
1

it is necessary that all the points of measurements x 
1 

are coinciding with points x k where 

the function >..(x)D [r{'(x), ¢; M (r)] reaches the absolute maximum. 

Proof. Assume the contrary. Then the experiment which differs from the given optimal one only by that a fraction of the 

measurement time d t1 is transferred from the point where >.. D < max >.. D 
X 

to the point x; in virtue of theorem 

I will contain d q = [max >.. D - >.. ( x 1 ) D ( r,' ( x1 ) , ¢)] d t 1 
more information than the optimal one, what is impossible. 

The theorem is proved. 

From (12) it is easy to see that if M ( r OJ = c M ( r) , c ?: 0 and M (r) is optimal, then max >.. D ( T,', ¢) =r r ·1 

" 
and if M(r0) f, cM(r) then max >.. D ( 1j , ¢ ) > r r - 1 

" 

3. Prognosis of a Local-Optimal Experiment 

If >.. ( x , r ) is a known function of r then no unknown quantities enter ( 9 ) and the process of the continuous 

planning can be caiculated any time ahead. 

In planning, continuous in the exact sense of this word, the function q ( ¢ , x ) reaches the absolute maximum, general-
p 

ly speaking, at several points x ( r) 
lr 

. We impose on the distribution of time dt ( x") = c k dr , ~ cl< = 1 , 

"'~· 1 
a condition that all maxima of the function q [ ¢ , "i M ( r)] where measurements are made, 

are decreasing with the same speed 

p 

I aci(¢, x1 J 
k = 1 

p 

I 
k = 1 

a4 (¢ , x-,; 
at(xkJ 

c k ' ( i 4 ) 

what is equivalent to the requirement of the smoothness of M as a function of . The condition ( 14 ) jointly 

with the equations 

(r) M a {3 (r o) + I ( x ) I Q ( x ) ,\ ( x , r ) c ( r ) dr 
a 1r "' 1c 1c 1c 

( 15) 

q [¢,x (r); M( r)]=maxq I¢,x;M(r)]= max>..(x , r)D(T/(x) , ¢;r) 
" .. " 

unambiguously define the growth of M ( r ) in the continuous planning. For practical applications it is more convenient to 

break up the time into the steps /).r , small compared to r 1 and instead of ( 14 ), ( 15) use the reccurent equations 

Maf3 (r + /).r) = Maf3(r) + fa(x)ff3(x;>..(x,r) /).r, 

>.. (ii, r)D (f/(x), ¢; r) =max>.. (x, r)D (r,'(x) , ¢; r) 
" 

7 
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( 16) 

In ( 16) It is sufficient to consider only the single optimal point x = x ( r) , which will imply any point of equally opti

mal ones, if there are many, and omitting the condition ( 14 ). However, for finite /'>. r an exact coincidence of the heights of 

several maxima of the function A D is an unlikely event. 

If A depends weakly on r then, according to theorem II, after some steps of continuous motion• along one of 

the curves x Jr ( r ) the point x ( r) , determined by the system ( 16 ) must jump to other curve x
1 

-=1 / r) ensuring 

in this way some distribution of time between all x Jr ( r) (in the limit fl. r -+ 0 coinciding with the distribution c" ( r) ). 

If A ( x, r) = A ( x, r 0 ) then at r -+ oo the allocation of points x Jr ( r) and the distribution of time between 

them, c ( r) , 'will forget' the initial experiment M ( r o; and become similar to those of the global- optimal experiment 

when the initial one Is absent. Therefore the recurrent equations ( 16 ) may be applied for calculating the global- optimal. alloca-

tion of measurements, for a large number of parameters this may tum out to require less computational work than the variation of 

the information q with respect to 2 m variables x Jr and c Jr 

Example: .,.,=¢+(x-'3)w 

The initial measurements 

X O = 1,5 
1 

X D 
2 

tO=to ej 
1 2 

2 and 

A = ( 1 +X 2
) 

-2 

are made at points 

M (r 0
) = ( 0.404 

-0.546 

T 0 6 . 

-0.546 
0 :?60 ) 

Further the experiment At" ( r 0 
I r ) is pl~nned according to ( 16 ) with a step \ r = 0.1 . 

A global- optimal (for AI ( r 0) = 0) allocation c, ( x 1 ) can be easily found for this example. Denoting A- v. = 11 

and noticing that ¢ = .,., ( 3 ) by the formulae of static planning in Ch. V of 
17 I or / ll/ we get: , 

so that 

d 

dx 
h(x) = 11(x) 

X 

c ( 1) = 2/.3 • 

X 
1,2 ± 1 

c.(- 1) = 1/3 

__!__;__ 

t 2 

11 r ':1U_L~!_,J__ I = 2 ; 
h{x

2
)(3- x 1 ) 

1 3 M r1; =u r_8 ll 
-8 
24) 

Fig. 1 A gives the position of the optimal point during the first thirty steps. Starting with the ninth step when 

the function D ( ~' 1 ¢ ) squires the second maximum at the point x "' 1 the process goes Into the asymptotics and the 

time allocation coincides with the global-optimal one c, ( x) with the accuracy up to quantities of the order of A r ( ~ -r 0 ) - ~ 

An inverse variance [ D (cp) ]-
1
= exp q ( ¢) is plotted in Fig. lB. The broken line I corresponds to the 

continuous planning M = M 
0 

(r 0, r) • The curve II plotted for the comparison corresponds to the combination of the initial 

and the optimal experiment U = f.! ( r 0 ) + M , ( r - r 0
) , the straight line III, to the experiment 

M = (r/r 0 )M(r 0 ) continued similarly to the initial one. 

PART 0. Global Properties of the Continuous Planning 

The investigation of the global properties of the local- optimal planning is Interesting not only from the practical paint of view 

* More exactl y , a mo tio n whi c h turn s into a continuou s one with the Infinit e brea¥1n g up of the giv e n several l!!lteps . 

8 



but also because the further deve_lopment of the theory of the planning of indirect experiments seems to choose the direction of the 

synthesis of the global and local approaches. 

In 4 the general properties of the information as a function of the experiment M and the conditions of the global optimaU.ty 

are established. The global and the local plannings are compared in 5. In 6 the connection between the optimality and the 

condition min max D ( ~ ( x) , ¢ ) , discovered by Kiefe/
12

1, is discussed. 
X 

4. Information from the Mixture of Experiments and the Optimali~y Condition 

The presence of nuisance parameters w = 8,+ 
1

, ... , 8 m makes the comparison of experiments difficult. This difficulty 

can be partially avoided by introducing the notion of reduced matrices. Let 

where the division into the submatrices is performed in a way similar to ( 4 ). According to i.he identity ( 8 ), A = a + 
0~ (A). 

We call 0 R ( A ) = 0B- 1 a reduced ( to the parameters ¢ ) matrix A , and 
0 
~ ( A ) a 

remainder of the reduction ( e. g. the matrix 
2 ~ ( D ) ( 5) is a remain cler of the reduction of the valiance -covariance 

matrix to the parameters w ) • The reduction procedure 0 R is chosen . in such a way so that a reduced experiment 

0 R ( M ) and a complete experiment M contain the same information q ( ¢ ), Besides,the procedure has 

a following property. 

THEOREM IY. The sum of complete experiments M = M 1 + M 2 
contains not less information than that of reduced expe-

riments R = 
0 R ( U 

0
) + 

0 
R (.II 

2 
) 

M = ( t g) + 0~ ( M ) + 0~ ( M ) • Let c = 
1 2 0 

+ 0 ~ ( M ) to a block form: c I !'l n c = ( G 
:2 0 

, i e. q ( ¢; M) ~ q ( ¢; R ) .Proof. According to the definition, 

0c 0 
( 1c .7c ) , I 0c I = 1 be the matrix transforming ~ M = 0 ~ ( M ) + 

0 oc I R 0 c + OG 0 1 

2G ) . Then c 1 M c = ( 0 2 G) . Henc~ 

q(l!) = -fn I0 (M" 1)I=fn 1°c 1 R 0c + 0 GI .FromthedefinitionoftheoperatiCJn ( 17 ) it is obvious that 

~ M and, consequently, 0 G are positive-semi-definite matrices. Then, according to theorem Y of the work of Stone 
8 

q ( ¢ R). 

The theorem is proved. 

Let us now establish how the information changes in replacing the sum of similar experiments by the sum of different ones. In 

other words, we reveal one of the basic en tropic properties of the definition of information (2). Consider two pairs of experiments 

,ft 
2 

in which corresponding experiments contain equal informatioo and experiments in the second pair are 

similar: 

(18) 
q(¢ 

THEOREM Y. If experiments M 
1 

, M 
2 

, M 
1

, !t~ satisfy ( 18), then the mixture of different experiments 

MP = p M 
1 

+ ( 1 - p) M 
2 

, 1 ~ p z O,contains not less information than the same mixture of similar experiments 

t.i = p if + ( 1 - p ) M , i.e. 
p 1 2 

!.7 ) p 
q 1 + r en [ p + ( 1 - p ) k ] • 

( 19) 

9 



• 

Proof. Consider the combination of reduced experiments R ~ p 0 R ( M ) + ( 1 - p ) 0 R ( M 
2

) • Transform 
p 1 

R 1 ~ 
0 

R ( AI 1 ) and R 2 ~ 0 
R ( M 

2 
) simultaneously to the diagonal form R * ~ c' R c, I c I ~ 1 , and 

• r [ n tlr n b tf, ] , . b 0 make use of the elementary lnequahty n (a + b ) 2: ( a a) + ( a) which ts valid for any a , ~ . 
a ~ 1 a a 

We get 

According to 

, 
q (R ) 

p 
q(R * ) ~ fnn[p(R * ) +(1-p)(R*) ] > 

P a ~ 1 1 aa 2 aa 

tf, J/, , , 
> fn [p IR*I + (1-p) I R* I ] ~ q 1 + fn [p + (1- p) k ] 
- 1 2 

theorem IY q ( ¢ ; M P ) ~ q ( ¢ ; R P ) • The theorem is proved. 

It Is easy to show that for 1 > p > 0 and 0 R ( M ) f k 0 R ( M ) a strict inequality 
2 

q( ¢ ;RP) > q(¢ uP J q(¢ MP) > q(¢ iiP; 
takes place. 

Now we consider the mixture of experiments with different information. 

THEOREM YI. The information Is a concave function of experiments: 

q ( ¢ ; p M 1 + ( 1 - p ) M 2 ) ::: p q ( ¢ ; M1 ) + ( 1 - p ) q ( ¢ ; M 2 ) • 

( 20) 

(21) 

Proof. Make use of the Inequality ( 19 ) and the elementary inequality p a + ( 1 - p ) b > a P b 1 
- P which 

holds for any a , b ~ 0 . We obtain 

q(MP) 2: q(Mp) q 
1 

+ r Pn [ p + ( 1 - p ) k ] ::: q 
1 

+ r Pn k 1 -p ~ 

P q 
1 

+ ( 1 - p )( q 
1 

+ r fn k ) pq1+( 1 -p)q2. 

The theorem Is proved. 

Let us introduce the notion of the weighted optimality. Let the initial experiment M ( r o) and the efficiency A ( x, r) 

* 
be given and the time T = r L - r o can be allocated in any way d t ( x (r )) = c 1 (r) d r , l c 1 ~ 1 

I 

We call the experiment M u (r 0 , r ) optimal with the weight u (r ) ~ 0 and the priming (initial ) experiment M ( r 0
) if 

q ~ 

u 

r1 

I q [¢; Mu (r 0 ,rJ] u (r) dr = 

ro 
r 

max 
"(T) 

I q [ ¢ 
ro 

M (r 0
) + I ll 

ro 

(x (t), t) dt] u (r)dr , 

. In the particular case when u ( r ) = o ( rO- r ) 

(22) 

and 
where p. {3 = f ( x) f {3 ( x) A ( x , r ) 

1 
a a 

f F f r ) u ( r ) d r = F ( r 0 ) the weighted optimality coincides with the local one; if u ( r) = o ( r 1 
- r) and 

t 
0 f F ( r ) u ( r ) dr = F(~the weighted optimality coincides with the global one. An experiment planned continuously in a 

ro 
local- optimal way from the moment r 0 , will be denoted by M c ( r 0 

, r ) ; experiment global- optimal 

* Writin g eo w e mean that th e tim e T Is d i s tributed with the d e n s ity V (x, T) = l C 1 (r) 0 (X - X 1 (r))' where 0 Is a Di r ac 

fun c tio n de fin e d so that J F (x) v (x - a)dx = F (a) fo r any c ont inuo us F (X). For th e s ake o f brl ev lty we sh all a l so 

write JF(x(r))dr meaning JF(x)V(x, r )dxd r. 

10 



; a global- optimal one for /.1 ( r o) ~ 0 

and for A ( x , r ) = A ( x·) , by M Q ( r ) 

THEOREM VII. For the experiment M ( r) to be optimal with the weight u ( r) and the priming M ( r 0) it is 

necessary and sufficient that at any moment r the measurement be made at the point x ( r ) . . where the function 
,t 

A ( x , r ) D u ( x, r) ~A ( x , r) I D [ ~· ( x), ¢ ; Af. ( t ) l. dtreaches the absolute maximum. 
r 

Proof of necessity. Consider M , D and q as functionals of x ( r ) and write the condition (22) in the form 

ri 

o I q ([ i'] , r ) u ( r) d r = 

,t 

(I q['X+o;]-q[;]lu(r)dr ·:::o. 
,o 

r 
Taking into account that o M ( r) = I o p. ( t) dt and calculating explicitly the variation, according to 

,o 
rem I we have 

r 
oq([x],rJ I o I D [ 11 ( x ( t J J , ¢ ; M ( r J J A ( x ( t J , t J l dt , 

,o 

where the sign of the variation o affects x ( t ) only, whence, integrating by parts, we obtain 

r I r 
I u ( r) Jol D [ ~· ( i' ( t)), ¢; r] A ( x ( t), t) I dt dr = 
r o ,o ( 23) 

,t ,t 

I o I A ( x ( t), t ) I D [ ~· ( x ( t), ¢, r ] u (r) d r I dt 
r o 

theo-

Because of the arbitrariness of o x ( t ) the inequality (23) can be guaranteed only if o A D uS, 0 and x is a 

point where the function A(x,t)Du(x,t) is absolutely maximal. 

Proof of sufficiency. Suppose there exist two experiments M • ( r ) , M b ( r) in which measurements are made at 

points x • ( r ) , x b ( r ) where the corresponding functions reach the absolute 

maximum and which contain the weighted information ( q u ) b < ( q u) • = ':ff> q u [ x ] • 

Make the mixture 

The experiment' M d P 

r r _ 
M dp = d p M • ( r ) + ( 1 _. d p ) M b ( r ) = M ( r 0) + d p r p. ( X • ) d r +. (1- d p ) I p. ( X b ) d; 

,o 'o 
differs from M b only by a fraction of the time of measurement transferred from th~e poin t 

x b where A [ Du] b is maximal to the point x • where A [ 0 J b , generally spe~king, is not maximal. Hence 

(24) 

On the other hand, using theorem VI and positivity of u (r ) we have 

(25) 

The incompatibility of ( 24) and ( 25) proves the theorem. 

5. Optimal properties of the continuous planning 

From theorem VII it is obvious that if the subvariance D ( ~ ( x ) , ¢ ; r ) as a function of x changes its 

form with time then the continuously planned experiment !.1 c ( r 0 , r ) coincides neither with the global- optimal experiment 

M Q nor with the weighted-optimal one M u . We shall try to estimate how great this difference Is and whether the losses of 

information at r ... oo are essential when M is replaced hy M c 
12 

We first consider a case when the efficiency A does not depend on time, A A ( x) • 

11 



Lemma II . Let the experiment 
I 

ll = M(c +r ) contain .smaller information than the global- optimal (in the same 

conditions >..(x) )experiment M (r) .Then maxcj(¢, x;M) = cj( ¢, x;M) > rr.axq(¢,x;M~) = rr- 1 

II " " 
(the right- hand equality follows from ( 12) ). Proof. For some k > 0 it should be the equality 

q [ ¢ ;M(c+r)] q[ rp ;M (r-k)]. 
II 

Denote ,.,.af3 =fa (x;.f f3 (x; >.. (x; . Since the experiments p. d r and M ( 1) d r require equal 
~ 

time dr then 

q(M + p.dr)-q(U) > q(t.!+ M
11 

(l)dr)- q (M) ~ 

> q[M (r-k)+M(l)drl-q(M)=q[M (r-k+dr}l-q[U (r-k)] = 
- II II • II II 

-z -z 
= r(r-k) dr > rr dr, 

where the first left-hand Inequality follows from the local optimality of p. dr 

theorem Y. The lemma is proved. 

and the second left-·hand one, according to 

Theorem VIII. If the efficiency >.. ( x) is independent of r then the continuous local- optimal planning is at r -+ oo 

asymptotically global-optimal l!.un I q [ ¢ , M ( r 0 , r)] - q [ ¢; M. ( r 0, r ; r)] I -+ 0 , the maximal loss of time 
r-+oo e • 

does not exceed In this case a non- optimal fraction r o- c of the time r 0 spent for the initial experiment M ( r o): 

q[¢ At (c -r 0 + r)] < q [¢ ;.~! ( r 0 ,r)] < 
II - c -

<q[¢;M11 (r 0 ,r;r)]~ q[¢ M (r) ], 
II 

where 

q [¢ ;M (c)] 
II 

q[ ¢ ;M(r
0

)]. (26) 

Proof. Since 

l!.un lq[¢;M (r)]- q[ ¢ ;M (c-r 0 +r)]l =f'.un (rf'n __ r __ ) = O, 
r -+oo ll ~ r-+oo c-ro+ r 

then for the validity of the theorem it is sufficient to prove that q[¢;M (c-r 0 +r )] < q[ ¢ ;M (r 0 ,r )]. 
II - c 

Suppose the contrary, i.e. for a certain r the difference 

q [ ¢ ; M 
11 

( c - r 0 + r ) ] - q [ ¢ ; .~f c ( r 
0

, r ) ] = a ( r ) > 0 • 

Accordingtolemmaii a (r) < 0 ,i.e.indecreasing r thedifference a increases. Consequently, a (rO) > a(r) >v 

* 

what contradicts ( 26) . The theorem is proved. 

We go over to the case >.. = >.. ( x , r ) . As it is not difficult to prove, if >.. does not change Its form, 

>.. = >.. 
0 

( x ) · k ( r ) , then theorem VIII remains valid. If >.. changes its form with tiane then neither M c nor, all the 

more, the experiment .'of ~ have any definite asymptotic behaviour at r -+ oo • However, some limits for the information 

q ( r) = q [ ¢ ; M ( r 0 , r ) ] can be established. Consider v = exp I r - 1 q [ ¢ ; :.1 ( r) ] I . Denote by 
c c 

v' I >.. ( x , r ) I the derivative v in the case when !.I = M ~ where M ll is the experiment optimal 

* (with the priming M ( r 0 ) = 0 ) for the given efficiency ).. ( x , r ) . According to lemma II, ___4_ exp I r - 1q (r) I > 
d r c 

2:_ v l>..(x,r )I . Hence 

That is optimal for th e time-Independent c rrJci e ncy A (x) e Qua] to th e tim e -d epende nt e rrt c lency ,\ (x,r) to.ken at a moment r. 

12 



• q c ( T ) > q { ¢ ; u ( T 
0 

) 1 + r rn J v I A (X ' T ) I d T • 
ro 

Majorizing for r 0 < r ' ::: r 
the efficiency A by the prod11ct II ( x) k ( r ) ~ A ( x , r ) we can find the upper 

limit 

q (r) < q{ dJ ;MA(lAI ;r
0

,r T Jl < 

< q [ 9 ; ,1[ ( l ,\ 
~ 

T 

, c J 1 + r rn ( v l ,\ I k (r') d (, 
T 0 

where the constant c is determined from the condition: the difference .U (lll I, c) - :.t (r 0 ) = \ .:!is a positive semi
A 

·definite matrix. In addition, the following qualitative considerations may be stated. 

If the efficiency A depends on time in a manner known beforehand then it is a function increasing with time since during the 

experiment all the changes of equipment are usually made in order to improve its efficiency, rather than to make it worse. In the 

long· time experiment it is usually desirable that an experiment be close to the global· optimal one .~1 ( r 
0

, r ; r ; at A 

whatever moment it is interrupted what is equivalent to the requirement of some uniform optimality, i.e. an optimality with a 

weight u ( r) close to a constant. In this case according to theorem Yll the maximum of the function 

A (x,r) Du (x,r) =A (x , r) D(i/ (x), ¢ ; t)u (t)dt (27) 

is to be taken as a measurement point. In case of stable efficiency the subvariance TJ decreases as r·I ,incaseof 

increasing A , faster yet, and the main contribution to the integral ( 27) is given by the region of close to 

Therefore the functions A D ( f,' , ¢ ; r ) and A D u ( x , r ) must be close in their form and have a s il'lilar 

location of the maximum. Consequently, the continuous local· optimal planning for the efficiency A ( x, r ) nondecreasing with 

time must be close to the uniform· optimal one. 

6. Kiefer' s condition of minimax 

In paper of Kiefer I 11 I published in 1961 it was shown that for .~1 ( r 
0

) 0 the optimality condition 

rr.ax q [ ¢ r.f ( T) ] (a) 

and the condition x) 

min max A ( x ) D [ f/ ( x ) , o ,U ( r ) ] ( (3 ) 
X 

coincide. According to theorem I this means that the maximum of the information obtained results in the worst conditions for 

its further accumulation (lemma II). In the framework of the" global" approach suggested j
121

the degree of generality of the 

last statement remains not quite clear. We show that the wl:ole region of equivalence of the conditions (a) and ( (3 ) is 

described by the following Table 

r = rn r < rn 

0 (a) ( (3 ) (a ) ( (3 ) 

(a ) ((3) (a) f, ((3) 

--- ------------- -------
x) 

ln/121 it was everywhere assumed that A ( x ) = 1 what is unessential, since a tiine ·independent efficiency A 

can be excluded from the consideration by the following redefinition of the functions 17 and f: ry*= ryyA; f*= fyA ; A *=A l A = 1. 

13 -



Thenon-equivalenceof (a) and ({3) for U (r) f 0, r < m isseen&omthefollowingexample : A~l; ¢~ 111 , 

w ~ 112 ; x~x 1 ,x 2 ; r 1 ~ r 0 + 0,01 

(' ,(x, J l,fx,J) (: : ) = 
f1(x2) f 2 (x) M(r 0)~ (: :) 

The version I given below is optimal and the version n ensures the minimum of max A. D ( i/ , ¢ ) 

n t(x1) 

II) t(x1 ) 

0,01 

0 

t(x 2 )~0 
t (X 

2
) ~ 0,01 

" 
q ~ 0,00991 ; max D (1) , ¢ ) ~ 0,971 

" q ~ 0,00184 ; max D (1), ¢ ) ~ 0,956 

" 
Note that in this example D ( rf' ( x 

1 
) , ¢ ) decreases faster if the measurement is made not at x 

1 
but at the other point 

x 
2 

where D ( 'n ( x) , ¢ ) is lower. 

In a particular case when r ~ m such a situation according to ( 10) is impossible, since in this case D ( 21,') ~ 0 and 

I D [ i/ (x ) , ry ( x ) ] I never exceeds the largest of the variances 
1 2 

D [ 1) ( x ) ] , D [ i/ ( x ) ] . Therefore, for 
1 2 

r ~ m the conditions of the local- optimality and the fastest decrease of the maximum of A. ( x ) D [ ·!,' ( x) ] coincide and 

theorem Ill, if we there replace " q " by "minus max A. D ( 1) ) " remains valid, the proof requiring only small 

" 
trivial alterations. Considering then the ine::ualities ( 24), ( 25) it is not difficult to see that for r ~ rr. the conditions (a) 

and ( (3 ) are equivalent globally too. 

In the particular case M ( r 0 ) ~ 0 investigated in;1
2

/ a main cause of coincidence of the conditions (a) and ( (3 ) is 

the equal! ty 

2 ci k t r xk > 2 >.. r x k J n ri/ r x kJ , ¢; r J t r xk J r ' 

which is valid for r ~ 2 t ( ; k ) and due to which min max cj 
" k 

equal to r r- 1 is reached if all cj k coincide 

what according to theorem III Is just a necessary condition of the optimam. 

Thus, the equivalence of the "information" and "minimax" approaches discovered by Kiefer has not quite a universal charac

ter and in the most general case M ( r 0
) f 0 , r I= m, the maximum of information obtained is not leading to the worst condi· 

tion for its further accumulation. 

In conclusion the author expreses his gratitude to A.N. Shiriaev for the help and to Ja.A. Smorodinsky, L.A.Khalfin, L.N. 

Bolshev and Yu. V. Prokhorov for the discussions. 
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