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Abstra ct 

Approximate expressions are derived for calculating the 

increase of energy spread of a ,stacked beam due to the . 
multiple traversal of rf buckets. These expressions are 

evaluated for two initial energy distributions of the 

stacked beam; in one of these cases the results are compared 

with exact numerical ~alculations performed by Swenson, and 

the agreement is shown to be fairly close • . 
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!,,_Introduction 

In fixed field accelerators, it is possible to stack a large 

number of pulses of current. The injected pulses of current are 

captured by an rt field; then either the frequency of the r~'2) 
is modulated, or energy is given to the bunch· by a betatron 

field2' 3), and the energy of the injected beam is increased to a 

final stacking energy. This procedure is repeated as often as 

desired with identical rf ~rogrammes. It is of interest to investi

gate the resulting energy spread of the stacked beam. This problem 

has been treated theoretically by several authors11416). The inve

stigation leads to the solution of a differential equation for the 

energy of the particle as a function of its original parameters. 

This differential equatio~ ma1 be solved as a fUnction of the 

initial energy and phase, with respect to the rf of the particle. 

The repetition rate of the rf cycles is usually many orders of 

magnitude greater thaD the frequency of the rf; hence aD7 phase 

coherence between the starting frequency of the rf and the oircu -

lation frequency of the beam will be lost due t o .t he inherent 

spread of revolution frequency. For this reason, the quantity of 

interest is not the distribution function of particles, but the 

value of this function averaged with respect to all possible initial 
' 

phases. We ma;r therefore define a function P
1
/P:) which is the 

number of particles having energy in the range E, B+ dE after 

the nth cycle of the rf. Lebedev4) has shown that p (E) satisfies 
n 

the integral equation 

' (1) 
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and that under certain assumptions, Eq. (1) can be, solved 

explicitly. In Eq. (1), ~(E) is the energy spread of the beam 

brought up by each cycle of the rf; F(6,E) is the probabiltty 

that a particle originally in the energy range A .A+dE will have 

final energy in the range E,E+dE after one cycle of the rf, 

and exp( •o<J is the loss of particles in one rf cycle due to gas 

scattering. Lebedev solved Eq.(l) for t wo limiting oases, when a 

steady state was achieved, and when n was very large. We will make 

no attempt to discuss further the ·derivation of Eq.(l), but will 

refer to Ref. [4l to justify the equation. 

The actual form of F~,E) depends on the detailed parameters 

of the machine and the rf programme, while i depends on these 

parameters and on the energy spectrum of the inj eoted beam. In the 

particular case that the rf passes through the region of the beam 

and is switched off far away, F may be independent of E in Eq.(l) 
' 

This oa.se will be considered in this paper. The results therefore · 

will have limited validity, through they may serve as a qualitative 

approximation to the behaviour when F also depends on E in Eq.(l). 

The solution of this s~plified problem is of interest in the 

compensation of the effects of radiation in a stacked beam. 

We will find a general solution of Eq.(l) by a method essential

ly the 'same as that used by Lebedevf41. We will then mak~ an empi

rical assumption for the form of F and solve for F explicitly. 
n 

Finally, we will compare our results with exact calculations made .. . 

by Swenson5) on a digital computer. Our results will be shown to ~e 
a goo_d approximation to the exact solution for all n for one 

particular case. 
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, 
g. The General Soluii2£ 

In this section we will solve Eq.(l) exactly for the case 

that F does not depend on E. Our procedure will be to use Fourier 

transform methods, in a way similar to Lebedev4>. The exact forms of 

F, ~ and the original distribution are immaterial for the 

formal solution - though the explicit functi ons a re required . 
for evaluating the resulting expressions. Several limi t ing f orms of 

the solution will be given. 

IfF does not depend onE in Eq.(l), the equation may be 

written 
00 

Pn(E):: exp( - ~) f F(~) P (E-~) d6.~( E ) (2) 
_ 

00 
n-1 

If we now take Fourier transforms, using the relation7) between 

a function x and its Fourier transform 

we obtain 

x(~)-=. 

X(E) .: 

00 

/ 011 

1//2 ~ 11)0 axp( l,lE) X(E) dE 1 
1//27\ J""'axp(-~E1 x(,\) dA) 

-~ 

Pn().) : 1//2-w. J exp( 1.\E) Pn(E) dE 
_qo 

(J) 

~ ~ ~ 

=e .. ;r.-{.:(11.) dll. oi>.t:. i: n-l (E-ll.) e 1.\(E-~dE +I~ E) oL\EdE 

~ fu exp( -o4) f().) Pn- l (,\) -f ~ (A) • ( 4) 
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F(A) = (1/D) ~ expG(A-1J
2

/ ( 2D
2

)] ' (11) 

-
where /}. is the average width of the rf bucket near the sta.ck 

and D is its root-mean-square deviation. Most of the F(A) 

which occur in practice have approximately this form; however 

our main justification is the close fi t between exactly computed 

energy spreads, and ones derived from Eq.(ll). Since F(A) is a 

probability, it must be such that its integral from -oo to ~ 

is unity; Eq.(ll) satisfies this condition. If F(b) has the 

form of Eq.(ll), the g of Eq. ·(5) is given by 

g(~) 2 exp(-01.) exp(-~2D2/2 -4 L~A) • (12) 

For large E, the P resulting from this g(A) may be obtained 
n 

by the WKBG ap~roximation irrespective of F. Let us now consider 

a beam of N particles which originally uniformly occupies the 

region shown in Fig.l. Then F is given by the expression 
0 

P0 (E) 11 N/(2c) , -c~E~c 1 
~ o otherwise ~ • (lJ) 

We wish to find the energy distributions after the passage of n 

empty buckets. In this case p0 (,\) is given from Eqs (J) and (lJ) by 

the relation 

P0 L\) :2 N/ /2i (sin c,.l) /( cA) • 
(14) 

In this case no ~dditional rf buckets are brought up, so that ~ 
is zero, and Eq.(7) becomes 

p <l> ~ (N/r21\) exp(-nO(.- n~2D2/2 + inA) sin cX/Cc.A) 
n 

8 

• ( 15) 



Now the Fourier transform of d:Pn/dE is -iA 

hence 
(1{1 

times that of P 
n 

Qn N ( 
dE = ~l.~p( -no( -1~ -nD

2,X2/2-+ ihn~) (e- 1~c - eUcJ /(21) M 

, 

' 

::: ~~Y§Jf~-noc)[exp-i{E + c + n'A) 2 /(2nD2 ~- exp- {<E- c- n'A>
2 

/(2nD
2 >jJ. { 16) 

Integrating Eq. (16), we obtain . . 
-nac 

~ = ~ 8 
[Ertf(E'tc-n4)/(nDf2)} - Ert[(E-c -ni.)/(nD/2>J} • fl7) 

where Erf(x) is the usual error function of x, (2/f:r) Z exp(-x2) dx 

We may easily verify that the maximum of ;p oocurs at E = nl) t 
n 

and that the value of P there is lf exp( -noO Erf' c/( nnn) • 
.Jl 

Since P 
n 

is symmetric about this point, the average energy also 

changes by n/). • 
Finally, we may easily verify that themean~square-dev1at1on 

D is given by 
n "" . co 

Dn -~ lJ. E2
Pn(E) dE I J:n(E) dE] 

2 2 
c /3 + nD • (18) 

Thtts in this model the mea.n-square-eDrgy spread increases by 

D2 at each repBtition cycle of the rf' • Swenson5) has calcula

ted numerically a particular example of this case for a particu

lar voltage programme, with no losses due to vacuum. The compa

rison of Swenson's exact calculations and our analytic ones 

is given in Fig.2. Goc l agreement is obtained for all n , where 

Lebedev only claimed ·his results valid for large n • 

Using the formulae developed, with the F of Eq.(ll), and 

thus ' the g of Eq.(l2), it is _possible to i nvestigate the effects 
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of the passing buckets on any initial distributiono If the bucket 

stops near or in the stack, F will depend on ~ and E, and the 

theory will no longer be valid • However for large distances 

from the place where the bucket stops, the theory will be again 

approximately true, and we m~ use non-zero f to re~resent the 

particles brought upQ 

As another easily calculable example, let us consider the case 

when 

i:i o, P0 (E) = (N/d) /2/1( exp-(E2/(2d2 )J 
Then in a similar way to the previous example, 

so that 

p :: N/(2dli') exp-t~2d2/2) 
0 ' 

• 

Pn • fN e-n•;~nD-:a.-+ da]/exp-((E-ri6)2/(2nD2-4-2d2)]. 

,-

( 19) 

(20) 

{,21) 

The mean E again shifts by nil . and the m.ean-square-deviation 

is now (d2·-a- nn2 ) • This method may be extended to any 

oth~r initial dist~ibution; for large n the final .distribution 

is almost independent of the initial one. 

I w~sh to acknowledge fruitful discussions with V.I.Kotov 

during .the preparation of this pa~er. 
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Fi~. I . Initial distribution of particles in Phase Space in the 

stacked beam. 
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Yig . 2. Comparison of the Energy Spread in the stacked beam as predicted 

by Eq. (17) with Swenson's exact calculations. The different 

curves refer to the number n of passages of the rf bucket. 

The solid curves are predictions of Eq.(l7), the broken lines 

those obtained by Swenson. 
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