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A b s t r a c t 

The effects of thermal velocity in two dimensional and 

ax ially symmetric beams are evaluated, assuming a l'>1axwellian 

Dis tr i bution of velocities at the cathode. The linear treat

ment is similar to that of Cutler and Hines, but the approac h 

is so~ewhat different. Analytic expressions and curves arc 

given for the current density in terms of the error a.nd modi

fied Bessel Functions; the arguments of these functions are 

the solutions of the usual paraxial equations, neglecting 

thermal effects. Our predictions agree with those of Cutler a nd 

Hines for the case they considered. 

An approximation is given for the non-linear effects of 

the electromagnetic fields; these non-linear effects may be 

due to aberrations in the system,or to changes in the space

charge fields due to the linear effects of thermal velocities. 

As an example, the problem of a beam with a finite transverse 

temperature in a fiel&-free drift space is considered. Analy

tic expressions are given for the current density in such 

a beam. 
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1. Introduction 

The estimation of the effects of thermal velocities i~ 

particle beams has been importa nt since the early work on t he 

cathode ray tubes. In the application of ion beams, where 

acceleration-deceleration systems are being c ons i dered, therma 1 

effects become even more important, and cannot be considered 

independently of· space-charge effects. Pierce l l l has given an 

excellent review of the work up to 1954. Howeve~ his t reatme nt 

is very general,and does not give results or methods of appr L-ch 

for most of the problems encountered in practice. ~ ut l er and 

Hinesl 2 1 first gave a systematic discussion of thermal ve l o

cities in electrostatic round beams with a constan t current 

density at the cathode. Their method can be extended to a 

wide range of problemn , namely to those probl ems wher (! the 

field normal to the tra jectory of the beam var i es linearly 

with distance fr om t he beam centre. All beams for which the 

paraxial assURiptions are val1diJ, 4 , 5 , 6 1 fall into this categor y. 

Thermal effects change the current distribut i on in the beam, 

and thi~ affects the ~~ce-charge forces. Danielson et a l.l7l 

extended and formalised Cutler and Hines• treatment, and allowed 

for the change in space-charge forces by considering their 

effect on a particular "typical" particle. 

In this paper the treatments of Cutler and Hines and 

Danielson et al. are extended in several directions. First, 

we relate their method to the paraxial theories developed in 

Refs J-6. This method is valid even with transverse magnet i c 

~ields, but the effect of the spread in longitudinal velocities 
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is neglected. Both axially symmetric and two dimensional prob-

lems ar~ treated. Expressions are derived for the current den

sity and total current as a function of the transverse posi

tion in the beam. These expressions are compared with those of 

Cutler and Hinesl 2 t, and are· found to be identical for constant 

cathode current density. In sheet beams with deflection focus

ing, or in crossed-field guns, the current density varies linear· 

ly at the cathode. For this reason the case of sheet beams 

with a linear variation of cathode current density is treated 

in detail. Analytic expressions and curves are presented. 

A higher order theory is given which gives a correction 

for the effects of non-paraxial fields, which result from two 

sources. First, aberrations in the applied fields will produce 

non-paraxial forces. Secondly, finite temperature effects will, 

even to the paraxial approximation, change the current distri

bution; this change in current distribution will lead to a 

non-linear component of the space-charge field. The theory 

gives an approximation to the actual current density distribu

tion. This is different to the approach of Danielson et al.l 71, 

who considered a specific "average" particle, and assumed that 

the corrections to this particle were a good approximation to 

the behaviour of the beam as a whole. Usually our higher order 

theory can be only applied numerically. However one particular 

analytic example is given to illustrate the method. This example 

is the computation of the current distribution in a two dimen

sional beam in a field free regio~with initially a constant 

current density and a Maxwellian distribution of transverse 

velocities. The method may of course be applied to more comp-
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lex paraxial conditions and non-linear applied fields. Through

out this paper the MKS system of units is used. Our results 

are valid throughout for relativistic beams. 

II. Paraxial Theory 

1. Introduction a nd Notntion 

In this section we will develop a theory for the s pa t i al 

distribution of current density in axially symmetric and tw o 

dimens ional beams. 'l'he following assumptions are made: 

i ) The current density at the cathode is uniform in one 

direction in two dimensional beams, and is axially symme tric 

in axially symmetric beams. 

ii) The current density at the cathode has a Maxwellian 

dis tr ibution of velocity, and any direction of emtss ion is 

equally possible. 

11i) The effects of longitudinal velocity spread may be 

neglected. 

iv) All electromagnetic transverse forces are linearly 

proportional to distance from some central trajectory C • 
0 

As sumption (iv) is almost, but not quite, the assumption 

which leads to the paraxial theory. In the paraxial theory 

assumption (1v) is made in the beam. In the absence of therma l 

effects this covers all paraxial particles. With fi nite ~rans-

verse temperature, some particles will stray far from the 

centra l tra jectory of the paraxial theory. We wil l assume tha t 

assump tion (iv) holds for all particles. Later, i n the treat

ment of higher order effects, the corrections which may be 
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made for the err or in assumption (iv) are considered. 

The coordinate system is illustrated in Fig. 1 for round 

beams, and Fig. 2 for sheet beams. The theory could equally 

well be applied to hollow beams with curviliPear central 

trajectories C , but these will not be considered in this 
0 

section. In the round beam case the central trajectory is the 

z -axis, and r,9 are the usual cylindrical polar coor

dinates ~ All physical paramete~s of the flow are assumed in

dependent of 6 . The cathode is then assumed to be z : cons

tant. The theory would hold equally well in spherical coordi

nates (r, 9 , ¢ ). In this case if the substitutions 

z -+ r, r ~ re , e ~ ¢ 

are made, the results would apply to spherical cathodes. In 

the sheet beam case of Fig. 2, the beam is infinite in the 

y -direction. The central trajectory of the system is C and 
0 

the cathode is the plane z=constant. This coordinate system 

is thesame as those of Refs J,4. In the rest of this section we 

will discuss the two dimensional oase, but the results hold 

for the round beam by replacing x by r. 

From assumption (iv) it is seen that the electromagnetic 

force has the form xh(z). The relation between h(z) and the 

variation of fields on the actual trajectory C has been diso 
• cussed in Refs. J,4,5,6 and does ~ot concern us here. In this 

case the relativistic Lorentz Force Law can be written in the 

form • 

dp~dt = e h(z) x, dx/dt = Px/m ' ( 1) 

wbere 

fj =(dz/dt)/o = v /c , z 
cr= 11<1 -p 2 )1h , m = m

0 
y. (2) 
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In Eq. (1), Px is the momentum in the x-direction, m,e, the 

mass and charge of the particle; in Eq. (2), vz is thP. axial 

velocity, c the velocity of light, and m
0 

the rest mass of 

the particle. Defi.ning new parameters 

f(z) 

Eq. (1) becomes 

dx/dz = g(z) s , ds/dz = f(z) x • ( 4) 

It is to be noted that in Eq. (J) g,f are stated to be func

tions only of z. This follows from assumptions (iii) ar. d 

(iv), so that it is assumed that all particles at the same 

z have the same axial velocity. It is easily verified that 

if s 1 , x1 and s 2 , x2 are two independent solutions of Eq. 

(4), then the cross-products 

(5) 

(6 ) 

We may therefore define, in th~ :.arne way as SturrockiJt the 

two solutions 

X = all(z) , s = al2(z) and x= a 21(z) ' s = a22(~), (7) 

where the pairs of x, 8 have the values, at z = 0 

all= 1 = a22 ' a12 = 0 = a 21 (8) 

Any solution of Eq. (J) can then be written in the form 

(:) 
= (9) 

' 
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where X '-' t oJ a re the valu~s of (x,s) at z = 0, and, from 

Eqs ( 6)- ( B),the determinant of a 1 J is unity. 

We will not concern ourselves with det.iled expressions 

for a
1

j . They resul t f rom the normal solution of the paraxial 

equa tion with the boundary conditions of Eq . (8). The init ial 

plane z = 0 , may be taken as the cathode or any other plane 
• 

Nhere t he initial x, s are kno~n or assumed . The conclusions 

:: ic h will be drawn are independent of the a c t ua l expr essions 

f or the aij• 

2. Boundary Conditions at the 
I 

Initial Plane 

It is experimentally observed that from an emitting ca

thode or plasma sheath , particles are emit t ed wi th equal pro

bability in all directions according to a Maxwellian distribution 

:J f v ~l oc iti e s. Th :i~ experime ntal fac t , which was assumption 

( iii), leads to the conclusion that t he transverse velocity 

d ls tr1bution is also Maxwellian. In part i cular in the two 

dimens ional beams of Fig.2 the proba bility of having an initial 
' 

transv erse momentum in the x-direc t l on between Px a nd 

p ... 
X 

dp i s P( p ) dx where 
X I X 

1l [1 2 . ] P(p ) = (21(' m k T)-'2 exp - Px /(2 mok 'r) 
X 0 

(10) 

where k is Holtzman's constant, a nci T is the temperature 

in °K of the source. If we define t he parameter ~ by the rela-

t lon A =[ m
0 

c
2 
f(2 k T)J % ' (ll) 

and evaluate the probability of hav i ng transverse coordinate 

3 ' as define d by Eq. (2) , between s and s ·t-ds this proba-

l 

' 

' 

t 

t 

f 

j 

B 

j 

c 

j( 

}. 

v 

j 

jc 

w 

t 

a 



7 

bility is P(s)ds where 

P(s) • (AI~) exp(-~2 s2 ) (12) 

In an axially symmetric ·system, Eq. (12) holds identically 

with P(sx) P(sy) dsx dsy ,replacing P(s)ds. 

If the current density at the cathode varied linearly 

with x, then the current between x and x + dx is 

ic(x/a)dx where 

ic(x/a) = (Ic/(2aj [1 + q (xfaj , (lJ) 

the boundaries of the two dimensional beam are ! a, Ic is 

the total current per unit length in the beam, and q is the 

factor of proportionality. Equation (12) is often satisfied 

in practice, and is always satisfied in paraxial beams from 

a planar cathode. If j(x,s) dx ds is the current density 

in x,s phase space, then from Eqs (12) and (lJ) the value 

of j(x,s ) at the cathode is jc(x,s),where 

At the cathode of axially symmetric beams with current density 

variation ic(r/a), the current density at the point (x,y,sx,sy) 

in four-dimensional phase space is given by 

= 0 

where now sx' sy are the 

the radius of the beam, and 

sx,sy by the formulae 

, 0'- r~a~ 
' { 15) 

otherwise 

x and y components of a , a is 

r,s are related to x, y and 
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r2 = x2+ Y2 2 2 2 
s = s + s X y (16) 

We will usually consider the case of constant current density, 

where i
0 

is constant, but will derive expressions for the ge

neral oase. 

J. The 0 urrent Distribution in Round Solid Beams 

We are now in a position to find the current density in 

(x,s) or (r,s) space- and therefore in ~eal space- in two 

dimensional and axially symmetric beams. Let us first consi

der round beams. 

In Cartesian coordinates with axially symmetric fields, 

it may be verified that the x,y coordinates obey identical 

equations,namely Eq. (1), so that their transformation laws 

are given by Eq. (9). Hence the point (x,y,s ,s ) comes from 
X y 

(X,Y,SX,SY) if, from Eq. (9), 

all X + al2sx c: x '. ally + a125y = Y (17) 

The line elements dsx' dsy, for constant x,y are related 

to dSx dSY by the relations 

dsx • a 21 dX + a 22 dSx = dSx!a11 , dsy = dSyfa11 (18) 

so that the current density i(x,y,z) at (x,y) is given by 

i 

( 
=-



) 

) 

.7) 

L8) 

7 

9 

~ fs Uc (x-al2Sx)/all' (y-al2Sr)/all' sx, s;] dSX dSY • (19) 
X y 

Clearly i(x,y ,z) depends on z through the atj. 'ro cb t a.in 

the current density in an axially symmetric be"m, we m<;.tY tra ns

form into axially symmetric coordinates (r, e ) in real space. 

With the transformation 

x = r cos 8 , y = r sin 9 , 

the differential line elements become 

dX dy dSX dSY c(rr/a12 
2 ) d9 d; dr d ~ • ( 21) 

Substituting Eqs.(l5), (20) and (21) into Eq. (19 ) , Rnd i nte

grating over e to find the tota l current 1
1 
(r , ;.~ ) !ir bet,w<::e.r, 

r and r~ dr, we find that 

d ~.(22) 

Defin i ng now t.he convenie nt paramet ers 
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~ = a allWal2 I '/t: rWal2 • r:: "~/al2 ' 
(2J) 

and us1na thA relationl 2 1 

~
~~ 

exp'a oos u) du : 2~ I
0

(a) , 
' 0 

(24) 

where I
0
(a) is the modified Bessel function of zero order, 

EQ. (22) becomes 

11(r,z) • (411/.i'l f5:<V'.1J ('•xp·i~2 +t2) I0(2l~ df , 
(25) 

where i
0 

was defined in Eq. (15). 

If i
0 

is constant, the i 1 of Eq. (2') is the same 

as ;that obtained by Cutler and Hinesl 2 1 in Eq. (31) of their 

paper. To compare their results with ours, one must use the 

substitution 

tr: 3.,_.:/<-f:!>J • r
8 

:: a11r , X: r8/(/2~ , f/1: r/(~tf) • (26) 

For the oa.se 10 constant, curves are given in Ref. 2. We 

eee that the effect of the current density variation at the 

oathode pute in the extra term io( ~ I X ) in the integral. 

The i 1 (r,m) from Eq. (2') have been evaluated numerically 

in Refs 2 and 7, for constant i
0

• We present curves, however, 
( 
for the constant current density case in a slightly different 

way from the curves of Ref. 2. In Fig. J, the quantity i(r,z)/1 , 
0 

where i
0
(r,z) ie the value of i in the beam in the 

absence of thermal effects, is plotted versus if I X , which 

is (r/ a a11). For highly convergent beams, with X less than 
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unity, these curves are difficult to use. Hence in Fig. 4 we 
2 

plot i(r ,z)/(A 1.
0

) versus '{ • For hollow beam applications, 

the integral is taken from ~I to ~ inste~d of from 0 to 

X where X, and X
2 

are expressions analogous to X with 

the inner and outer cathode radii replacing a. 

Finally it is important in part III to have expressions 

for the total current I(r,z) inside a radius r. Using the 

definitions of Eq. (25) we see that 

:: {o· r{r,z) ) 
(2 7 ) 

Equation (27) has been integrated for the co nstant current den

sity case in Ref. 2. 

We will not evaluate any particular electromagnetic struc

ture as an example of this theory. Suffice to say that it is 

valid, to the linear approximation, for any beam or gun for 

which the paraxial equation is valid. For the higher-order 

corrections, it is necessary to use the methods of part III. 

The theory of this section can easily be applied to hollow 

beams with a linear variation of current density at the cathode. 

In this case the same parameters can be used, but the limits 

of integration, and the functions i(r,z) will be slightly 

changed. It is still possible however, to express these func

tions analytically in terms of the error functions • 
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4. The Current Density ln 'l'wo Dimensional Beams 

The me t hods of the last section can be applied equally 

we ll to the evaltlatlon of the current density and total current 

in stri p beams, Infinite in one direction. Assuming a linear 

variat i on of current density according to Eq. (lJ) at the ini

tial plane , whi ch will usually be taken as the cathode, the 

current densi ty in phase space at this plane is given by 

Eq . (14). Assuming a current density i (x/a) . c at z = 0, we 

may make a computation similar to that of Eqs. (19)-(26), with 

X replacing r. The current density i(x,z) at x may be 

derived by similar transformations namely 
' 

00 CIO 

i(x ,z) = j j(x,G) ds "' j j 0 (X,S) dS/a11 
-CIO -00 

~ 

"'" ~/(.Jj\all ) J ic[cx-al2S)/(alla~ 
-oo 

exp-(As)2 dS 

- [1/(ma11)] J~ i0 (~/X) exp-(~-)1') 2 d~ ' \28) 

-:x 

where now a is the half-width of the beam at the cathode, 

and '{/ ~ are given by Eq. (2J) with X replacing r. 

If we replaced the exponential term by the Dirac Delta F'unction, 

Eq. (28) would give the current density to be expected in the 

absence of thermal effects. For the particular case of a linear 

variation of current density at the cathode, ic(x/a) takes 

the form of Eq. (lJ) and the current density is given by the 
' 

expression 

i 

= '2 

~ 

] 

r 

:1 

c 



:m, 

:~.r 

lJ 

1(x, z ) ;. I /(2~ a n a ) 

X 
where E(x) ) $.exp(-* 

0 
is the usual error function (2/ {7f 

In the low temperature limit, I 'f I, I ~ I ~ oo , the expo

nential terms tend to zero, while the bracket with tl ... e error 

functions gives unity ·inside the original beam, where ljtl/ ~ =~ 

~nd zero outside it. This is the current density in the absence 

of thermal effects. The expression for i(x,z) takes a parti

cularly simple form for constant current density, where q = 0. 

Curves are given in Figs 5 and 6 for i (x' z)/:X • r'or 

highly convergent beams, i.e. for small ~ less than unity, 

the curves of Fig. 6 are more useful. The different curves 

refer to values q = 0, q = 1 of the parameter q, which deter

mines the initial current density variation at the cathode. 

Since i(x,z) is linear in q, the values of i(x,z) fo~ 

different q may be found by linear interpolation between the 

values on the q = 0 curve,and those on the q = 1 curve. 

A quantity which is of value later in part III, i9 the 

total current I (x,z), between the nominal centre of the beam 

and the plane x, at the axial position z. This current is 

given by the relations 



X 

l(x ,z): fo i(x,z) dx 

14 

r 
= s. all 1 i(x,z) ar;x 

0 

- Pcl<2j{t(l-q) F2 Cf'«>- iO+q) 'i2~~)+ q F2(~-f-
+{v(2~}fr1(,.~ - lt\<f-:X> - 2 F 1<~)] ·"o) 

where 1"1 and F2 are liven by the relations 

F,(x) 
.1.. 

F,.,(x) ,_ 

::: hx2 + ~ ) E{x) ;- [x/(2~)]exp{-x2 ) l 
- x E(x) + {1/~) exp(-x2) 5 • (Jl) 

In l"ig. 7, curves are given for I(x,z)/Ic as a function of 

~ for different values of the parameters JC , q. The 

function I(x,z)/I , is the percentage of the total current v 

contained between x = 0 and x : x at the plane z. 

An illustration of the use of this theory is given at the 

end of part III. 
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III. HIGHER ORDER CORRECTIONS 

1. Introduction 

In the last part of the paper, we discussed the effects of linear applied fields ; i.e. paraxial 

fields, on particles which originally had a Gaussian distribution in phase spaoe. The effeots discussed 

in Part II will be called linear effects. In this part will be discussed the perturbat ion i ntroduced 

by slightly non- linear fields. These non- linear fields may come from two factors. First , aberrations 

may cause the applied fields to become non- linear. Secondly the linear thermal effects will r ed ist r i

bute the space- cha r ge, caus ing non- linear space - charge fi elds. In Section 2 we develop the gene

ral non- linear theor y of the motion of particles in phase space. In this theory, the linear 

behaviour is ass umed known. Jn Section J the theor y is a pplied to round a nd stri p beams to evaluate 

the space - charge distribution to the non- linear fields . Finally we consider i n Section .4 a 

particula r example, the spreading of a sheet beam in the absence of applied fi~>lds , but allowing 

fo r non- linear space charge effect s due to a n initially Maxwellian distributi on of tra,, .;verse ve l"-

oities. 

2. The Formalism with Slightly Non-linear Fields. 

In part II the effects of linear fields were discus sed. I n this section we discuss t he pez·tur

bations which a rise in slightly non- linear fields . Let it be assumed that there i s a non- linear 

transverse field £ (x,z) in the x-direction in addition to the linear h( z) . In the axially 

symmetric case the extra field would be £ (r ,z) in th~> r-direction. I n the x,s coord :~tate 

system of Eqs ( J ) and (4 ) , the equations of motion become, for a tw o dimens tnnal beam 

dx/dz : g(z ) s , :' s/d z ~( z) x + F(>:, :~) , 

where f , g,s were defined in Eq.(J) and F is related to E by the expre ssion 

If we write 

where x
0

, s
0 

are the solution of Eq.(J2) with F=O, t.hen sub stitution into Eq .(J2 ) yields the 

re lation 

• 'I' I • ~ 
G )I '· 4J : 

If the perturbation is small, then to first ord er in ~ we may write 

wher e Fx (x
0
,z) is the derivative of F(x

0
,z) with respect to x. By succesive iteration, we find 

that to second order the solution of Eq.(J5) i s 

'!,=so ~ J~ ~0 g (u) du -+ j~ g (u) du s~ [r<v>Io ... F(x') ,vl] d v 

'S =~o-+ $~ (E
0
t( u ) + F(x

0
,uj du + j~ f.( u : l c; J~ ~e;(v) '.i v ... J~r,}'Jxc)ulu•; 

~-
/ 

(J2) 

(JJ) 

(J4) 

(J5) 

(J6 ) 

07) 
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In E'l• (J7) ~0 and ~. are the original value of ~ and ; . If we ~ssumc t hat the 

initial position of a particle in phase space is given by the l1.ne~r theory of part II , so ti•.a.t 

~0 ,~0 are zero, then Eq .(J7) t akes the simple form 

z u 
..~. .... . ~ = Jo g(ui du ~0 r'(x,) ,v) d;• , ~ = J~ F(x) , u ) ,, (J8 ) 

Equation (J8) shows that while the linear theory transforms the region of the beam from Fig .8a t c 

8b, the non- linear theory to this approximation transforms the region into that of Fig.8c. How -

ever, since the perturbation term is only dependent on the position of the particle i n the abs ence 

of non- linear effects x
0 

, the ac tual current density at the point corre sponding to x
0 

is unaltc-· 

red, However, the point corresponding to x is shifted by the ~mount ~ of E~. (J8). The total 
. 0 s 

current between x and ( X+dx) remains fi(x
0
,z '\ dx

0
, while the element of l engt h is (dx

0
+d S ) . 

Therefore the current density i(x,z) at the physical point x
0 

is given by 

i(xo,z) "10 (x0 -t, z )/(l+d!/d>'.0)~ 1 0 (x
0

,:;:) -r -.~ i 0/-:ix 0 - 1::> d~fJx 0 
• 10 (x 0 ,z) - d[10 (x0 ,zl~J/ctx0 (J9) 

where i
0 

is the i of the linear theory. The formulae for I(x,z) are unchanged, though it 

must be remembered that they refer to the current inside (x
0 

+ ~ ). The parameter yY of Eq . (?.J) 

is given by 

'f: xo}./11 12 
(40 ) 

In axially symmetric systems all the results of this section are applicable wl.th r,r
0 

re pln.cing x ,x 

The spread of t1·ansverse momenta is not changed at x by the non-linear perturbation, however , the 

e of eaoh particle is given the extra increment ~ 

e11uivalent to a long lens of strength ( ~F (x
0
,u) 

that the method adopted here is quite different from 

of Eq .(J8) . Thus the non-linear term is 

du) e.t the point corresponding to x
0 

• Wr• 

that used by Danielson et al 7) • They 

:J<J t.C 

considered the non-linear forces experienced by an average particle , and estimated that these 

foroes were a good approximation to the forces experienced by the beam a s a whole. \'le compute, 

to the second approximation in z , the forces experienced at each point in space. Clearly at no 

part of this section is it material whether the problem is two dimensional or axially symrnetr:Lc. 

Such considerations only enter into the computation of F. 

J. The Computation of the Space- Charge Foroes. 

In the previous section a theory was developed based on a non-linear forcing term F(x.~). 

It was stated that this non- linear term was made of two terms; the first term is due to 

aberrations of the system, the second is due to space- charge. The first term can be computed 

by the methods developed by Sturrock J) • This term will not be discussed in this paper, 

We will however give an estimate of the space- charge term F
5

• 

a) li2Und ~~· Let us assume an axially symmetric beam, uniform in the z-direction. It can 

be shown from Green's functions considerations, that the electrostatic radial field 

due to a ~urrent distribution i(r1z) can be given by the expression 

C8 (r, z) : ( i(r,z)/(21\rE
0 

vz} dr 

( 
s 

(41) 

where the axial velocity v~ is assumed constant across the beam,i(r , z) is assumed a slowly 

varying function of z,and €
0 

is the dielectric constant of free space. In the relativistic 

oase the self- magnetic field reduces the force due to the field by ~ 1 s o that the space

charge force F
5 

( r,z) is given using Eqs ( 25) and (JJ) by the expression 

where ..t. 

and I(r, 

from Ref 

I:a the Il 

where 

If the 1 

cathode, 

b) 

axial v• 

Eq,( 41) 

Using t : 

charge 

where • 

and ~ 

relativ 

where 

evaluat 
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Jtul 
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ing x ,x 

, the 

,"'l :1t) t.C 

'• 
no 

~ :lc . 

' ,. 

can 

(41) 

.ic 
,_ 
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(42) 

where A has the value 

(4J) 

and I(r,z) given by Eq.(25). In Eq.(4J) , 

from Ref.9 

)\ is a constant which has the value in MKS units 

\: - -4 
3.82 )I 10 for electro n" 2 

f o r prot o ns } 

(44 ) 
2.08" 10-7 

Ill the non- relativis-tic case, if the beam has voltage V, it is shown in Ref.9 that 

where 
t'or 

" 

ele ctr0nsl 

pro t ons 5 • 
If the rate of change of axial velocity with distance is fast, as at a space- charge- limited 

cathode, then Eq.(41) is not strictly valid. 

(46) 

b) Two- Dimensio~~~· If the beam is two- dimensional, and it is assumed a gain that the 

axial velocity does not vary too rapidly in the z - direction, the expression anal or;ous to 

Eq.(41) for the transverse electric field is 

(47) 

Using the definitions of I(x,z) and F(x,z) of Eqs .(JO) and (JJ), it can be shown tha t the space

charge force Fs ( x,z) is given by 9) 

· F·a(x, z ) : [21 (x,z)'- 1(-oo,z)- I(..,,z~(e/ (2m0 pc
2 

E.0 vz) J 
: (J'l./Icl{j-1 ( 2 I(x, z)- I{- oo,z)- I{.o,zl] • 

where .L\. is given by the expression 

and X is given by Eq.(44), while Ic is the current per unit width of beam. In the non

relativistic oase, 

(48) 

(49) 

(50) 

where 
,, 
A is given by Eq.(46) . The higher order correction due to space- charge may now be 

evaluated by the methods of section 2. 
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To illustrate the method, we will make a computat ion of the space- charge spread ing of a 

sheet beam in a drift region. 

This problem has been trea ted by many authors 2• 7•9). It will be assumed tha t the beam is in a 

region of zero applied field, and that originally the current density is uniform across the ·beam 

with a Maxwellian distribution of velocities, This means that the beam or i ginally occupies the 

region of phase space shown in Fig.6 • Unlike previous authors, we ·will make a non- linear computa

tion which allows for the change of space - charge forces due to the change in current di stribu

tion. The linear behaviour assumes no space- charge spreading, the non- linea r term will include all 

the space- charge effects. It is possible to choose, f or the linear model, the sit1~tion with 

constant space- charge. In order to solve the problem on a digita l computer, th~ s would be the 

best procedure. We intend to give an analytic solution; this is difficult to do if the a11,a12 
of the matrix of Eq.(9) are complicated, 

Let us first consider the linear behaviour. The assumption is made that the beam originally 

has thickness 2a, temperature T, current I, and ratio of energy to rest energy (( , Since 

the equations of motion in the absence of any field are, from Eqs (3 ) and (4) 

clx/dz = s!/r 2_!. cl e/clz : o, 
( 51) 

the all' al2 of Eqs.(7) and (8) are given by 

all : l al2 = z/ Jy2- 1 (52) 

lienee according to the linear theory,using Eq.(l9) 'f, X may be defined by the relations 

• ?(: 8d./z f= xo o(/z, 
(53) 

where x
0 

is the position of the particle according to the linear theory and 

of. = ). Jy- 1 • (54) 

• 
Using Eqs (52) and (53) for a11 , X, 1/ the current density is ob~ained directly from Eq.(28). 

Since it is assumed that the initial current density is constant in real space, q=O in 

Eq.(28), The expression for i
0 

(x
0
,z) then becomes 

1
0 

(x
0

,z) = [x/(2a~ [ i\E( f+J:"> - iE <r-.:x-i) 

Us ing the expression for F
8 

(x
0
,z) of Eq,(48) and for I(x,z) . of Eq,(30) with q=~ it is 

se en that Fs (x
0
,z) is given by the expression 

F
8 

(x
0
,zl :.L\.~ [F2 < I('+'Xl - F2 (~-J:TI 

where 'f·X are given by Eq.(53) and F2 (x) from Eq.(31) by the expression 

F2(x) 
x2 = X E(x) - e- I m. 

(55) 

(56) 

' (57) 

Usi1 

expr1 

The 1 

E(x) 

In te 

where 

and t 

it W( 

for J 

the I 

althc 

The f 

brack 

term 

i(x
0

, 

In Eq 

inter 

ex pan 

the a 



a 

.n a 

the 

computa

:ribu-

1clude all 

.th 

the 

Lnally 

(51) 

(52) 

at ions 

(5J) 

(54) 

I Eq.(28). 

(55) 

(56) 

•(57) 

1~ 

Using the F
5 

of Eq.(56), g (z) of iq.(J) and yY, ~ 
expression for ~ 1 from Eq. (Je), 

of Eq.(5J), we obtaia the 

The right hand side of Eq. (58) can be integrated analytically in te r ms of the error funct :i. on 

!(x) and the exponential inte&r~ Ei~ defined by 

Ei(x) Loo tl-x ;x dx 
X 

In terms of these functions it may be verified that Eq.(58) yields the relation 

where FJ (x) has the form 

( 58) 

( 5~ 1) 

(60 ) 

and the positive sign holds for positive x, the other for negative. Clearly for r;eneral tJ(., ··. , 

it would be necessary to evaluate Eq.(60) -and this does not seem worth th~ trouble. However , 

for large x, the asymptotic expression may be used 

(62) 

the positive sign refering to positive x. Using this expansion, Eq.(60) become s 

(6J) 

although this approximation is not good enough near the e.dge of the beam if oC( x 01: •1ie- ... , 

The first term gives the usual linear behaviour in the absence of thermal effects, since the 

bracket gives x
0 

for x
0 
~ a and a for ~ ~ a , while the second term gives the non- linear 

term due to the thermal velocities ohanging the space- charge distribution. The current density 

i(x
0
,z) may be found from Eq.(J9) namely 

(64 ) 

In Eq. (64.), i 0 
, ~ are given by Eqs .(55) and (60). This problem is of insuffioient practical 

interest to justify calculating i exactly from Sq.(64). However, one may use the asymptotic 

expansions for ~ of Eq.(6J) for large a<(x
0 
:t a)/'l. and a similar one for i(x

0
,z) using 

the asymptotic expansion 

(65) 
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Using these expansions, the current density is given by 

i(x
0

,z) ,. i
0

(x
0

,z) - [rcAz2
/(4a

2il F4(x0 ,z) 

where F4 (x,z) is given by the expression 

F 
4 
(x,z) ~ 1 + [ 2o( x/(VJi z~{ e- Rx-a)Y~ 2 

_ e-[o<(X+a)/~ 2} 

[2 .c a/( liz~ { e-[o<(x-a)/z] 
2 

_ e-[o{(x+a)/~ 2} 

(66) 

•l:xl<aL • 

,IJC\>aJ 
(67) 

The approximation of Eq.(67) is not good for x = a, The i
0 

(x
0
,z) in Eq.(65) has already been 

plotted in Fig.6, the other term is the non- linear perturbation. It seems of little practical 

purpose to evaluate the ~ and i of Eqs.(6J) and (66). This example illustrates the method, 

which can be used for far more complex problems. As even this simple example shows, the analytic 

application of the method will usually be impossible.Bowever the method can be applied numerically 

. without difficulty • It is to be ngted that unlike Danielson~ inclusion of non- linear effect~, 

this application is equally good both inside and outside the beam. Finally, more complicated 

electromagnetic forces, due to aberratmns in the system, can be used for F 

~~~!!.!!!~ 

The author would like to acknowledge the help of the computer department of the 
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Curves show i ng the charac t er of t he c ur rent de:1s ity varia
t :ton :t.n a ~hoet heam , wi t h l inear current de nsity var i a tion at 
the cathode, dispersed by t hermal vel ocit i es . The rat i o of 
maxim um to minimum curre nt density at the cathode is (l+q) / (1-q) . 

a) Consta nt cur rent dens ity , q = o. 
b) linea r current density , q ~. 1. 
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c urves s howing t he char a cter of t he curre nt density varia
tion in a shee t beam dispersed by thermal velocities as in Fig.5. 
These c urvee are 1n more su1t.n ble units f or highly conve rge nt 
beli.U18 . 

a) constant curre nt density, q = 0 . 
b) linear current de nsity, q a 1, 
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Curves s howing t he percent of t he total beam current to 
be found between t he planes x = 0 and x ~ x in a sheet bea m 
dispersed by thermal velocit ies as in Fig. 5. 

a) Consta nt current density, q z o. 
b) linear current density , q = 1. 

:_) 



a 
X 

I< 5 q 56 j X 

..;.:., 

;K 5 < J < 5 < s' x 

lJ 

F 1 g. 8; 

The phase pl ots of points in a &heet beam i n tte (x,s) 
plan~ a) The phase plct~ at the cat hode, b ) The phas e plot at a 
different axial position, according to the line~r thecry. 
c) The phase pl ,· t as i n (b) according to the nor.-linear theory . 
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