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A b s t r a c t 

First the properties of monochromatic relativistic beams in linear beam t1;~nsport 

elements are considered, neglecting space-charge effects. Under the assumptions that tl.(. 

initial beam occupies an elliptical region in phase space, equations are set up for the 

variation of the parameters of the ellipse along the beam transport system. The equations 

are solved for uniform long lenses, point lenses, and drift spaces. It is shown how it is 

possible to obtain an ellipse of minimum area in phase-space, which completely circums-

cribes the region defined by two pairs of apertures. Formulae are developed to determine 

where such apertures should be placed, in order to define an ellipse in the optir ~ ·~· 

I 

Equations are set up for the perturbation of elliptic boundaries in phase-space by 

non-linear fields. Although Liouville's theorem must be satisfied, so that phase-space 

area is conserved, the region occupied by the beam may have an awkward shape which can

not be used in practice. Formulae are derived for estimating the rate of growth of useablb 

phase-space area due to non-linear fields. These formulae are applied to the calculation 

of the perturbation of the boundaries in phase-space due to space-charg~ in shee• a~d 

axially-symmetric beams. The .increase of effective area in phase space due to space

charge is also estimated. Finally, the results are applied to .the estimation of the area 

in phase space which will be occupied by an axially symmetric beam coming out of a linear 

accelerator such as a Van de Graaff generator. The agreement with the experimental results 

is shown to be good. 

I n t r o d u c t i o n 

The properties of linear focusing. elements have been studied by many authors. In 

most cases e.g. Sturrock (1955), a matrix formulation has been used, and individual paz·

ticles are followed through the system. In beam transport systems, however, the single 

particle treatment may be unnecessa'!f"ily cumbersome. In the matrix formulation, a 2 x 2 

matrix is required which has unit determinant. It is usually only the boundary of the 

beam in transverse phase space which is required. This causes a further redundancy in 

the data used in the matrix formulation. For these reasons Hereward (1959) and Walsh 

(1958) have adopted different notations in which only the beam boundary is considered. 
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In an important class of practical problems the boundary is an ellipse in phase space. 

Linear focusing elements have the property that they transform ellipses into other elip

ses. Since areas are preserved in phase-space, the properties of these ellipses can be 

specified by two numbers. Hereward (1959) showed how these two numbers transform in point 

lenses and drift spaces. In part II of this paper we extend Hereward's treatment to derive 

equations for the variation of two parameters related to Hereward•s. We solve those equa

tions for uniform lenses, point lenses, and drift spaces. 

It is another property of linear elements that parallel straight lines transform 

into parallel straight lines. The usual method of determining ellipses in practice is by 
~ 

the use of parallel apertures. In previous analyses, it has been usual to treat problems 

connected with apertures by the matrix technique. This is annoying - particularly if most 

of the analysis is made by techniques analogous to Hereward's. We show here that pairs ~f 

parallel lines oan also be characterized by a pair of numbers. Moreover, it is usual to . 
define an ellipse by two pairs of parallel apertures. We derive expressions for a one to 

one correspondence between the parameters of pairs of apertures and those of the ellipse 

of minimum area which circumscribes the region defined by the apertures. 

In part II of this paper we deal only with linear elements. Unfortunately, not all 

elements of interest have this property. In some cases these elements are non-linear by 
• 

accident, in other cases, for instance with space-charge forces, the non-linearity is 

intrinsic. In part III of this paper we investigate the effects of non-linear fielft~. 

First the general case of a small non-linear perturbation is considered and its effect on 

the boundary in phase SP'ce of the beam is computed. One effect will be that the ellipt -

ical shape will no longer be preserved. Since most beam transport elements are linear, the 

perturbation from the elliptic shape will oause striations in the beam, and thus increase . 
the useable area in phase space. For this reason we consider the ellipse of smallest area 

which will enclose the perturbed boundary, and define this as the effective area in phase 

space. Equations are derived for estimating this increase in effective area. 

Since we wish to consider space-charge-effects, we recall the familiar space-charge

spreading equations derived by many authors, e.g. Harrison (1958). In sheet and exidlly 

symmetric beams, the equations for the edge of the beam do not depend on the charge dis

tribution in phase space. These equations are fundamental to the later development. When 

the space-charge in every plane is distributed uniformly across the beam (with zero trans

verse temperature or area in phase-space), the effect of space-charge is that of a linear 

defocusing lens, and the strength of this lens is given. 

The approximation of zero area in phase space is bad for many applications. A far 

more realistic one is the assumption that the beam occupies uniformly an elliptical area 

4 

! 
J 

\ 

' 

' ; 

l 
i 

1 

a 

t 



e. 
I 

lip-

~int 

1riVI! 

tua-

by 

liDS 

lOSt 

1 of 

·,o 

to 

ISe 

.1 

ly 

I on 
I 

~ -
~he 
I 

rae 

n 

ns· 

ar 

a 

• • 

I 
~ 

1 
1 
I 
i 
I 

' It 
i 
i 
' 

I 
I 

~ 
f 
t 

in phase space. Assuming that the beam originally is so distriouted , the' perturbation 

due to space-charge is computed using the earlier results for non-linear fields. Compar

ison i& made between the predictions of this theory and the zero-temperature one. The 

increase of effective phase-space area due to space-charge is estimated for sheet and 

axially symmetric beams. 

All the work up to this point has assumed a constant energy beam. This has allowed 

the usual (x, x•) coordinates to be used for the phase plane coordinates. The assumption 

is not essential to most of this work, but it greatly simplifies the algebra, and is true 

in many applications. If there are also axial fields, then conjugate coordinates, (x,p.J 

must be used. The space-charge perturbation calculations are extended to the considera

tion of the increase in effective area of phase space in an accelerating field. Estimates 

are given for the emittance (i.~ area in phase space /" ), due to space-charge in 

several numerical examples. The agreement between the theory and the measured emittance 

of a particular -beam is shown to be very close. In the example chosen, that of a pulsed 

1.5Amp.l.5 MeV electron beam from a Vander Graaf generator, the calculated emit.-nce 

was more than ten times the thermal value. However, the measured emittance differed by 

less than 1~ from the calculated value • 

Throughout this paper, space-charge neutralisation effects are neglected. In de 

beams, or pulsed ones with long pulse lengths, these effects may become important. It is 

also assumed that the beam uniformly occupies a region of phase-space; hence finite 

transverse temperatures effects are only approximated. The methods can b::: applier, r·aw
ever, to other phase-space c_onfigurations; the extension of the method to beams with 

_..:;. 

Maxwellian distribution, will be considered in a later paper. 

_ Throughout this paper, MKS units are used unless stated otherwise. 

II. Linear Bear Transport Systems 

In this section we will define a coordinates system to describe the transverse oscil· 

lations of particles in a beam transport system. We will show how, under certain condi

tions, the transverse motion of the particles may be represented by two-component vectoru~ 

one component representing distance from an axis, the other direction of motion of the 

particle. 

A beam transport system will usually consist of a series of lenses, drift 

lengths, and deflectors. If the trajectory S0 of one particle of momentum p
0 

through 

the transport system is known, then this trajectory may define, at each value of the 
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longitudinal coordinate z , an origin of coordinates. A plane may be constructed per-

pendioular to the trajectory, for each z and two perpendicular directions, r and 

y , may be taken in this plane. In statio electromagnetic fields, the trajectory of 

any other particle is then completely described by finding the values of the r and y 

coordinates as a function of z • The notation is illustratedin Fig.I.In order to charao-

terize the motion of the particle, it is necessary to know its transverse position coordi-

nates x y , its transverse momenta in each plane P. pr and the longitudinal 

momentum P. • When one is dealing with axially symmetric systems, it is useful to use 

(r,~J as in Fig. 2, for the transverse coordinates. In this case the variations of 

~ p p~ , and P, are required as a function of z • In most of this paper 

we will treat the x ' y 
~ 

case; however many of the results apply in the ( r , ~ ) sys-

tern, particularly if p¢ is always zero. When the electromagnetic fields do not couple the 

oscillation in the x -plane with those in the y -plane the differential equations.of 

motion for the particles take a particularly simple form. This situation will arise with 

appropriately oriented quadrupales, electrostatic deflectors, simple bending magnets, 

drift spaces, and axial fields. In axially symmetric systems, the motion in the r -plane 

will couple with that in the ~ -plane only if therP is a p~ • If all the fields are 

axially symmetric, and if there is no p~ , then the motion in the r -plane obeys very 

similar equations to that in the x- , y -planes mentioned above. In the problems to be 
~ 

considered in this paper, it will always be assumed that the motions in the two planes are 

uncoupled. We will restrict ourselves to small transverse oscillations, in which ~ trans· 

verse momenta P. , pr , are assumed much smaller than the longitudinal momentum. 
In most of this paper, we will restrict ourselves to focusing elements without ap-

preciable axial fields, so that the total momentum of the particle will remain essentially 

constant. This restriction is not necessary, but it often applies in any case to the kind 

of beam transport system we have in mind and simplifies the equations. When the energy of 

the particles varies, it is necessary to use x , y , P. , pr as the dependent variables; 

when the energy of the particles is constant, one may use, even.for relativistic beams, 

x , y , :r' , y' , where 

x' = dx/dz , y' = dy/dz. (2.1) 

The deviation. ( x , y ) of the particles from the aJQ.s of coordinates 50 is given by 

the equations 

2 2 } d x/dz +l(:r,z) =0 

d
2

A/dz
2 + g(y, z) =0 

(2.2) 

where I and A depend on the details of the beam transport system and the momentum of the 

particle. We will assume that all particles are monochromatic, so that I , g will depend 
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only on the transverse and axial position of the particle. The monochromatic assumption 

is not necessary /e.g. see Kirstein (1962)/, but will be assumed, for simplicity, in this 

report. Equations (2.1) and (2.2) follow directly from the Lorentz Force Law, and the 

assumption that the I - and 1 plane motions are not coupled. It is possible to consider 

the motion of particles in only one plane; the motion in the other plane will obey essen

tially the same equations. Equations (2.2) and (2.J) have beam derived by many authors and 

extensively studied /e.g. Sturrock (1955)/. 

Hereafter we will use the notation • t.o denote differentials with respect to z ; in 

particular the slope of a trajectory, di/dz , will be denoted by x' • If we consider 

three neighbouring particles starting, at z=O , from ( x
0 

, I 1
0 

), ( x
0 

, x'
0 

+ !!. x'
0 

) 

, I~ ), then it is well known they will have positions and slope at the plane 

z of ( I , z') { 1: +Az
1

,X; + l!.x' 
I 

), ( I+ l!.I 2 I'+ ~x•2 ) where 

(2.J) 

Equation (2.4) has been derived from Eq. (2.2) by many authors /e.g. Sturrock (19~5)/. 

If we consider a steady beam of particles passing along the beam transport system, 

then at any particular z , e.g. z 0 , we may consider the transverse motion of every par

ticle in the beam. Each particle will have, at z
0 

, an I , I' , 1 , 1' • If a dot is 

put for the ( :r , I' ) of each particle, at z 0 , the beam may be represented as occupy

ing a region such as that shown in Fig. J. Since the- number of part~.cles in the beams v.e 

will consider is very large, the discrete points may be replaced by a cc~~inuous aistribu-

~n in the ( I I' ) plane as in Fig. 4. It is often implicitly assumed that the densi-

ty of particles is constant over some part of the ( I , z' ) space and zero c..,..qr the rest •• 

This assumption is made in the space-charge calculations of part III· The diagrams of 

Figs ~and 4 are called phase plots, and the region occupied by the beam is called the 

region of phase space occupied by the beam. It is to be noted that such phase plots exist 

in both the I- and 1- directions. The effect of Eq. (2.2) may be regarded as that of trans

forming the phase plot at z0 into some other phase plot at z, • As a result of Eq. (2.4) , 

such a transformation is area conserving. Hence if a distribution of particles is initial

ly uniform inside one region, bounded by a curve~ and zero outside, it will always have 

such a distribution, but the boundary ~ may be transformed, For the study of the pro-

pe~ties of the beam, it is sufttcient to study the motion of the boundary ~ in phase 

space. A useful concept in studying the behaviour of beams is the emittance in phase space, 

This is the area of the space in the phase plane occupied by the beam divided, for later 

convenience, by " • The emittance is, from Eq. (2.4), an invariant of the beam under 

transformations such as Eq. (2.2). However, after a complicated system of lenses, an 
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initial phase plot such as Fig. 5a may be transformed into that of Fig. 5b, in which the 

emittance is the same as that of Fig. 5a. The complicated nature of the phase plot may 

mean that the effective emittance is considerably increased na.mely to the area inside 

" ~, of Fig. 5c, for the purpose of injecting into an accelerator, for example. This no-

tion of effective emittance will be discussed further in part III. 

In a very important class of problems, those with linear focusing elements, the 

electro-magnetic forces are such that they produced transverse forcing terms f(z)x , so 

that Eq. (2.2) becomes 
d 2 x/dz 2 + f(z)x =0. (2.4) 

Equation (2.4) has been derived by many authcrsje.g.Courant and Snyder (1958)/, and the ,.. 
matriX notation based on its solution is usually employed in beam transport system calcu-

lations. Equation (2.5) with always apply, if the particles already satisfy Eq. (2.2), for 

sufficiently small oscillations. In some focusing elements, as for instance quadrupole 

lengths,bending magnets, and drift lengthcs, it is valid even for the relatively large os

cillations of interest. 

We now define two functions a
1 

tions 

and a
2 

satisfying ~:q. (2.5) and the initial condi-

a I<= 1 ' a 1 = 0 
I • and a' :1!:: 0 , (2.5) a 1 

""' 1 , at z ~ 0 . 
2 

~-
where as usual 1denotes differentiation with respect to 

of Eq. (2.J) takes the form 

z • For Eq. (2.4) the invariant 

S'?· 

X I X~ - X :z X~ = COnSt o 1 (2.6) 

where x 1 and "• are any solutions of Eq. (2.4). Hence it follows that 

a a' - a a' :!:: 1 
1 2 2 I (2. 7) 

From the linear form of Eq. (2.5), it may be verified that any solution may be written 

x =- x
0 

a 1 + x~ a 
2 

and x = x0 a; + x'0 a; (2.8) 

Equation (2.8) may be written in the convenient matrix form 

(
x )= (a a ) (x ) "' i (x ) 
x' a:, a~ \x

0

~ x~ 
(2.9) 

where, from Eq. (2.7), the determinant of A is unity. 

Following the notation of Sturrock (1955), the general expression for i may be 

written in the form 
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1(2 .6) 

(2 .7) 

ten 

2.8) 

(2 .9) 

be 

r 

(

COS (6 + 1{1 )/COB 1{1 

- sin 6 I (p cos 1{1) 

psin6lcosl{i) 

COB(~~ o{l) I coBl{i 
(2 .10) . 

All the familiar beam transport elements have matrices where 6 1 p 1 ifi take special 

Yalues. In aDT s~etric element, for example, 1{1 is zero so that 1 becomes 

(2.11) 

The most familiar element is the long lens 1 of strength 1 per metre. For this element 

p- 1 f;.Jt 
(2.12) 

Drift lengths are obtained by putting 

p 1 • 6 
(2.1J) 

0 • 

and point lenses of strength c by letting 

6 .. 0. 6/p .. c. (2 .14.) 

Actually the matrices of Eqs. (2.1J) and (2.14) may be derived from that of Eq. (2.12); 

the first by letting z .. o 1 the second by letting z .. o fz .. c • Thesr me~rices 

haTe been obtained· by several authors, /e.g. Regenstreif (1960)/. If the energy of the --particles were allowed to vary slightly, the of Eq. (2.5) would become energy depende~ 

.It can be shown /o.f. Kirstein (1962) for example/, that the effect of this energy vari~

tion is, to first order, merely to shift the position of the phase plot without changing 

the shape. It is necessary to add an energy dependent vector, independent cf ( x ,z' ),to 

Eq. (2.9). Those problems will not be treated further in this paper, and or...;y monochrom

aticbeams will be considered. 

The matrix notation of Eq. (2.9) is very useful. It reduces the analysis of a compli

cated beam transport system to a series of matrix multiplications. However, it gives more 

information than we need. Four numbers have to be computed at each stage;these number~ are 

not independent, sinoe Eq. (2.7) must be satisfied. Moreover if we are in~erested in the 

whole region of phase space oo~upied by th~ beam, no"t in the motion of individual part.icles 1 

it is more convenient to follow the transformation of the boundary of the beam, l: in 

Fig. 4 1 than to use the matrix notation for the individual particles. A notation which 

will characterize the beam boundary for certain important practical oases is given in the 
next section. 
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The transformation of points in phase space by Eq. (2.5) is, from Eq. (2.9),a linear 

one. Hence two curves, ellipses and parallel straight lines, transform into ot~er ellipses 

and straight lines. These two curves are of considerable practical importance. The phase 

shapes which come out of most practical devices approximate to ellipses. Moreover, the 

acceptance regions of circular accelerators usually require the injection of particles 

occuping an elliptical area in phase space. For this reason, the study of the transforma

tion of ellipses in electromagnetic fields leading to Eq. (2.5) is very important. In prac

tice the phase ellipses are often measured or defined by two pairs of parallel apertures. 
. 4 

A pair of parallel a~ertures is represented by a pair of parallel lines in the phase plane,· 

hence the properties of the transformation of parallel lines are also interesting. In this 

section we will show how ellipses and parallel straight lines can each be characterized.by . 
2 numbers. Actually it requires· J nWitbers to specify an ellipse, howevel!' one, the aN!aJ is 

invariant for transformations such as those of Eq. (2.5 ); for this reason the variation 

of only two numbers is important. The equations governing the parameters will be set up in 

general linear fields, and will be solved for the particular cases of uniform long lenses, 

wi:b their special cases of point lenses and drift lengths. When only point lenses and 

drift lengths are used, Hereward ':<:15<; ) has shown that a related set of numbers transform 

--in a particularly simple manner.The connection between Hereward's parameters and ours is 
given. ) · a Pairs of Parallel Straight Lines. !j:;F' 

The pair of parallel straight lines of Fig. 6 -····:c clearly determined by their inter

cept with the axes ( :t x , o ) , ( o :t Y ) • For reasons of late:L" ooinenience, we will charac· 

terize them by related numbers rr. , n so that the intercepts are (:;: 1ln , o ),( o, :!: 1Im ). 

If one line has originally intercepts ( -11~, o ), 

notation of Eq. (2.9), these points will transform into 

( o, 1 lm
0 

). then using the matrix 

(-1ln
0

, 0) [-(1ln
0
)a

1
, -(1lf!

0
)a'

1
] (2.15) 

( 0 , 1 I m 
0 

) ~ [ ( 1 I m0 ) a 2 , ( 1 I m 
0

) a ~ 1 

The straight line joining the points (-a -a,fn
0

, -a~ ln~0 ) and ( a
2

lm
0

, a~ I m
0 

) has in-

tercepts with the axes ( -1ln,o),( 0,1lm ) where 

m=am+an 
1 0 2 0 

n = a' m + a' n 
1 0 2 0 

We may therefore write 
(:) = ; ( ::) • (2.16) 
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where i is the matrix of Eq. (2. 9). It should be stressed that there is a difference 

between Eqs (2.9) and (2.16), in spite of their apparent identity. Equation (2.9) des

cribes the transformation of an arbitary point ( x
0 

, x~ ), while Eq. (J.l6) describes 

that of a pair of parallel lines characterized by intercepts (-1/n,o), (.o,1/m) and (1/n,o) 

(o,- 1/m ). The fact that it is possible to characterize a line in this way is later 

shown to be imporiant in the positioning of apertures to determine a specific ellipse in 

an optimum manner. 

b)Ellipses. The ellipse of Fig.7 has parametric representation 

sin (} x' ,;, v' E I p (cos(} + qsin (}) (2 .17) 

where E , p , q can be related to the dimensions a , b , c , d , e , ; however these 

relations do not concern us at this point. Since the area "E of the ellipse is inva-

riant through the beam transport system, the changes in p and q characterize the elli~~ 

By consid~ring the equation of the ellipse of Eq. (2.15) in the form 

(X, X> ) 

~') ( :.) = 0 . 
(2 .18) 

~ 

' and transforming x , x • by the matrix A of Eq. (2.10), it is easy to see that ( Po ' qo / 

will transform into ( p , q) by the transformation laws 

p = I ..f...!_::~ p 2 sin 2 ¢ + p 
0 

cos 2 ( ¢ - .;; ) · + 2 q
0 

sin ¢ cos ( ¢ - 1/J ) I 
Po 

q - I 1 + qo
2 

P - ----"- p cos ( ¢> + 1/J ) sin (} - _:_Q sin ¢ cos ( ¢ - .p ) + 
Po P 

+ q
0 

[ cos ( ¢ + ¢ ) cos ( ¢ - ¢ ) - sin 2 ¢ ] I I cos 2 ¢ 

• (2.19) 

This transformation is still very complicated. For the uniform J ens, where p = 1/v 1, ¢ = \ 1 z , 

.;, = o , the expressions for p , q are much simpler, namely 

P = [ ( 1 + q: + Po J 
I p

0 
I p 

0 
v' I 

..!.....;:__~ cos (2vT z ) + _S, sin (2,1 I z J]J 
q = [ ( ~ - , 1 I p

0
) sin (2 , 1 I z) + q

0 
cos ( 2v' I z ) 

\ I P 
0 

(2 .20) 

For the particular case of a point lens of strength c , Rq. (2 .20) giv.es, taking t:te 

limit in the usual way of z ~ o, lz ~ c , 
(2.21) 
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while for a drift length z 

p= p + 2q z +(1+q
2
)z

2
lp} 0 0 0 0 

q = q 
0 

+ ( 1 + qQ
2 

) z I p 0 

(2.22) 

Using the notation of Fig. 7, (which should not be confused· with that used elsewh~ 

in this paper) Hereward (1959) defined the quantities 

G: bla = 1IP , 13=- cia=- qlp } (2.2J) 

R= eld=pl(1+q 2 ), X=fld=pql(1+q
2

} 

so tha.t A 
(2.24) G+i13=1I(R+iX), 

where 
is the usual square root of -1. From Eqs. (2.21) - (2.2J), we see that for a 

drift length z (2.25) 
R = R 

0 
, X = X

0 
+ z , 

while for a point lens, strength c 
(2.26) 

G = G
0 

, 13 = 13 0 + C • 

Thus we see that when the system contains only drift lengths and point lenses, the trans

formations using ( R , x ) and ( G , 8) are particularly simple. Montague (1960) has 

built an interesting analogue based on these ideas. When the transport system inclu~s mora 

complicated elements, however, the ( p , q. ) notation is more useful. 

When the matrix 1 for the transformation is known, Eq. (2.19) gives the genlrral solu

tion for the parameters of the transformed ellipse. When they are not known, and have to 

be determined, it is often as easy to solve the equations for ( p , q ) directly from the 

equations of motion as to solve first for i and then determine p , q • 

The equations of motion are, from Eqs. (2.1) and (2.5), 
(2.27) 

dxldz = x' dx 1 I dz = - f ( z) X • 

Substitution of Eq. (2.17) into Eq. (2.27) yields the differential e~uations for p , q , o 

p' = 2q p O' = 1 , q' = pf + ( 1 + q 
2

) I p 
(2.28) 

It is easilv verified that the_ p and q of Eq. (2.20) satisfy Eq. (2.28) with constant t 

Finally, we will require in part III the variat~n of a function given parameterically 

in terms of o and z • If F (O, z) is such a function, then from Eq. (2 .28) we see that 

dF 

dz 
!__E 
P ao 

(2 .29) 
+ aF a;-
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3. The Identification of Pairs of Apertures with their Optimum 

Circumscribed Ellipse 

A pair of apertures, summetrically placed about the centre, at a specified axial 

distance z , is represented in the phase plane by the pair of vertical lines AA' of 

Fig. Sa. From the discussion of the previous section, the lines AA' will transform, at a 

different axial plane z , into another pair of parallel lines characterised by (m,n) as 

shown in Fig. 8b. The transformations laws for (m,n) have been derived in Eq. (2.16). In 

the design of beam transport systems, it is convenient to define an ellipse as well as 

possible by two pairs of apertures. For our purposes, a parallelogram defines an ellipse 

·as well as possible if no-part of it lies outside the ellipse, and the ratio of its orea 

to that of the ellipse is as la~e as possible. Such a parallelogram will clearly be in -

scribed in the ellipse, and we will show that the ratio of its area to that of the ellipse 

is 2 /" • For the purposes of this discuss1~L , we will consid~r only para~lelograms 

of the type shown in Fig. 9, i.e. we will consider the situation only at the pl~ne of the 

apertures. Under these conditions there is a particularly simple relation between the num

bers defining the apertures, and the parameters of the ellipse. I;! ore over, if we restrict 

ourselves to parallelograms with one pair of sides vertical, there is a one to one rela

tion between the two pairs of apertures and the ellipse. 

At the axial position of one of the pairs of apertures,thesP apertures will be repre

sented in the phase plane by a pair of vertical lines with width 2a 1 the gap b~tw~~~ the 

apertures. The other pair of apertures are represented by a pair of parallel lines with -parameters (m,n). This is illustrated in Fig. 9. The vertices of the parallelogram are the 

points P1 where P, are the points 

P
1

•, ~~[a, (an_± 1)/m], P
4 

,P
1 

=[-a, (-an± 1)/m]. (2.30) 

Any ellipse may be expressed in the form 

x = ...rrP sinO, y = yE/p (cosO+ qsinO). (2.31) 

If this ellipse passes through the vertices P 1 of Eq. (2 .30) then 

yEp sin 0 = a and 1/m = y E/p cos 0 
(2 .32) 

so that 
p/m

2 + a 2/p =E. (2.JJ) 

This ellipse has minimum area E 1J 
p = m a) (2.34) 

in which case, from Eqs. (2.30),(2.31) and (2.33), 

E = 2a/m and q = na 
(2.35) 
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Conversely, given p , q , E , there exist a unique a , m , n which may be obtained from 

Eqs. (2 • .34) and (2.)5), namelT 
a~ vEfiT2 , rn ~ y2p/E , n ~ qv'2l(pE) (2.)6) 

Them , n , a may be related to the E , G , n of Hereward's notation by means of Eq. (2.2)'. 

Having de~ermined the values of ( m , n ) required to best define a given 'ellipse, it 

is a relatively straightforward matter to determine where the other apertures must be 

placed. Since (m,n.l transform by Eq. (2.16), and since at the plane of the aperture m ~ o, 

the aperture must be placed at a plane where 
(2 .J7) 

aumo + al2no=O. 

In Eq. (2,J7), m
0

, n
0 

are the solutions of Eq. (2.J6) for a particular ellipse, and i , 
with components a,

1 
,is the transfer matrix to some new,.axial plane where we wis.h to place 

the second aperture pair. The required half-width of the aperture will then, from Eq.(2.~~ 

be \ 1/n! , where 
(2. J8) . 

n = 8 21rr.o + 8 22 no 

''' will give a practical example of the procedure. Let us suppose that we have determined 

the m
0 

, n
0 

, a required to define a given ellipse, and wish to position the second aper-

ture after a drift length 1,
1 

, lens c , and drift length L 2 as in Fig. 10. The transfer 

matrix of this system is, from repeated use of Eqs. (2.11), (2.1J), and (2.14), 

1~(1 L2)(1 0)(1 L1 ) 

0 1 \-C 1 0 1 

(
1 - L 2 C T 1 + L 2 - T" 1 L 2 C ) 

- c 1 - L 1 C 

--
(2 • .39) ~~-

t"rorn Eqs (2 • .37) and (2.)9), the lens strength c must be given by 

C ~ 1 I L 
2 

+ n 
0 

I ( m 0 + n 0 !, 1 ) , 
(2.40) 

and the gap \ 2n ~ 
(2.41) 

by 

i 1 In I ~ '" 2 I I"' o + no L ,I. 
By a similar techn1que th~ author has shown elsenwhere1Kirstein (1962)/, how apertures may 

be located in the x a.nd y planes simultaneously. 

The use of the methods sketched in this part both considerably reduce the work of 

computing beam transport systems, and also lay a groundwork for the non-linear theory of 

the next part. 

III. The Effect of Slightly Non-Linear Fields such as 

Space-Charge 

I n t r o d u c t i o n 
In the second part of this paper, we have investigated the effect of linear electro-
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magnetic fields on a distribution of particles which originally lie inside an ellipse in 

phase space. It has been established that the particles will be always bounded by an 

ellipse whose area will remain constant, though its other parameters will vary. The equa

tions specifying the parameters were set up, and solved for some speoial cases. In this pa~ 

we will discuss the initial departure fromthe elliptical boundary oaused by the introduc-

tion of non-linear fields. The general formalism is presented in section 2. This formalism 

can be applied to the effect of nonlinear fields on initial distributions which are not 

quite elliptical, but the solution of this problem will not be discussed. In the last part; 

we showed that in general electromagnetic field the density in phase space is preserved • 

Hence whatever the fields, the area in phase space occupied by the beam will be constant. 

The useable part of this area, which we may call the effective emittance, may be consi

derably larger '(as illustrated earlier in Fig. 5). For this reason we define the effective 

emittance as·the emittance of the smallest ellipse which completely surrounds the region 

occupied by the beam. Expressions are also derived in section 2 for the effective emittaooe. 

of a beam. 

In section J, we recall the familiar results of beam-spreading due to space-charge, 

in a strip and round beam. The equations are always valid for the edge particles, but 

those for particles inside the beam assume a uniform space-charge distribution and a zero 

transverse temperature (in which the beam occupies a straight line in phase space). The 

results of this section, although in no way or1g1na1 1 are required for the.finite emittance 

treatment of section 4. There the effects of space-charge on strip and round beams are 

• co~dered. In this treatment, it is assumed that the beam is.originally uniformly distri

buted in phase-space inside an ellipse. 

AlL the treatment of the last part and most of this part is restricted to beams ·with 

constant energy. However most of the results apply e~ually well in accelerating systems. 

providing ( x , P. ) are used as phase-space coordinates instead of ( x , x ') - where P. 

is the transverse momentum of the particle. In section 5,we discuss the increase of effec

tive emittance of particles in a round beam in an accelerating field. Formulae are de

veloped for this increase in an accelerator, and some numerical examples are given. 

In the last part of this pa~r, we discussed the effect of linear applied fields. A 

pa~ametric description of an elliptic boundary was given, and the equations for the varia

tion of the parameters in phase-space were derived. In this section, we will use the same 

parametric description of the boundary, and will show the perturbations which art~e if non, 

15 



linear fields are superimposed. The assumption is made that the perturbations are small. 

In part II we discussed the general equation for the motion of a particle 

d 2 x/dz 2 + f(x,z) ~ 0' 
(2.2) 

and then concentrated on its special form 

d 2 x / d z2 + I ( z) x ~ 0 • 
(2.4) 

In this section we will discuss the general·isation of Eq. (2.4) in the form 
(J.l) 

d 2 x /dz 2 + l(z)x ~ A(x,z) 

where A is small. The general motion of a point in the phase plane is then given not by 

Eq. (2.27), but by the pair of equations 
dx/dz ~ x 1 , dx'/dz ~ 1\.(x,z) --JJz)- f(z)x. 

(J.2). 

Now we assume that the non-linear term A is small. In this case for A ( ?' , z ) we may 

write /1. ( x
0

, z ) , where x
0 

is the value that x would have at this point if /1. were zero. 

Using the parametric representation of Eq. (2.17), a point on the boundary will now have 

the form 
x ~ v'EP ( sin II + .(;) x' ~ v E I p (cos II + q sin II + (J , (J.J) 

while the equations of motion of the boundary will become, from Eq. (J.2) 
(J.4) 

dz/dx ~ x' , dx'/dz ~ 1\.(.[F:P sinl!,z)-f(z)[Ep sinli. 

The p , q , o in Eqs. (J.J) and (J.4) will still obey Eq. (2.28); in particular I! will --
still satisfy the equation 

J.J.5) dl!/dz~J/p. 

By successive approximations, it may be verified that the solution of Eq. (J.4) is given 

by Eq. (J.J), where .; , ( have the form 

.; ~ .(;
0 

+ (
0 

z + J ( J II. dz) dz 

( ~ ( + J [ 11. '! z (o /1. I a I! J (a I! I dz J l dz l , 
0 

which may be written, using Eq. (J.5), 

.f: ~ .f:
0 

+ ( 0 z + J(Jll.dz)dz } 

( ~ (
0 

+ f[ll.- (z/p) oA /oil] dz 

In the applications of this paper A has the simple form 

II. ~ Z(z) I'I(IJ). 

If A has the form of Eq. (3.8), we may define three quantities 

tions 

} 

a 
1 

a, J Z(z
1

) dz 1 , a 2 
fa

1
dz

1
, a 3 ~Jz 1 Z(z 1 )dz 1 • 
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lll. ' 
! .2) 

2.4) 

(J,l) 

by 

).2). 

re may 

·e zero, 

bave 

),J) 

J,4) 

will 

,J.5) 

I given 

J,6) 

• a) 

e rela-

J.9) 

Tt is to be noted that u
1 

is of first order in z '·while u, and u, are of secona 

order. Using the u, of Eq. (J.9), Eq. (J.7) may be written in the form 

,; = ,;
0 

+ (
0 

z + u
2 
~ , ( = (

0 
+ u

1 
A - u3 dFI /dO • (J.lO) 

The solution for .; 
1 

( is correct to the second ord~r in the perturbation. In Eq.(J.lO), 

the ,;
0 

, (

0 

terms represent the original deviation of the.boundary curve from the ellip-

tical; the z , u, terms represent the first order corrections; and finally the u, , a, 

terms give the second order corrections. 

In the special case that the original boundary curve is perfectly elliptici.t.l, tile 

zero order terms vanish, so that 

.;.=(.=0. 
(J.ll) 

In this case the perturbed boundary has the form 

x = v'fP ( sinO+ t7 2 A) } 

X I = \1 E I p (cos 0 + q sin e ) + u 1 A - u 3d A .
1 

dO 
(J.l2) 

Equation (J,l2) may be put in a compact form by writing 

•<.,(zJ = u,frq/f.7vJ 
(J,lJ) 

and 
(J.l4) 

to give 
(J.l5) 

Equation (J,l5) arises from Eq. (J,l2) by using the fact that 
depends onl; en x and 

z and therefore sin 0 z • We know, therefore 

e ( o J = fl ( rr - o ; , d e ( e ; I do = - d e ( rr - o; I d 17 • 
(J,J6) 

Equation (J.l4) allows a simple interpretation of the more important featu=es of the boun

dary. The current density at any point, assuming constant density in phase space, if> gi-

ven by 2of; 
, while the mean value of the slope x' is given by _\ • To first order y 

is constant and A varies • 

We may easily verify that the total area A in phase space is conserved by the rep

resentation of Eq. (J,15) up t~ the second order. The area is given by 

rr/2 
A = J 2y dx , 

-rr/2 

and using E~s ~J.lJ) and (J.14), this becomes 

17 
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rrh 
A~ f 2E(cosO+K

2
d9/dO)(cosO-K 3 d8/d0)dO. 

-rrh 
(:317) 

Now to second order 1n z , 1(
2 
~rc,, so that to this order the area is conserved as expected. 

Actually we know that this area is conserved to any degree of approximation. · 

Although the total area occupied by the beam in phase space is conserved, its useful 

area may well increase. Even if some of the elements of the transport system, such as 

space-charge, are non-linear, most will be linear. Linear forces preserve ellipses in pr~e 

space, and will probably unless extraordinary care is taken irretrievably intertwine the 

non-linear boundary into a larger linear one. For this reason we define the Effective 

Area of the beam in phase space, as the smallest ellipse completely surrounding the curve ----- ~ . 

of Eq. (J,l5). We will now derive expression for the growth of effective phase space area 

for small K, • 

The ellipse given parametrically by the curve 

X ~ yr;P; sin 0 
1 

, X'= yr:;TP, (cos0
1

+ qsin01 ), 
(:3.18) 

will completely surround that of Eq. (J.l5) if at the same value of x 
, given by 

..jE
1

p
1 

sin0
1 

= JEP(sinO + K 2 f') , 
(J.l9) 

the ordinates satify the inequalities ... 
x'(O) ~ x' (0) , X'(rr-0) -:. x'(rr- 0), -rri2-:.0'5_rr/2 

(:3.20) 

Comparing Eq~ (J,l5) and (J,l8), we see that Eq. (J,20) is equivalent to 
~·· 

cos 0 + q sin 0 > v E p l(E p ) ( /';. + t/J ) } 
J 1 1 J J 

cos 0 
1 

- q 
1 

sin 0
1 

> v E p 
1 

/ ( E 
1 

p ) ( /';. - t/1 ) 

(J.21) 

Writing now • 
F,=E(1+oEJ, p

1
=p(1+opJ, q 1 =q(1+oq'J, (3.22) 

and remembering that oE , op 1 oq 
'<

1 
, K 

2 
, K

3 
are small so that quadratic terms 

in these may be neglected, Eqs. (J.l4) (J.l9) 1 (J,20) and (J,21) yield 

sin 0
1 

= ( 1 - 'hoE - Y, 8 p) sin 0 + K 2 8 
(J.2J) 

and 

2 2 ~ [ cos 0 + ( o p + 8 E ) sin 0 - 2 K 
2 

8 ] - [ 1 - Y, 8 E + Y, o p ] cos 0 - (3.24) 

- K
3
dS/d0 ~ lqi·IIC 1 9-8qsin91. 
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).21) 

(J,22) 

terms 

.2J) 

.24) 

lt may be shown that Eqs. (J.2J) and ().24) can only be satisfied with oE 0 if 

A "" sin 0 , (J.25) 

which is equivalent to having no non-linearities in the system. For any other K
1 

, 8 

it can be shown that t\.E is always greater than zero, showing that the effective emit-

tance, which is E, is increased. The minimum value of (EoEJ satisfying Eqs (J.2J) and 

(J.24) is the increas.e of the emittance. To f·irst order we may neglect K 1 
and K

3 
this 

approximation wilJ: greatly simplify Eq. (3.24) and will alwc>.ys be used in this paper. 

Specific examples of this formalism will be given in sections 4 and 5. 

In this section we will recall the familiar equations for the. spreading of infinite 

strip beams and axially symmetric ones. These equations have been derived by many authors, 

e.g. Harrison (1958). The equations are correct for the particles at the edge of the beam, 

irrespective of the distr~bution of the particles in phase space. However for the partic

les inside the beam, their distribution in real space becomes important, and this will be 

assumed always u~iform; this assumption implies that the beam ~ies on a straight line in 

phase space. In as much as the original distribution occ.upies a finite area in phase space, 

the predictions of this theory will be in error and those of the next mu~t be used. 

a) Sheet Beam. We will first assume that the space-charge distribution in the y and 

z -directions is infinite and uniform, though it may vary in the x -direction (all in 

physical space). In this case the electric field due to a planar change Q per m 1 at 

"o is given by ( II s , o , o ) where 

f s (J.26) 

where ' 0 is the dielectric constant of free space. For a sheet beam of thickness 2 a , 

width in the y -direction b , axial-velocity v (assumed constant through the beam), a11d 

current density i(xJ &. is given by 

(J.27) . . 
lis(x)~ -[ f iy

1
- f idx

1
]/(2<

0
v). • 

Moreover the current density i is related to the total current by the relation 

1 I b f i dx . (J.28) 

For the edge particle, at x = a , Eq. (J,27) becomes 
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8 

(a) = - 1 I (2 •o v b) . (J.29) 

Writing in the usual way 
2 -~-~ 

v = f3 c , y a ( 1 - f3 ) , m = m
0 

y , (J.JO) 

where m• is the rest mass of the particle and e its charge, the relativistic Lorentz 

Force Law may be written 

(mf3 2 c 2) d 2 xldz 2 ~ (1- {3
2

) e &8 + ef.F, (J.Jl) 

where f is the applied electric field; this equation may be written in the form , 

d
2
x/dz

2 
= f. 8 l[(m0 c 2le) {3 2 y 3 ]+ f.FI[(m 0 c 2le)f3 2 y] ... 

(J.J2) 

For the edge particle, at x = a , Eq. (J.22) may be written 

d 2aldz 2 = /1 0 + F(a, z), (J.JJ) 

where 

F(x,z) = &
1 

(x,zJ/[(m
0

c 2/e){J 2 y] (J.J4) 

and Ao is given, using Eqs. (J.29) and (J.J2), by 

A 0 = - (1 I b J I [ 2 • 0 c (o111 0 c 2 I e J y 3 f3 3
] • (J.J5) 

' \._ 

l"' 

~ 

i 

\ 

' ' 
\ 
1 
f 

is positive for all particles if we take the magnitude of the current for-~; using \~ 
Eq. (J.JO) !1 0 may be written in the form, so_ · 

flo 

' .;, ( 6) ~-
Ao·A(l/b)/(y2-1)- J.J 

where >. has the value, in MKS units, 

For non-relativistic beams, 

).. • 3.82 X 10- 4 

-1 
= 2,08 X 10 

for el eclrons 

for protons 

y 2 - 1 2 v If. ' 

}· (J.J7) 

(J.J8) 

where v is the voltage and f 0 -the rest energy of the particle, so that Eq.(J.J6) takes 

the form 
11 0 =(A'IbJ(l/V 3h), 

where A' has the numerical values 

• 
hI • 4. 78 X 10 4 

• = 2.05 X 10 

for electrons} 
for protons 

(J.J9) 

(.3.40) 

Equations (J.JJ)-(J.40) have been derived by Harrison (1958) and others, though it has 

usually b@en solved with zero applied field & 
F • The detailed solution of the equa-
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• 
J,JO) 

Lorentz 

(.3 • .31) 

form 

(.3,J2) 

(J,JJ) 

(J,J4) 

(J.J5) 

I; using 

i (J,J6) 

I 

! 

~J,J7) 

(J,J8) 
I 6) takes I 

f (J,J9) 
I 

(J.40) 

t has 

e equa-

tiona, or the range of applicability do not conce:rn u::; at this point. We will return to 

these equations in the next section. 

While the equation for the motion of the edge particle does not deper.G on the distri-

bution of across the beam, this aistribution does affect the motion of particles 

inside the beam. If, and only if, we assume that the current distribution is unfcrm across 

the beam, so that 05 
varies linearly, the e~uation for any particle becomes 

(J.41) 

where again a is the width of the beaw. The effect of space charge is therefore tr.e 3d.;ne 

as that of a uniform defocusing lens of strength \ 0 /" 

uniform, the effect of space charge is non-linear in x 

methods of section 2. 

per metre. If i(x) is not 

and can only be estimated by the 

b) The Circular Beam. In this case we will assume an axially sym:netric team, uni-

form in the z -direction. The electric field at due to a rin~ of charge (, at r 
0 

is then ( f 5 J o 1 o ) in cylindrical polar coordinates, where 

f 
5

(r) = - ( / ( 2" r 'o} 
(J.A2) 

= 0 

Using the same procedure as in paragraph (a) 1 the field at r due to a current d~_st:""ii.n;.-

tion i (r) in the region 0 ~ r < a is given by 

t 

0 
5 

( r) = ( f i dr 1 ) / ( 2 " u 0 v.) (J.4J) 

For the edge particle, Eq,(2.JB) gives 

f. 
5 

(a) = 1 I ( )TT<o v.a) (J.44) 

The exact procedure of paragraph (a) may therefore be followed for the edge particle, with 

( "a ) replacing b • This means that Eq, (.'3.JJ) is satisfied again out that now inste~d 

of Eq. (J. J6) 1 A 0 
takes the form, 

' 
- sl 2 

A 0 ~ A [ 1 I TTB ) J (y 2 
- 1 ) . 

(3.45) 

Equation (J.JJ) with this fo.rm for A0 has been derived by Harrison (1958) and. :1olv~d fer 

F ~o. We will not repeat this solution. 

Again Eq. (J,JJ) is independent of the distribution of across the beam, wlli:ti ,ae 

motion of particles inside th~beam does depend on 

density is constant in the beam, so that 

i(r) ~ r , 

If we assume that the cu.rrent 

then the motion of particles inside the beam may be again expressed by Eq. (J,41) 1 witn r 
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replacing " and A• ~1ven by Eq. (J.45). The effect of space-charge is therefore that of 

a uniform lens of s'trength A.(ll11)(y 2
- 1)-

11'!a 2 per metre, where >.. is a universal cons

tant. The variation of lens strength with .-'will prove to be of great importance in 

tet1mat1ng the increase of effective emittance in the ( r ' r' ) space. 

4. The Finite Temperature Space-charge 

Spreading Theory 

In the previous section, we developed the equations of space-charge spreading of a 
I 
l 

1, 

beam under the assumptions that the beam originally occupied a straight line in phase s~ 

The equations for the edge particles, however, were independent of the distribution of par• \ 

ticles in phase space. In this section, we will ext~ the theoryto thecase where the beam -

originally occupies an e1liptic region in phase space. This assumption is approximately 

~atisfied in practical beams. In cylindrical beams, this assumption requires the conven

t:1 Oll that the point ( -r 1 .-r') in phaOP space is identical to the point ( r 1 r' ) 1 With the 

appropriate s1mplifioation of certain formulae. We will use the non-linear theory de

veloped in sectioA 2, and discuss the d~f!erences which occur between the predictions of 

thie theory ahd those of section J. 

a) Sheet Beam Case. The general expression for the motion of a partiole1 w1th coordi· 

nates ( " , "' ) in phase space~ under the influence of slightly non-linear fields has been --R1V~n in ~q. (J.2). I! the non-linear fields arise only from space oharee, the value of 

,\ a.t the point " - • is given by Eq. (J.J6). The A at other points IIJ8.l be obtained, 

i'rom Eqs (J.22), (J.J2.) and (J.JJ) in the form 

. . 
A • b A0 [ f i dJC1 - f i d" 1 l I 1 • 

(J.47) 

Nl?l will assume that the applied field is linear, so that F has the ·form 

F • - f (l<) " • (J.48) 

·.;tth the F and A of Eqs (J.47) and (J.4B), the equations of motion a:re given by . 
C:-}t (J,2). 

We will assume a oonatant distribution of current insid.o an elliptical area defined 

~r. t.ne u~~al w~ in the pa~ametrio form 

" • \1 E p ain 8 , " 1 
• v E I p ( ~• 8 + q •in 8 ) • 

(J.49) 

'1')1113 ia the rcJ'DI et boundary assumed in Part II, and the equations for P , q were derived 

1p Eq. (2.26), while E is constant. The current density, assuming a uniform distribution 
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of current inside the curve of Eq. (J.49) is given by 

i dz e 2 E cos 
2 

8 d 8 , (J.50) 

so that, using Eqs. (J.28) and (J.46), 

.\ ( 8 , z J = A 
0 

( z J [ ( 2 8 + sin 2 8 J I, l , - " I 2 ::: 8 ::: " I 2 , (J.51) 

while again, since A can only depend on x , z 

A [8, z l e A [" - 0, z l , "12 ~ 8 < 3 "I 2 
(J. 52) 

Ttese expressions for A are in the form of Eq. (J.B) so that we may directly use the for

malism developed in section 2. Without space charge, the motion of the boundary is c;iven 

directly by Eq. (2 .28). Since ,\ is in the form of Eq. (J.B), we may write, from 

Ell• (J.J6) 7 
(J.5J) 

and 
f: (8) e (211 + sin211) 111 

With this form of P dA I d8 is given by 

(J.54) 
dfl / dll e (211T)(l + cos20) , 

and the a
1 

K
1 

of section 2 must be used with these values of z A • It is to be 

noted that in this case z does not depend on z , but is constant. 

With these values of K, , the phase-space boundary is given by Eqs (J.l4) and (J.l5), 

namely 

(J,55) 

where 

!'. e q \' E p (sin II + K 
2 
A ) , .p = ,/ E I p [cos II + K 3 d A I d II ] . (J.l4) 

In comparing these results with those of section J, we see that, since 

l')eJ, dAidlleO, al lle"l2, 
(J.56) 

while A is odd in II , the motion of the edge particle is identical in the two sections 

as expected, if we put 
,jEp ea. 

For small z we may take from the definitions of a 1 

(J. 57) 

and K
1 

of Eq. (J.J9) and (J.lJ), 

(J.58) 

Typical curves of how !'. varies across the cross-$ection of the beam are given for K,eo, 

1 and in Fig. 11. The [(,eo curve is also that arising from the theory of section J 

(since the space-charge term would be included in the change of q ). The variation of 

current density .p across the cross-section is shown in Fig. 12, for IC 2 e o, o · 25, o · 5; 

2J 
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• 

. . 
the heavy c~ve is the theoretical one based on the theory of section J. In most applica-

tions, the model of· this section is considerably better than that of the last. 

Finally, it is of importance to estimate t~ area of the smallest ellipse which will 

completely surround the curve of Eq. (J.58). This ellipse was shown in se~tion 2 to have 
area ,E(1+BE) w~ere BE ' llp , Bq satisfy eq. (J.24). For a small growth of emittance • 
we may neglect the second order terms 

K 2 ' K3 , and obtain from Eq. (J.24) 

[ cos 
2 

() + ( B p + B E ) sin 2 
() 1 \1 - ( 1 + Y.. B q ) cos () ;:: I q I . I K 1 e - B q sin () I . (J.59~ 

It is difficult to find the minimum BE for all values of llp Bq , so that Eq.(J.59) 
A 

is satisfied. However, by an iterative procedure, we find that an approximate minimum of 

BE is obtained, for small llp , Bq , when 

Bq•716K
1

, Bp~o. e~,f4 • CJ •. 60) 

and the equality is satisfied in Eq. (J.59). Under these conditions, 

B E , In - 1/15 ( K 1 q ) . (J.61) 

Returning to the definition of K1 and BE , we see, from Eqs. (J.9),(J.lJ) and (J.22) 
tnat the charge in E 6.E , is given by 

6. E ~ E B E,. 1• • 1/15 u
1 

,/ffP (J.62). ... 
Now vEp is just the half width 8 of the beam; the formula of Eq. (J.62) is only correct 

to first order in z ,:;· ' • A more accurate expression, using the definition of u
1 

, 8 of Eqs. 

(J.9), (J.5J) and (J.57) would be . 
6. E = 1/15 f A 0 a dz 1 (J.6J) 

Equation (J.6J) is probably the most important result of this paper, since it gives 

in a very compact form an approximation for the rate of growth of emittance. Several prp

perties of the solution are unexpected. F1rst of all the growth of effective phase area 

does not depend on the original emittance or phase configuration of the beam, but only on 

the space-charge parameter A0 , and the beam size a • Secondly, although the space-

charge forces at· the edge of the beam do not depend on a , the rate of increase of 

useful emittance does. Let us give a numerical example of the magnitude of this effect~ 

In a 1 A electron beam with the dimensions lcm x 2ilfm at 2ivleV, 

a .. 10-3 y ~ 5 , A 0 • 3.82 x 10- 4/1.25 • .3 x 10- 4 , 

so that 
-1 

"'" E .. 1/ 5 X • 10 z . (J .64) 
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se which will 

~n 2 to have 

~ of emittance. 

(J.59~ 

:bat Eq.(J.59) 

' minimum of 

(J.6o) 

(J.61) 

and (3.22) 

(J.62) 

s only correct 

1 
, a of Eqs. 

(3.63) 

ce it gives 

Several prl)

pbase area 

1 but only on 

he space-

rease of 

is effect. 

(3.64) 

• 

The effe<.-tive emittance would therefore increase by 0.02 mm mrads/m. By appl,yinc a 

lar procedure in an accelerating beam, a procedure to be described in section 5 1 it is rc:>· 

sible to estimate the minimum emittance of a beam. 

b) Circular Beam. For an axially symmetrical beam, the argument is almost identical 

to that of paragraph (a). The onJy difference comes in the formulae to be us8d for A 

All other formulae remain the same. From the space-charge potential of Eq. (3.43), tJe ex-

pression for X becomes. 

' 
,\=11 0 (a/rj[f idr

1
l/l 

(3.5'5) 

0 

where new A 0 is given by Eq. (3,<15), and a is the radius of the beam. If we again assume 

that a point in ( r , r' ) space occupies an ellipse, with the point ( - r , - r' ) ~ 

~ ( r , r') then the boundary of the phase ellipse, in the absence of space charge, may 

be written in the usual form 

r = \,EP- sinO , r' = \1 E/p (cosO+ q sinO), (3.66) 

where p , q again satisfy Eq. (2.28) 1 and E is constant. In paragraph (a), we assumed 

tha: the density of current in ( x 1 x') space was constant, and that it was uniform in the 

y - direction; by analoe,y, since the circumference of a tube of current increases li-

nearly with in real space, we will assume 

i (r) « t (A r' ) , 
(3.67) 

where 1'1 r' is the length of ordinate inside the curve of Eq.(J.61); this ( r) ,.c.!\ '>Je ex-

pressed as 
i(t) dt « \'~ cos 2

() sin 0 dO , 
(3.68) 

so that the,\ .::q.(3.65) becomes 

(3.69) 

where now A 0 is given by Eq. (3.45), and <'l by the relation 

fl = (1- cos
3
0) /sin 0. (3.70) 

Equation (3.70) is derived by integrating Eq. (3.68), substituting for r from Eq•(J.65), 

ard putting for the value of the integral at 0 = TT/2 • All the equations of Eqs. 

(3.52)-(3.59) will follow identically, if the fl of Eq. (3.70) replaces that of Eq.(3.54), 

a;c:l we write ( r , r' ) for ( x 1 x' ) • The variation across the beam of _\ and "' of 

Eqs. (J,58) are given iL Fig. lJ and 14, tne results of section J are superimposed in 

these figures in which t~ f;ame approximation is made as in paragraph (a) that K 2 ~ '( 
3 

The curves have the same significance as those of Figs. 11 and 12. It is to be noted, 

from Fig. 13 1 that the divergence may no longer be maximum at the outside of the beam for 

sufficiently large values of K, • This result is a consequence of the fact that the in-
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tegral of the current density grows more slowly than the ( i /r ) term in Eq. (J.65). 

AotuallT the K
2
•0.S curve is too large for the theory to be valid, so that in practice 

the divergence will probably still be maximum at the beam edge. However, Fig. 14 shows 

that even from moderate K2 , the current density is reduced in the center of the beam. 

This i~ consistent with the 'hole' which in practice often occurs in round beams. 

The rate of growth of effective phase space area will again be derived from the mi-

nimum lJ E satisfyi:lg Eq. (J.59). For small lip , lJ q , K
1 

, the minimum is again 

near that of Eq. (J.60), and the minimum value of BE given by 

liE.,," • K,.q/8 , (J.71) 

t 
l 

where the factor 1/8 is again only approximate. "'How K, is defined by Eq. (J.lJ), aAd 

1

_. 
a, by Eqs (J.8) and (J.9). Hence we see that the change in emittance, AE , is given, 

by analogy with Eq. (J.6J), by the expression 
• 

A E • E lJ E "''" • 1/8 J A 0 a dz 1 ; I 
this becomes, using the definition of A 0 °of Eq. (J.45), . 

I 

AE•1/8A.(l/Jt)(y 2 -1)- 3 !2z. (J.72) : 

Equation (J,72) is very interosting, in that it indioatos that the rato of growth of ~ 
omittanoe in a oylindrioal beam dopende, to • first apProximation, only on tho total our- l 
rent and energy of the beam, not on its physical size, or current distribution -~n phase 

space. In non-relativistic beams, Eq. (J.72) shows, ~sing Eq. (J.J8), that the rate of 

growth of emittance depends only•on the value ( ·12 ) :e.--1 IV , the perveance oi the beam~ 

As a numerical example, let as consider the growth of effective emittance in a 2MeV 

beam carryihg lA. Here 

y • 5 • I • 1 so that 

-· ~ E = 1/8 X 10 z 

Thus the effective emittance grows at approximately 1/8 mm millirads/metre. 

5. The Expected.Emittance of a Cylindrical Beam 

in an Accelerator with a Uniform Axial 

!!ill 

In all the previous analyses of this paper, we P~Ve assumed that the energy 

stant. This has allowed the use of ( x , x' ) or ( r , r' ) as independent variables 

is con - f 
in phase ~ 

space obeying Eqs. (2.1) and (2.2). If the energy of the particles is allowed to vary ' 

with z , then we must use conjugate variables ( x , P. ) or ( r P, ) instead of 
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(J.71) 

.lJ), a.nd 

, is given, 

(J.72) 

rth of 

'total cur-

:in phase 

Irate of 

~he beam~ 

i 1n a 2MeV 
I 

g is con -

es in phasE 

to vary 

instead of 

I 
( x , x' ) 1 ( r , r' ) , where P, , P, are the momenta in the x- or r- directions, In this 

case areas in phase space will still be conserved, but the axial variation of the parame~s 

which depend on energy will also have to be considered. 

In this section, we will consider the axially symmetric problP.m Ylith a constant 

axial field. We will analyse the physical problem shown schematically in Fig. 15, The 

first part, from the cathode K to the grid c , consists of a gun which accelerates 

particles from y = 1 to y = y
0

• The second part from the grid c to the anode A consists

of an accelerating column with a constant axial field, which accelerates the beam fro~ 

y
0 

to y F • Superimposed on the axial field may be some focusing, elements v1hich slishtly 

alter the axial variation of the field, but the axial effect of such variations will be 

ignored. The transverse effects would be linear in r near the axis of the acceleration . 
column. This !s the situation"which occurs in practice in accelerators such a Van de 

Graaff generators, 

The ~hape of the phase-plane diagram which will arise at the anode A depends on 

the conditions at the entrance of the accelerator column c and the linear focusing 

fields experienced by the beam in the column. We will not attempt to predict this shape 

in this paper. The expected emittance, however, can be divided into two parts; the first 

part is the emittance of the beam at G the second part is the increase in the effec-

tive emittance due to non-linear effects in the region G-A , In the gun region, the 

fields will in any case be highly non-linear; they will be designed to reduce the emit-

tance of the beam at c as much as possible. In the accelerating region, however, the 

ap_plied fields have linear local variation some distance from the axis. The linear 

fields will increase the effective emittance if the initial phase plot is not elliptic, or 

if any other non-linear fields perturb the elliptic shape. In this section we will assume 

that the beamJat entrance to the column, uniformly occupies an ellipse in phase space. 

We will investigate the increase of effective emittance due to space charge using expres

sions analogous to those of section 4. Of course the equation must be modified to allow 

for the use of new variables, but the results will be substantially the same. The initial 

ellipse at c will be assumed to be that due to thermal velocities at the cathode. 

First let us introduce the relativistic transverse Lorentz Force Law which has the 

form /see Sturrock (1955) for example/, 

Remembering that m is related to the rest mass m
0 

by 

(J.74) 

and that y now varies with distance, we may introduce the proper time r given by 

2.7 



--~ 

y dr • dt , 

to obtain 

dr I dr 2 P, I (m0 c) , dp, I dr = e&, y 

Defining arbitrarily a variable a by the relation 

a 2 P,l (m
0
c) 

we see that the equations of motion in phase space become 

dr I dr • s , d8 I dr B - I (r, r) , 

where now 1 is derived .from & , by the expression ,.. 
I • - [ e y I ( m0 c J) & , . 

(J.75) 

(J.76) 

(J.n) 

(J.78) 

(J.79) 

Equation (J.78) is formally identical with Eq. (2.2), allowing all the earlier formula

tion to be used on the coordinates ( r , 8 ) in phase space. It is necessary, however, 
to know how I varies with r 

•.·5··· ( 

\' 
f 

;:'}. 

I 
As in the previous work, 1 may be divided into two parts, one linear in r , the 

other non-linear. Since we are only interested in the increase in emittance, the only 

part o.f 1 which is interesting is the non-linear space-charge contribution. The intro

duction of const~nt or linearly varying axial fields will have no non-linear effe~ on 

the transverse field. The non-linear part of I , A(r,r) will be similar to that of sec

tion 4, with a different factor of proportionality, due to the different units S'"; 

of the independent variable. By direct comparison of Eqs (J.79) and (J.Jl), and remember- ,) 
ing that ![, is still given by Eq. (J.J4), we see that • . 

I ~ A 0 [ f i dr
1 

l I I , 
0 

where A 0 is not given by Eq. (J .45), but instead by 

-zh A 0 • Ac(/1, 8){y 2-1) 

• 

(J.80) 

(J.Sl) 

With this exception, all the analyses of section 4 apply. Hence we may again deduce the 

change of effective emittance in the ( r , s ) plane directly from Eq. (J.71), where K 
1 

is still defined by Eq. (J.lJ). We ~ay therefore dedace that the change of emittance in 
the ( r , 8 ) plane 1 A E,. J is given by 

AE •(118) f Aoadr, 
.. 0 

(J.82) 
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(J.75) 

(J.76) 

(J.78) 

(J.79) . 

I 
I 
ler formula-

1 however 1 

l1 r 1 the 

the only 

The intro-

effect on 

that of sec-

ts 

and remember-

(J.SO) 

(J.al) 

deduce the 

1 where K 
1 

ittance in 

(J.82) 

..... 

where !1. 0 is given by Eq. (J.Sl), and >. again by Eq.(J.J7). 

To integrate Eq. (J.82), we must see how y , and hence A 0 , vary with r • The 

axial equations of motion yie·ld the relations 

dz I dr - p. I m , dp. I at- e & •• (J.SJ) 

Now as in Eq. (J.JO), 

m=m 0 y, dz/dt=f3c, {3y=-Jy 2-I, (J.JO) 

hence Eq. (J.SJ) yields the expression 

d(yyz::-i)/dr = [e/(m
0

cJ]y&. 
(J.84) 

Let us assume that the accelerating column irt Fig. 15 accelerates particles from 

y
0 

at G to yF at A in..a length L , Let us also assume that y 0 is near unity, 

implying a non-relativistic beam at injection; this assumption is in no way necessary, 

~ but usually holds in practice. The axial field &. of Eq. (J.84) is related to the rest 
•:. 

energy of the particle &
0 

, and the other parameters of the accelerator by 

(J.85) 

Substituting the &. of Eq. (J.85) into Eq. (J.84), and integrating, we obtain 

(J.86) 

where w is given by 

w = (yF - y
0

) c /L (J.87) 

Using the fact that y
0 

is near unity, so that 

(J.88) 

Eq. (J.86) can be written 

(J.89) 
y = ch[y2(y

0
- I) +wr] , 

and 
(J.90) 

Combining Eqs (J.8l~(J.82), and (J.90), we obtain the equation for the effective emit

tance, in ( r , s ) coordinates namely 
y=yF 

AE .. = f [>.cl/(8rr)]cosech[wr+y2(y
0
-I)] 

(J.91) 

y=yo 

Now for an arbitrary constdiit a , w 

(J.92) 
f cosech (wr + a) dr = - ( I/w) loll [cosech (wr +a)+ cot(wr + a}l, 

,, hence Eq. (J.91) may be integrated to yield 

29 



E,. (~)- E,. (0) • (>.cl/ (8rrc.> J1lot X , 

where x is given by 

x(r)- 1 +chy2(yo-1) 

slry2(y
0
-1) 

sh £[2(y0 -: 1) + c.>r 1 

1 + ch(y2(y
0

-1)+c.>r] 

2 

y2(y
0 
-1) 

ah(y~TJ + c.>r 1 
1 + ch y 2 (y 0 "'" 1) 

(J.9J) 

(J.94) 

Thus the final emittance at A in Fig. 15 is obtained by putt.ing ' = ,,. in Eq. (J.94), . 

which gives, from Eq. (J.89) and (J.90), ~ 

x(r,.J • .,f2(yo-1). 1 + Y,. 

2 y~ ~~ 
= v y 0- 1 v y: + 1 • 

(J.95) 

·;:~e emittance E,. of Eq. (J.9J) is in rather arbitrary units. The more usual units are in 

the ( r , r' ) plane. The transition from one to the other is made using the relation, 

derived from Eqs (J.75)-(J.77), 

(J.96) 
a • P,l(m

0
c)=m

0
(.Byc/(m 0 c)1r'• yy 2

-1 r' 

Hence the emittance in the ( r , r' ) plane is obtained, from Eqs (J.87) ,(J.9J), a~nd 

(J.96) in ti•e form 
sec· 

E t(r J•(.\/(8rr)HIL/I(y,.-yJyy 2 -1l11otx+ E ,(O)y(y 2-1)/(y 2-1), 
rr 11 0 '' 0 F (J.97) 

where x is given by Eq. (J.95). It is a little difficult to decide whether the emittance 

of Eq.(J.97) is a lower or a~ upper limit. It is certainly not a lower limit, since by 

·suitaryly chosen non-linear lenses, the first terms in Rq. (J.97) could be eliminated. 

;•o·Never in practice, the fields inside the column have to be linear, and the periodic 

focusing of the column ensures that much of the phase plane shape has become irretriev

ably entwined. The emittance tJf 1::>!• (3.97) is not an upper limit, since any accid~nt'ia.l 

non-linearities in the +.ransverne fields could inc;ease the fi~ure. Since such non-linear ~ 

ities do not usu<.tlly occur, we may say that E.,• of t::;. (J.97) is the expected emittance. 

The t!~t>ory is not sh·iotly accurate for large r , but since this would mainly affect the 

>. Lrm, whtch in any case only varies lo~arithmically , we would expect the result to 

b·~ fairly accurate. 

'r':H~ se.-ond term can be rE"iuced to the thermal one by usihg nott-lir.ear fields in the \; 
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(J.94) 

i• (J.94)' . 

(J.95) 

units are in 

elation, 

(J.96) 

J), and 

(J.97) 

the emittance 

, since by 

imina ted. 

periodic 

e 1rretriev-

accid~ntia.l 

ch non-linear • 

ed emittance • 

nl.y affect the 

the result to 

fields in the 

gun region. It will usually be poss1ble to optimise the design for high current, and 

rely on the fact that at low current the space-charge increase of emittance is less im

portant. ?or this reason the value of the second term can be estim "tet1 fairly accurately 

by usir,g tile value of emittance at the cathode w4ich results from thermol effects. 

The E,, of Eq. (J.97) is then a reasonable estimate of the best be::l.m that cu.n be 

obtained. To find the value of the second term in Eq. (J.97) we use the relevent emittan::q 

at the cathode and assume that this is unchanged from the cathode to the anode in the 

units (r, s). Now in ( r , s ) space, the transverse distribution of the current 

cathode is given from Pierce (1954) by the expression. 

c1t the 

(J.98) 
j(r,s) = (2rl/a 2) \'' m.f (2k1rr) exp- [ !T 0 s 

2
/(2kT) l. 

In Eq. (J.98) we have used tne fact that in non-relativistic beams the transverse veloci-

ty is given by s ; in Eq. (J.98) a is the radius of the cathode, l the total current 

emitted k is Boltzman•s constant, T is the temperature of tt.e cathode, and m 0 the rest 

mass of the particle. Integrating Eq. (J.98) with respect to s 

tain 

where Erf ( x ) is the error function of x 

to the limits+s .. e ob
- ' 

(J.99) 

If we arbitrarilly define the emittance as the area containing 90% of the beam, tnen 

for s 
0 

we should take the value whic·h makes the error funot ion equal to 0. 9 • Since 

I'; r f (X ) = 0.9 if X = 1.17 , (J.lOO) 

the resulting s 0 is given by 
(J.lOl) 

s
0 

= 1.65 v k T I m0 

It is to be noted that th~_numerical factor is rather arbitrary for twc reasons. First 

factors other than 90% be chosen for emittance; secondly, in the earlier definitions of 

emittance, constant current distribution inside an ellipse in phase space was assumed. 

However the figures resulting from Eq. (J.lOl), allow us to estimate fairly we1.1 the 

emittance we should use in Bq. (J.97). Using the s
0 

of Eq. (J.lOl), and remembering 

• that our usual definition of emittance is the area of phas~ space divided by " , we 

find 
E ,. 1.65 x ( 4 I rr) a y k T I rr. 0 (J.l02) 

In the units of r , s 
1 

E,. is invariant; its value at thll point A is related to the 

emittance. E,,, by 
(J.lOJ) 
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!quation (J,lOJ) can be written 

E I= K •. nr a ;,.y~ 
tr Y ' F 

when K takes the numerical values 

K = 26 

K ~ Oo14 

for electrons} 

for protons 

(J.l04) 

(J.l05) 

and E.,, is measured in mm millirads. As a practical case, let us consider a 1.5 MeV 

electron beam coming from a circular cathode of radius 4 mm and a tempera.tur·e 900°C. In 

this case the Err' due to thermal effects, the E.,•of Eq. (3.104), is given .by 

--
E.,. c 26 x y 117.3 x 4 x 10- 3 /,)63 = Oo45 mm millirads o (J.l06) 

The E,,• of Eq. (J,l06) is the minimum possible obtainable emittance for 9~ of the beam. 

It assumes that there is no increase in space charge due to space-charge spreading. 

Let us now assume that the space charge spreading causes the emittance to 

by the amount given by the first term of Eq. (J,97). AS a practical example let us consi• 

dar an electron beam accelerated by a space-charge limited electron gun to 20 K~, and 

then accelerated up to 1.5 Mev with a constant field. Let us assume that the current in 

the beam is 1.5 4, the length of the column is 2m, and that there is no increase of .... 
emittance in the gun region. We may then use Eq. (3.97) with 

y 0 ~ 1o04 I 1 = 1o5 I Yp = 4 I L = 2 o 

v·o 
(3.107) 

Under these conditions, using Eq. (J.95), x = 5o5 1 the first term of Eq. (J.97) becor:~es 

1!1 E I., 
- 4 

.3o82 X 10 X 3 

8rr X 3 X V 15 
log 5o5 m radso 6o75 mm mradso 

(J.l08) 

We thus find the total emittance to be the sum of the contributions from Eq. (3.106) and 

(3.108), namely 7.2 mm mrads.In an actual Vander Graaf generator with these characteris~ 

tics the emittances measured for 9~ of the beam were 6.2 and S.J mm mrads (J. Gale, 

Private Communication). In this case there were inhomogeneties in the fields which ~~~~ft~~ 

ted the beam differently in the two directions, so that it was not axially symmetric. 

The agreement between the theoretical values and the average of the two experimental 

values is much closer than the probable error in the theory. However the theory is cer

tainly confirmed ~nan encouraging manner by this example. 
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Sketch of striations in phase space 
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Schematic of a Van de Graaff generator. 
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