


_Afbétract

First the properties of monochromatio relativistic beams in linear beam tiransport
elements are oonsidered, neglecting space—-charge effects. Under the assumptions that tic
initial beam occupies an elliptical region in phase space, equations are set up for the
variation of the parameters of the ellipse along the beam transport system. The equations
are solved for uniform long lenseS, point lenses, and drift spaces. It 1s shown how it 1sl
possible to obtain an ellipse of minimum area in phase-space, which completely circums-—
cribes the region defined by two pairs of apertures. Formulae are developed to determine
where such apertures should be placed, in order to define an ellipse in the optir .1 way.

Equations are set up for the perturbation of elliptic boundaries in phase—spaoce by
non-linear fields. Although Liouville's theorem must be satisfied, so that phase—space
area 1s conserved, the region occupled by the beam may have an awkward shape which can-
not be used in practice. Formulae are derived for estimating the rate of growth of useabls
phase~space area due to non-linear fields. These formulae are applied to the calculation
of the perturbation of the boundaries in phase-space due to space-charge in shee* and
axially-symmetric beams. The increase of effective area in phase space due to space-
charge 1s also estimated. Final?_Ly, the results are applied to the estimation of the area
in phase space which will be occupiled by an axially symmetric beam coming out of a linear
accelerator such as a Van de Graaff generator. The agreement with the experimental results

is shown to be good.

Introduction

The properties of linear focusing. elements have been studied by ina.ny authors. In
most cases e.g. Sturrock (1955), a matrix formulation has been used, and individual par-
ticles are followed through the system. In beam transport systems, however, the single
particle treatment may be unnecessaﬁfily cumbersome. In the matrix formulation, a 2 x 2
matrix i1s required which has unit determinant. It 1s usually only the boundary of the
beam in transverse phase space which is required. This causes a further redundancy 1in
the data used in the matrix formulation. For these reasons Hereward (1959) and Walsh

(1958) have adopted different notations in which only the beam boundary 1is considered.
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In an important class of praotical problems the boundary i1s an ellipse in phase space.
Linear focusing elements have the property that they transform ellipses into other elip-
ses. Since areas are preserved in phase-space, the properties of these ellipses can be
specified by two numbers. Hereward (1959) showed how these two numbers transform in point
lenses and drift spaces. In part II of this paper we extend Hereward's treatment tc derive
equations for the variation of two parameters related to Hereward's. We solve thoée equa-
tions for uniform lenses, point lenses, and drift spaces.

It is another property of linear elements that parallel straight lines transform
into parallel straight lines. The usual method of detgfmining ellipses in practioe is by
the use of parallel apertures. In previous analyses, it has been ususl to treat problems
connected with apertures by the matrix technique. This is annoying ~ particularly 1f'most
of the analysis i1s made by techniques analogous to Hereward’'s. We show here that pairs of
parallel lines ocan also be characterized by a pair of numbers. Moreover, it 1s usual to'
define an ellipse by two pairs of parallel aﬁ;rtures. We derive expressions for a one to
one correspondence between the parameters of pairs of apertures and those of the ellipse
of minimum area which oircumsoribes the region defined by the apertures.

In part II of this paper we deal only with linear elements. Unfortunately, not all
elements of interest have this property. In some cases these elements are non-linear;Fy
accident , in other cases, for instance with space-charge forces, the non-linearity is
intrinsic. In part III of this paper we investigate the effects of non-linear fie¥ds.
First the general case of a small non-linear perturbation is considered and its effeot on
the boundary in phase space of the beam is computed. One effect will be that the ellipt -~

ical shape will no longer be preserved. Since most beam transport elements ara iinear, the
perturbation from the elliptic shape will cause striations in tq; beam, and thus increase
the useable area in phase space. For this reason we consider the ellipse of smallest area
which will enclose the perturbed boundary, and define this as the effective area in phase
space. Equations are derived for estimating this increase in effective area.

Since we wish to consider space-charge=effects, we recall the familiar space-charge-
spreading equations derived by many authors, e.g. Harrison (1958). In sheet and exidlly
symmetric beams, the equations for the edge of the beam do not depend on the charge dis-
tribution in phase space. These equations are fundamental to the later development. When
the space-charge in every plane is distributed uniformly across the beam (with zero trans-
verse temperature or area in phase-space), the effect of space-charge is that of a linear
defocus ing lens, and the strength of this lens is given.

The approximation of zero area in phase space is bad for many applications. A far

more realistic one is the assumption that the beam occupies uniformly an elliptical area
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in phase space. Assuming that the beam originally is so distriobuted , the' perturbation
due to space—charge 1s computed using the earlier results for non-linear fields. Compar-
ison is made between the predictions of this theory and the zero~temperature one. The
increase of effective phase~space area due to space—charge is estimated for sheet and
axlally symmetric beams. \

All the work up to this point has assumed a constant energy beam. This has allowed
the usual (x, x') coordinates to be used for the phase plane coordinates. The assumption
1s not essential to most of this work, but it greatly simplifies the algebra, and 1is true
in many applications. If there are also axlal fields, then conjugate coordinates, (x,p )
must be used. The space—charge perturbation calculations are extended to the considera-
tion of the increase in effective area of phase space in an accelerating field. Estimates
are given for the emittance (i.e. area in phase space /= ), due to space—charge in
several numerical examples. The agreement between the theory and the measured emittance
of a particular beam is shown to be very close. In the example chosen, that of a pulsed
1.5 Amp.1.5 MeV electron beam from a Van der Graaf generator, the calculated emit..nce
was more than ten times the thermal value. However, the measured emittance differed by
less than 10% from the caloulated value.

Throughout this paper, space—charge neutralisation effects are neglected. In dc
beams, or pulsed ones with long pulse lengths, these effects may become important. It is
also assumed that the beam uniformly occupies a region of phase—space; hence finite
transverse temperatures effects are only approximated. The methods can bz applied, ;ow~
ever, to other phase-space configurations; the extension of the method to beams with
Iax;:ilian distribution, will be considered in a 1atér paper.

Throughout this paper, MKS units are used unless stated otherwise.

-

I1. Linear Bear Transport Systems

1. The Phase Space Concept and_ the Matrix Notation

~ In this section we will define a coordinates system to describe the transverse oscil-
lations of particles in a beam transport system. We will show how, under certain condi-
tions, the transverse ﬁotion of the particles may be represented by two-component vectoro,
one component representing distance from an axis, the other direction of motion of the
partic 1q . v
A beam transport system will usually consist of a series of lenses, drift
lengths, and defleotors. If the trajectory s, of one particle of momentum P, through

the transport system 1is known, then this trajectory may define, at each value of the



longitudinal coordinate : y &n origin of coordinates. A plane may be constructed per-
pendicular to the trajectory, for each z and two perpendicular directions, « and

¥y y may be taken in this plane. In static electromagnetic fields, the trajectory of
any other particle is then completely described by finding the values of the «x and y
coordinates as a function of : . The notation is illustratedin Fig.I.In order to charao~
terize the motion of the particle, it is necessary to know its transverse position coordi-
nates «x » 7 , its transverse momenta in each plane p , »  and the longitudinal
momentum p . When one is dealing with axially symmetric systems, it is useful to use
(r,¢) as in Fig. 2, for the transverse coordinates. In this case the variations of - ’
¢ 'y Py By and p are required as a function of = + In most of this paper
we will treat the x , y case; however many of the fZSults apply in the ( r , ¢ ) sys—.

tem, particularly if p, 1s always zero. When the eleotromagnetic fields do not couple the

oscillation in the «x ’ ~plane with those in the y -plane the differential equatiomns.of
motion for the particles take a particularly simple form. This situation will arise witﬁ
appropriately oriented quadrupales, electrostatic deflectors, simple bending magnets,
drift spaces, and axial fields. In axially symmetric systems, the motion in the r -—plane
will couple with that in the ¢ -plane only if there is a Py o If all the fields are

axially symmetric, and if there is no s then the motion in the r -plane obeys very

P
)
similar equations to that in the x- , y -planes mentioned above. In the problems to be

~
oconsidered in this paper, it will always be assumed that the motions in the two planes are
uncoupled. We will restrict ourselves to small transverse oscillations, in which jke trans-

verse momenta p , p, s are assumed much smaller than the longitudinal momentum.
In most of this paper, we will restrict ourselves to focusing elements without ap—

preciable axial fields, so that the total momentum of the particle will remain essentially
constant. This restriction is not necessafy, but it often applies in any case to the kind
of beam transport system we have in mind and simplifies the equations. When the energy of
the particles varies, it is necessary to use x , y , p , p 88 the dependent variables;
when the energy of the particles is constant, one may use, even. for relativistic beams,
xy v 9 x' 4, y , where ' .
x' = dx/dz , - y'= dy/dz. (2.1)
The deviation. ( «x R4 ) of the particles from the axis of coordinates S, 1is given by
the equations
d7x/dz? + f(x,2) =0 (2.2)
d’¢/dz? + g(y,z) =0
where f and ¢ depend on the details of the beam transport system and the momentum of the

particle. We will assume that all particles are monochromatic, so that f , & will depend



only on the transverse and axial position of the particle. The monochromatic assumption

is not necessary /e.g. see Kirstein (1962)/, but will be assumed, for simplicity, in this
report. Eguations (2.1) and (2.2) follow directly from the Lorentz Force Law, and the
assumption that the x - and y plane motions are not coupled. It 1s possible to consider
the motion of particles in only one plane; the motioﬁiin the other plane will'obey essen—
tially the same equations. Equations (2.2) and (2.3) have beam derived by many authors and
extensively studied /e.g. Sturrock (1955)/. )

Hereafter we will use the notation :to denote differentials with respect to z ; in
particular the slope of a trajectory, dx/dz , will be denoted by =x' . If we consider
three neighbouring particles starting, at z-0 , from ( = , «, ), (x, , '+ Ax, )
( x, + Ax, , x; ), then it is well known they will have positions and slope at the plane

z of (x 4 x ) ( x+Ax,, % + Ax} )s ( x+Ax,x'+ Ay, ) where
(2.3)
(Ax, Ax{ ~ Ax Ax' )= Ax Ax'
Equation (2.4) has been derived from Eq. (2.2) by many authors /e.g. Sturrock (19.5)/.

If we consider a steady beam of particles passing along the beam transport system,)
then at any particular :z , e.g. z, , we may consider the transverse motion of every par-
ticle in the beam. Each particle will have, at =z , an x , =’ , y , y' . If a dot is
put for the ( x , x' ) of each particle, at z, , the beam may be represented as occupy-
‘ing a region such as that shown in Fig. 3. Since the number of particles in the beams we
will consider is very large, the discrete points may be replaced by a ccztinuous aistribuj
taon in the ( x , ' ) plane as in Fig. 4. It is often implicitly assumed that the densi-
ty of particles is constant over some part of the ( r , x' ) space and zero cver the rest.
" This assumption is made in the space—charge calculations of part III. The diagrams of
Figs 3 and 4 are called phase plots, and the region occupied by the beam is called the
region of phase space occupied by the beam. It is to be noted that such phase plots exist
in both the x- and y- directions. The effect of Eq. (2.2) may be regarded as that of trans-
forming the phase plot at z, into some other phase plot at =, . As a résult of Eq. (2.4) ,
such a transformation is area conserving. Henoe if a distribution of particles is initial-
ly uniform inside one region, bounded by a curve: and zero outside, it will always have
such é distribution, but thé boundary = may be transformed, For the study of the pro-
perties of the beam, it is suf{}cient to study the motion of the boundary = in phase
space. A useful concept in studying the behaviour of beams is the emittance in phase space.
This is the area of the space in the phase plane occupied by the beam divided, for later
convenience, by « . The emittance is, from Eq. (2.4), an invariant of the beam under

transformations such as Eq. (2.2). However, after a complicated system of lenses, an



initial phase plot such as Fig. 5a may be transformed into that of Fig. 5b, in which the
emittance is the same as that of Fig. 5a., The complicated nature of the phase plot may

mean that the effective emittance is considerably increased namely to the area inside

T, of Fig. 5¢, for the purpose of injecting into an accelerator, for example. This no-

tion of effective emittancg will be discussed further in part IIJT.

In a very important class of problems, those with linear focusing elements, the
electro-magnetic forces are éuch that they produced transverse forcing terms f(z)x y SO
that Eq. (2.2) beccmes

dix/dz?+ i(z)x = 0. (2.4)
Equation (2.4) has been derived by many authors/e.g;Courant and Snyder (1958)/, and the
matrix notation based on 1its solution is usuaily eméioyed in beam transport system calcu~-
lations. Equation (2.5) with always apply, if the particles already satisfy Eg. (2.2), for
sufficiently small oscillations. In some focusing elements, as for instance quadrupolq
lengths,bending magnets, and drift lengthiss, it is valid even for the relatively large cs-
cillations of interest.

We now define two functions a, and o, satisfying kg.(2.95) and the initial condi-
tions
a,=1 , a' =0 and a,=0, a! =1, atz=0. (2.9)

--
where as usual'denotes differentiation with respect to z . For Eq. (2.4) the invariant

of Bq. (2.3) takes the form D

= const., (2.6)

[ '
xl’? X’X‘

where x,Z and x, are any solutions of Eq. (2.4). Hence it follows that

1 2

alaz—a2a1=1 (2.7)
From the linear form of Eq. (2.5), it may be verified that any solution may be written

1 -
X = X,a + X, a, and X =X,a, + x,a, -(2.8)

Equation (2.8) may be written in the convenient matrix form
s (2.9)
x \= fa, a, x, - 4 x, R
x a" a! f\x] x

where, from Eq. (2.7), the determinant of 4 15 unity.

-

Following the notation of Sturrock (1955), the general expression for 4 may be

written in the form



’

A = cos (0 +y)/cosyy p sinG/cosy -

~ain 9 /(p cos ¢) cos (0~ ) / cosyy (2.10) .

411 the familiar beam transport elements have matrices where ¢ , o , y take special

values. In any symmetric element, for example, v 1is zero so that by becomes

(2.11)
i co8 0 p oin 6

-

~(1/p)ain® cosb

The most familiar eleméent is the long lens, of strength f per metre. For this element

- — — 2.12)
p= 1/t Y 0 = i z . (

Drift lengths are obtained by putting

2.13
p =1, 0 =0 , ( )
and point lenses of strength C Dby letting

6 ~0 , 0/p - C . (2.14)

Actually the matrices of Eqs. (2.13) and (2.14) may be derived from that of Eq. (2.12);

the first by letting =z-+0 s the second by letting =z - 0 y fz 4 C . Thesr mest*trices
have been obtained by several authors, /e.g. Regenstreif (1960)/. If the energy of the
ﬁg;ticles were allowed to vary slightly, the  of Eq. (2.5) would become energy dependent
,It can be shown /o.f. Kirstein (1962) for example/, that the effect of this emergy variu-
tion is, to first order, merely to shift the position of the phase plot without changing
the shape. It 1s necessary to add an energy dependent vector, independent of ( x,x' ),to
Eq. (2.9). Those problems will not be treated further in this paper, and on.iy monochrom -
atiobeams will be considered.

The matrix notation of Eq. (2.9) is very useful. It reduces the analysis of a compli-
cated beam transport system to a series of matrix multiplications. However, it gives more
information than we need. Four numbers have to be computed at each stage;these numbers are
not independent, since Eq. (2.7) must be satisfied. Moreover 1f we are interested in the
whole region of phase spaoce ooﬁhpied by thé ieam,noc in the motion of irdividual particles,
it is more convenient to follow the transformation of the boundary of the beam, X 1in
Fig. 4, than to use the matrix notation for the individual particles. A notation which

will characterize the beam boundary for certain important practical cases is given in the
next section.



2. The Transformation of Ellipses and Pairs of Parallel

Stralight Lines

The transformation of points in phase space by Eq. (2.5) is, from Eq. (2.9).5 linear
one. Hence two curves, ellipses and parallel straight lines, transform into other ellipses
and straight lines. These two curves are of considerable practical importance. The phase
shapes which come out of most practical devices approximate to ellipses. Moreover, the
acceptance regions of circular accelerators usually require the injection of particles
occuping an elliptical area in phase space. For this reason, the study of the transforma—
tion of ellipses in electromagnetic fields leading to Eq. (2.5) is very 1mpor§ant. In prao-
tice the phase ellipses are often measured or defined by two pairs of parallel apertures.

A pair of parallel apertures is represented by avpair‘:f parallel lines in the phase plane;
hence the properties of the transformation of parallel lines are also interesting. In this
seotion we will show how ellipses and parallel straight lines can each be characterized by
2 numbers. Actually it réquires 3 numbers to specify an elllipse, however one, the anea, is
invariant for transformations such as those of Eq. (2.5 ); for this reason the varijation

of only two numbers is important. The equations governing the parameters will be set up in
general 1linear fields, and will be solved for the particular cases of uniform long lenses,
with their speéial cases of point lenses and drift lengths. When only point lenses and

drift lengths are used, Hereward 7957 ) has shown that a related set of numbers transform

-

in a particularly simple manner.The connection between Hereward's parameters and ours is
AL
E*Yenho Pairs of Parallel Straight Lines. : o

The palr of parallel straight lines of fig. & aro clearly determined by their inter-
cept with the axes (+x, 0 ), (0 +Y ). For reasons of later csnvenience, we will charac-
terize them by related numbers m , » S0 that the intercepts are (; 1/n, 0 YsC 0, x1/m Yo
If one line has originally intercepts { -1/n, 0 ), (0, 1/m, ), then using the matrix
notation of Eq. (2.9), these points will transform into

(-'1/"0’ o) = [-—(l/no)al, —(l/l]o}a'l] (2-15)

(0, /m) =+ W/my)a,, (I/m)a)

The straight line jclning the points (-« ~a /o, ~al /7, ) and ( a,/m,, af) /m, ) has in~
tercepts with the axes ( ~i1/1n,0),( 0,1/m ) where

m=a m +a_n n=a m + a!
0 2

7 " ]
A .
( :;) (2.16)

Mo

1 o 2 o’
We may therefore write (' )
m -
) n

10



where f is thevmatrix of Eq. (2.9). It should be stressed that there is a difference
between Egs (2.9) and (2.16), in spite of their apparent identity. Equation (2.9) des-
cribes the transformation of an arbitary point ( x, , x! ), while Eq. (3.16) describes
that of a pair of parallel lines characterized by intercepts (-1/n,0), (0,1/m) and (1/n,0)
(0,-1/m ). The fact that it 1is possible to characferize a 11ne_1n this way is later

shown to be 1mpor£ant in the positioning of apertures to determine a specific ellipse in

an optimum manner.

b)Ellipses. The ellipse of Fig.7 has parametric representation

- (2.17)

x. = \Ep sin @ , x' =\ E/p (cosf + qsinf) .

where £ , p 4 ¢ can be related to the dimensions »,5 , ¢ y d 4y ey f 3 however these
relations do not concern us at this point. Since the area =rE of the ellipse is inva-
riant through the beam transport system, the changes in p and ¢ characterize the ellime

By considering the equétion of the ellipse of Eq. (2.15) in the form

(x, x') (1+q7)/p ~-q x =0 . (2.18)

-9 14 x

and transforming x , z' by the matrix 4 of Eq. (2.10), it is easy to see that ( Py s 4, o

will transform into ( » , ¢) by the transformation laws

p = | (1+qY p? sin?¢ + p, c08?(¢p ~ v )+ 2q,sing cos (¢ — ¢ )} /cos?y

. Py
P * (2.19)
q=l_—q°_pcos(¢+g[;)sin6—_p.llsin¢ cos (¢ ~ ) +
Py 4

+ g, [cos (¢ + y)cos(p ~ )~ sin?@1}/ cos?y

This transformation is still very complicated. For the uniform lens, where p = 1/jf,¢=1fz,

¥ =0 ,the expressions for p , qare much simpler, namely

2 2 _
p=[(l[_"‘ﬂ+po) - _l.fi_qioos(z\,'fz)q-.%osin(2\/fz)]

Py P,, A

2 . (2020)
q=[(\71[+qu =1t p,)sin(2fz)+ q cos(2\fz)
o 3

L &

For the particular case of a point lens of strength ¢ , Egq. (2.20) gives, taking thre

limit 4n the usual way of z - 0, fz - C ,

11



while for a drift length =z y

p=7r, * 2q°z+(1+q:)z’/po (2.22)

' 2
g =q, v (1+3,)2/p

Using the notatlon of Fig. 7, (which should not be confused with that used elsewhere

in this paper) Hereward (1959) defined the quantities

G -b/a=1/p » B=-cla=-4alp "‘ (2+23)
?
R=e/d=p/(1+a?) , X=1(/d=pa/(Ll+ q?)
so that
a .
G+iB=1/(R+iX), . (2.24)

where i 1is the usual sgquare root of -1. From Egs. (2.21) - (2.23), we see that for a

drift length z ,
R=R,, X=X +2, (2.25)

(2.26)

Thus we see that when the system contains only drift lengths and point lenses, the trans-
formations using ( R , X )and ( 6 , 8 ) are particularly simple. Montague (1960) has
puilt an interesting analogue based on these ideas. When the transport system includgs moré
complicated elements, however, the (» q ) notatlion 1s more useful.

When the matrix Iy for the transformation is known, Eq. (2.19) gives the geﬁﬁ?él solu~-
tion for the parameters of the transformed ellipse. When they are not known, and have to
be determined, it 1is often as easy to solve the equations for (o ya ) directly from the
equations of motlon as to solve first for A and then determine p 4, ¢ o

The equations of motion are, from Egs. (2.1) and ¢2.5),

dx/ dz = x' , dx' /dz = - f(z)x. (2.27)
substitution of Eq. (2.17) into Eq. (2.27) yields the differential equations for p 5 ¢ 9

pl=2¢ , pO' =1, g =pl+ (L% ¢’y /p - (2.28)

It is easily verified that the » and ¢ of Eq. (2.20) satisfy Eq. (2.28) with constant f .
Finally, we will require in part III the variation of 2 function giveﬁ parametericélly

in terms of 6 and =z o If F(8.2) ys5 such a function, then from Egq. (2.28) we see that

(2.29)

12



3. The Identification of Pairs of Apertures with their Optimum

Circumscribed Ellipse

-

A pair of apertures, summetrically placed éboutrthe centre,:at a specified axial
distance z , is represented in the phase plane by the pair of vertical lines 44’ of
Fig. 8a. From the discussion of the previous section, the lines A4’ will tfansform, at a
different axial plane :z , into another pair of parallel lines characterised by (m,n) as °
shown in Fig. 8b. The transformations laws for (m,n) have been derived in Eq. (2.16). In
the design of beam transport systems, it is convenient to define an ellipse as well as
possible by two pairs of apertuies. For our purposes, a parallelogram defines an ellipse

as well as possible 1if no part of it lies outside the ellipse, and the ratio of its orea

to that of the ellipse is as large as possible. Such a barallelogram will clearly be in -
cribed in the ellipse, and we will show that the ratio of 1its area to that of the ellipse
is  2/n +« For the purposes of this discussion , We willlconsid%r only parallelograms

of the type shown in Fig. 9, i.e. we will consid;r the situation only at the plane of the
apertures. Uhder these conditions there is a particularly simple relation between the num~
bers defining the apertures, and the parameters of the ellipse. MOTGOVEr, if we restrict
ourselves to parallelograms with one pailr of sides vertical, there is a one to one rela-
tion between the two pairs of apertures and the ellipse.

At the axial position of one of the pairs of apertures,these apertures will be repre-
sented in the phase plane by a pair of vertical lines with width 2a,*the gap between the
apefﬁgres. The other pair of apertures are represented by a pair of parallel lines with
parameters (m,n). This is illustrated in Fig. 9. The vertices of the parallelogram are the
points P, where P, are the points

P,, B =[a, (ant+ 1)/m}, P, ,P =[-a,(-ant1)/m].

(2.30)
Any ellipse may be expressed in the form
x=VEp sin6, y=+E/p (cosb + gsinB ). (2.31)
If this ellipse passes through the vertices P, of Eq. (2.30) then
VEp sing = a and 1/m =\ E/p cos§ , (2.32)
so that . o/m?+ atfp < E. (2.33)
This ellipse has minimum area E %;
p=ma, (2.34)
in which case, from Eqs. (2.30),(2.31) and (2.33),
(2.35)

E = 2a/m and q = na .

13



Conversely, given p , ¢ 4 E ; there exist a unique a 4 m 4 n which may be obtained from
Egs. (2.34) and (2.35), namely
a=-VEp/2 , m=+2p/E , =n=av2/(pE) : (2.36)

The m , n , a may be related to the E , G , B of Hereward's notation by means of Eq. (é.?}\,

Having determined the values of ( m ,n ) required to best define a given ‘ellipse, it
is a relatively straightforward matter to.determine where the other apertures must be
placed. Since (m, o) transform by Eg. (2.16), and since at the plane of the aperture m =0,
the aperture must be placed at a ?lane where

a, m, + a,,n, =0. (2,37)
In g, (2.37), m,, n, are the solutions of Egq. (2.36) for a particular ellipse, and i s
vith components &, ,is the transfer matrix to some newaxial plane where we wish to place
the second aperture pair. The required half-width of the aperture will then, from Eq.(2.19,
be li/al, where

0o am, + oy, o (2.38) .
;2 will give a practical example of the procedure. Let us suppose that we have determined
the m, , n, 4 a required to define a given ellipse, and wish to position the second aper—

1

ture after a drift length r, , lens C, and drift length L, as in Fig. 10. The transfer

matrix of this system is, from repeated use of Egs. (2.11), (2.13), and (2.14),

L‘ -
1

1-1L L, - L, L,C . N
(— Cz s T 12_L11 C2 ) (2039) =

from Bqs (2.37) and (2.39), the lens stremgth C must be given by

A

[
TN
D
o
\h'/
TN
ON
~ o
~——
NN
S

O
~

€ = 1/L,+ n,/(m,+0,L,), (2.40)
and the gap l 20} by
- | 1/a] =L, /lm, + noLyl. (2.41)
By a similar technique the author has shown elsenwhere/Kirstein (1962)/, how apertures may
te located in the x and y planes simultaneously.
The use of the methods sketched in this part both considerably reduce the work of

computing beam transport systems, and also lay a groundwork for the non~linear theory of

the next part.’

III. The Effect of Slightly Non-Linear Fields such as

Space—Charae

Introduction
In the second part of this paper, we have investigated the effect of linear elegtro-
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magnetic fields on a distribution of particles which originally lie inside an ellipse in
phase space. It has been established that the particles will be always bounded by an
ellipse whose area will remain constant, though its other parameters will vary. The equa-
tions specifying the parameters were set up, and Qolved for some special cases. In this part
we will discuss the initial departure fromthe elliptical boundary caused by the introduc~-
tion of non-linear fields. The general formalism 1s presented 1n section 2. This formalism
can be applied to the effect of nonlinear fields on initial distributions which are not
quite elliptical, but the solution of this problem will not be discussed. In the last part,
we showed that in géneral electromagnetic field the density in phase space is preservgd.
Hence whatever the flelds, the area in phase space occupied by the beam will be constant.

The useabié part of this area, which we may call the effective emittance, may be consi™

derably 1arger'(as illustrated earlier in Fig. 5). For this reason we define the effective
emittance as ‘the emittance of the smallest ellipse which completely surrounds the region
occupied by the beam. Expressions are also derived in section 2 for the effective emittance
of a beam.

In section 3, we recall the familiar results of beam-spreading due to space~charge,
in a strip and round beam. The equations are always valid for the edge particles, but
those for particles inside the beam assume a uniform space~charge distribution and a zero
transverse temperature (in which the beam occuples a straight line in phase space). The
results of this section,although in no way original, are required for the finite emittance
treatment of section 4. There the effects of space-charge on strip and round beams are
oogg}dered. In this treatment, it is assumed that the beam is.originally uniformly distri-
buted in phase—-space inside an ellipse.

- All:the treatment of the last part and most of this part is restricted to beams with
constant energy. However most of the results apply egyally well in accelerating systems,
providing ( x , p, ) are used as phase-space coordinates instead of ( x , x’) - where p,
is the transverse momentum of the particle. In section 5,we discuss the increase of effec-
tive emittance of particles in a round beam in an accelérating field. Formulae are de-

veloped for this increase in an accelerator, and some numqrioal examples are given.

2. The Formalism with Slightly Non-Linear Fields

In the last part of this paﬂér, we discussed the effect of linear applied fields. A
pa-ametric description of an elliptic boundary was given, and the equations for the varia-
tion of the parameters in phase-space were derived. In this section, we will use the samec

parametric description of the boundary, and will show the perturbations which arise if non-
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linear fieids are superimposed. The assumption is made that the perturbations are small.
In part II we discussed the general equation for the motion of a particle
d?x/dz? + f(x,z) = 0 , (2.2)
and then concentrated on its special form

d¥x /dz* + f(z)x

0. . (2.4)
In this section we will discuss the generalisation of Eq. (2.4) in the form

d?x /dz?+ f(z)x = A(x,z) , (3'1)'

where A 1s small. The general motion of & point in the phase plane is then given not by
Bg. (2.27), but by the pair of equations ‘

dx/dz = x', dx'/dz = A(x,z) = {(z)=- f(z})x. (3.2)°
Now we assume that the non-linear term A 1s small. In this case for A (x4 2 ) we may
write A ( x,, = ), Where x, is the value that x would have at this point if A were zero.

Using the parametric representation of Eq. (2.17), a point on the boundary will now have

the form
x = VEp(sin@ + &), x!'= JE/p (cos@ + gsinf + ),
X (3-3)
while the equations of motion of the boundary will become, from Eq. (3.2)
dz /dx = x' , dx'/dz = A (VEp sin@,z)-f(z)\VEp sinf . (3.4)

The p , g 5 ¢ 1n Egs. (3.3) and (3.4) will still obey Eq. (2.28); in particular 6 Wwill
-.

still satisfy the equation
d6/dz = 1/p. ££3.5)
By successive approximations, it may be verified that the solution of Eq. (3.4) is given

by Eq. (3.3), where £ , ¢ have the form

fe b, 4 Cz + [([Adz)dz (3.6)
C=¢, + [IA® 2(0A/36)(06/dz))dz}, )

which may be written, using Bq. (3.9),

E= £, + Loz + [([ANdz)dz ‘ .7y
¢ = ¢ -+ [IA ~(2/p)dA/06]dz

o

In the applications of this paper A has the simple form

>

A = Z(z) ©(8). (3.8)
If A has the form of Eq. (3.8), we may define three quantities o, , o, , 9, by the rela-

tions
P . P
a, = [ Z(z,)dz, , 0,= [ o,dz,, o, = [ z,Z(z,)dz .
[ [2 0

(3.9
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Tt is to be noted that o, 1s of first order in z , while o, and 2, are of secona

order. Using the o of Eq. (3.9), Ed. (3.7) may be written in the form

£ =4 +Coz+azﬂ’é=éo+°,® --a, de /dg . (3.10)

The solu£1on for £ 4 ¢ 1s correct to the second ordgr in the perturbation. In Eq.(3.10),
the £ , {, terms represent the original deviation of the boundary curve from the ellip-
tical; the z , o, terms represent the first order corrections; and finally the ¢, , 9
terms give the second order corrections. ]
In the special case that the original boundary curve is perfectly elliptical, the
zero order terms vanish, so that
f -z =o0. . (3.11)

5o @

In this case the perturbed boundary has the form

x =\VEp ( sin0 + a,0)

x! =\E/p (cosf+ qsin0)+ 0,0 - aJd(‘),/dS (3‘12)

Equation (3.12) may be put in a compact form by writing

X, (2) =,/ (aVE/p) » K,(2) = o, /VEr |, (3.13)

K’(z) = cr’/\"E?p
and

A= gyETp(sing + %, @), ¢ = VE/p (cosd = Ky d®/df ), (3.14)
to give
-~ (3.15)

x=+Ep(sinf + K,0 ) , x!' = (A 2 ¢),-n/2 % (’)511/2 .

Equation (3.15) arises from Eq. (3.12) by using the fact that © depends onl; ¢n x ~and

z apd therefore sin6 , z . We know, therefore

0(0) ~ O(n—0), dO(8)/d0 =~ d€ (v = 0)/df . (3.16)

Equation (3.14) allows a simple interpretation of the more important features of the boun-
dary. The current density at any point, assuming constant density in phase space, 1o gi-

.

ven by 2¢ , while the mean value of the slope =z’ is given by A . To first order v
is constant and A  varies. '
We may easily verify that the total area 4 in phase space is conserved by the rep—

resentation of Eq. (3.15) up t¥ the second order. The area 1s given by

w/2
A= 2y dx ,
~w/a

and using Egs (3.13) and (3.14), this becomes




n/
A= | ! 2E(c050+szﬁ/do)(coso—K_‘dG/dO)dG. (317)

~-n/2

Now to second order in :z , X, =X,, SO that to this order the area 1is conserved as expected,
Actually we know that this area is conserved to any degree of approximation.:

Although the total area occupied I;y the beam in phase space 1s conserved, its useful
area may well increase. Even if some of the elements of the transport system, such as
space-charge, are non-linear, most will be linear. Linear forces preserve ellipses in phase
space, and will probabdbly unless extraordinary' care is taken irretrievably intertwine the
non-linear boundary into a larger linear one. For this reason we define the Effective
Area of the beam in phase space, as the smallest ellipse completely surrounding the curve
of Eq. (3.15). We will now derive expression for the growth of effective phase space area
for small K, .

The ellipse given parametrically by the curve
X = \/E, [ sin 0, , X' = ‘/Ex 7p1 (cos0,+ gsin,) , (3.18)

will completely surround that of Eq. (3.15) if at the same value of » , given by

VE, p, sinf, = VEp (sinf + X, €) , (3.19)
the ordinates satify the inequalities -
X0 > x'(6) , X(n-06) < ®(n-0), -n/20% w/2. (3.20)
Comparing Egs. (3.15) and (3.18), we see that Eq. (3.20) is equivalent to =
cos 01+ qtsinox > \/Ep'/(EXp) (A + ¥ ) (3'21)
cos()x - qtsinol > \/pr/(Elp) (A - ¥ )
Writing now .
F,=E(1+8E), p,=p(1+8p), ay=a(1+8a), (3.22)

and remembering that B8E , 8p o, 8¢ 4 X kK, , K, are small so that quadratic terms

in these may be neglected, Egqs. (3.14) (3.19), (3.20) and (3.21) yield

sinG, = (1 - %OE - %bp) sin6 + K, (3.2235

and -

[cos?0 + (8p + SE) sin” 0 - 2K18 ]*-[1-1/,8E+‘/;8p]co80— (3'24)

- K,d®/d6 > lq| -1K,©=-58qsin0] .
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1t may be shown that Egs. (3.23) and (3.24) can only be satisfied with SE - o 1f

K= Kg=0 , 8 = sind , (3.25)

which 1s equivalent to having no non-linearitles in the system. For any other K, , ©

it can be shown that AE 18 always greater than zero, showing that the effective emit-
tance, which 1s E, 18 increased. The minimum value of (ESE) satisfying Egs (3.23) and
(3.24) 1is the increase of the emittance. To first order we may neglect Kk, and K, this

approximation will greatly simplify Eq. (3.24) and will alwzys be used in this paper.

Specific examples of this formalism will be given in sections 4 and 5.

3. The_Zero Temperature Space-Charge-Spreading

-

Theory

In this section we will recall the familiar equations for the spreading of iafinite
strip beams and axially symmetric ones. These equations have been derived by many authors,
e.g. Harrison (1958). The equations are correct for the particles at the edge of the beam,
irrespective of the distribution of the particles in phase space. However for the partic-
les inside the beam, their distribution 1n real space becomes important, and this will be
assumed always uniform; this assumption implies that the beam lles on a straight line in
phase space. In as much as the original distribution occupies a finlte area in phase space,
thé predictioné of this theory will be in error and those of the next muct be used. ]

a) Sheet Beam. We will first assume that the space-charge distributipn in the y and
) z =directions 1s infinite and uniform, though it may vary in the x -direction (all in
physical space). In this case the electric field due to a planar change ¢ ©per m? at

x, 1s given by ( €, , 0 , 0 ) where

s

& = - Q/(2€o) s x> x, '. (3.26)

- Q/(2(o) , x < ox,

where ¢, is the dielectric constant of free space. For a sheet beam of thickness 2a,
width in the y =-direction 5 , axial-velocity v {assumed constant through the beam), and

current density i(x) , &, 1is given by

x Ll .2
E ()= =L [ idp = [ idx]/(2¢v). . (3.27)

Moreover the current density i 1s related to the total current [/ by the relation

—~
~
o
1]

-

» L]
-
Q.
B

(3.28)
For the edge particle, at x = a , Eq. (3.27) becomes



és (a) ==1/(2¢vh) (3.29)
Writing in the usual way

v=‘Bc,y-(1-Bz)~” , m= myy
where m, 1is the rest mass of the particle and
Force law may be written

»

(3.30)
e 1ts charge, the relativistic Lorentz

(mBrc?) d?x/dz? = (1 - Bz)e ;v e &,
where E’

(3.31)
is the applied electric field; this equation may be written in the form

L] 2
d’ fdz? = €, /[(myc?/e) BTy 1+ €,/ ((myc ™/ e) By . (3.3 )
A
For the edge particle, at x = a

y Eg. (3.22) may be written

d’a/dz’ = Ao + F(a,z), (3033)
where
F(x,2) = & (x,2)/Um,c?/e) B7y1 , (3.38)
and A, is given, using Egs. (3.29) and (3.32), by
Aa=—-(I/b)/[2(00(-moc’/e)y"ﬁ’] .
A

’
']

(3.35)

is positive for all particles if we take the magnitude of the current for™; using
Eq. (3.30) A, may be written in the form,

P
Nowna/ny /ot -0, (3.36)
where A has the value, in MKS units,

A= 3.82x 10  for electrons } (3.37)

= 208 x 10 | for protons ’
For non-relativistic beams,

y’-1 = 2V/E (3.38)
where VvV 15 the voltage and €& —the rest energy of the particle,'so that Eq.(3.36) takes
the form

A= (a/b) (1/v?2)
where A’

(3.39)
has the numerical values ‘
L ]

(3.40)
A = 4.78 x 10 * for electrons
= 205 x 10° for protons } ’
Equations (3.33)-(3.40) have been derived by Harrison (1958) and others, though it has
usyally been solved with zero applied field &

F

« The detailed solution of the equa-
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tions, or the fange of applicability dec not concern ug at this point. We will return to
these equations in the next section.

While the equation for the motion of the edge particle does not depend on the distri-
butien of i across the beam, this distribution does affect the motion of particles
inside the beam. If, and only 1f, we assume fhat the current distribution is unfcrm across

the beam, so that & varies linearly, the eguation for any particle becomes

d?x/dg’= Ag(xia) + & (x,2), (3.41)

where again a 1s the wiéth of the beau. Tﬂe effect of space charge is therefore the scame
as that of a uniform defocusing 1lens of strength \;/a per metre. If i(x) is not
uniform, the effect of space charge is non-linear in =x , and can only be estimated by the
methods of section 2. .
b) The Circular Beam. In this case we will éssume an axially.symmetric Leam, uni-~-
form in the 2z ~direction. The electric field at r due to a ring cf charge o« at r

4

1s then ( & , 0 , 0 ) in cylindrical pclar ccordinates, where

gs(r)=- c/ (2nr(’0)‘ r > or,
) ‘ : (3.42)
= 0 r <r

’

Using the same procedure as in paragraph (a), the field at r due to a current distribu-

tion i(r) in the region 0 < r < a is given by

85 (t) = (Of idr, )/ (2n reyv) . (3.43)

For the edge particle, Eq.(2.38) gives

55(3) =1/ (2neyva) . . (3'44>
The exact procedure of paragraph (a) may therefore be followed for the edge particle, with
( na ) replacing 5 . This means that Eq. {3.33) 1s satisfied again but that now instead
of Eq. (3.36), A, takes the form,

\ AD=}\[,/TTB)]()'2—1)~’/7 . (3.45)

Equation (3.33) with this form for A, has been derived by Harrison (1958) arnd solved fcr
F =0. We will not repeat this solution.
Againd Eq. (3.33) is independent of the distribution of i across the beam, while Lue
motion of particles inside th& beam does depend on i . If we assume that the current

density is constant in the beam, so that
ifr) « r ,

then the motion of particles inside the beam may be again expressed by Eq. (3.41), witn -
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replacing z and A, given b& Eq. (3.45). The effect of space-charge is therefore that of
a uniform lens of sfrength A /a)(y? - 1)"’/7a2 per metre, where A 1is a universal cons-
tant. The variation of lens strength with a~? will prove to be of great importance in

estimating the inorease of effective emittance in the ( ¢ , r' ) space.

4. The Finite Temperature Space-Charge

Spreading Theory

In the previous section, we developed the equations of space-charge spreading of a
beam under the assumptions that the beam originally oocupied a straight line in phase space.
The equations for the edge partiocles, however, were independent of the distributiqn of par~
ticles in phase space. In this seotion, we will extef the theoryto thecase where the beam
originally ooocupies ﬁn elliptio region 1n-phase space., This assumption is approximately
satisfied in praotical beams. In oylindrical beams, this assumptiion requires the conven—
tiop that the point (-r ,:r‘) in phase space is identical to the point ( r , ' ), with fhe
vappropriate simplifiocation of certain formulae. We will use the non-linear theory de-
veloped in section 2, and disouss the differences which ooccur between the predictions of
this theory ahd those of section 3.

&) Sheet Beam Case. The general expression for the motion of a particle,with coordi-
nates ( x , x' ) in phase space, under the influenoce of slightly non-linear fields haq;?een
givean in £q. (3.2). If the non-linear fields arise only from space charge, the value of
A at the point x = a2 is given by Bq. (3.36). The A at other points may be obtained,
from BEqs (3.22), (3.32) and (3.33) in the form

x - 3.47
AwbAgl f ide,~ [ idx, 1 /1 ( )
W2 w4l1) assume that the appliied field is linear, so that F has the form
Fe-f(z)x. , _ (3.48)

With the F and A of Eqs (3.47) and (2.48), the equations of motion are given by
23 (342), ) '

We will assume a conatant distribution of current inside an elliptical area defined
ir the usual way in the parametric form 1

(3.49)

x=VEp ainB , x' w VE/p (cosf + qainf).

This is the feorm of boundary assumed in Part II, and the equations forp , ¢ were derived

in 3q. (2.28), while E is constant. The current density, assuming a uniform distribution
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of current inside the curve of Eq. (3.49) 1is given by
idx = 2E cos'6 d6, (3.50)

so thai, using Egs. (3.28) and (3.46),
A(0,2) = A,(2)( (20 +sin28)/a) , ~n/2 <6 <n/2 (3.51)

while again, since A can only depend on x , 2

/\[0,2]:1\[11—0,2],11/2505311/2 (3.52)

These expressions for A are in the form of Eq. (3.8) so that we may directly use the for-
malism developed in section 2. Without space charge, the motion of the boundary 1s ;ziven
directly by Eq. (2.28). Since A 1s in the form of Eq. (3.8), we may write, from

Eq. (3.363 )

- _ 2 _ 44— 3/2
Z(zy = A,(z) =)(I/b)(y 1) , (3.53)

and
€ (0) = (20 + sin20)/n
With this form of & , d€/d@ is given by

(3.54)
d® /d6 = (2/m)(1 + cos20) ,

and the o, , K, of section 2 must be used with these values of z , ©® . It is to be
noted that in this case 2 does not depend on z , but 1s constant.
With these values of X, , the phase-space boundary is given by Eqs (3.14) and (3.15),
namely
x=vyEp (sinf + K,), x' =2 + ¢ , (3+55)
where !
A= g\Ep(sind + K@), ¢ =VE/p leos§ + K dO/d0] . (3.14)
In comparing these results with those of section 3, we see that, since

3.56
®=71, dO/d0 =0, a 6 =n1/2, ( )

while ©® 1s odd in 6 , the motion of the edge particle 1s jdentical in the two sections

as expected, if we put

VEP = : (3.57)
For small z we may take from the definitions of o, and K, of Eq. (3.39) and (3.13),
K, - K, (3.58)

v

Typical curves of how A varies across the cross—8ection of the beam are given for K,=0,
1and =~ in Fig. 11, The X,=0 curve is also that arising from the theory of section 3
(since the space-charge term would be included in the change of g« ). The variation of

current density ¢ across the cross-section is shown in Fig. 12, for K, =0,0-250-5;
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the heavy curve is the theoretical one b&sed on the theory of section 3. In most applica-
tions, the model of-this section is considerably better than that of the last.

Finally, it is of importance to estimate the area of the smallest ellipse which will
completely surround the curve of Eg. (3.58). This ellipse was shown in section 2 to have
area rE(1'+5E) where 5E , &p » 8¢ satisfy eq. (3.24). For a small growth of emittance,
we may neglect the second order terms K, s X, , and obtain from Eq. (3.24)

(3.59;
Leos™@ + (8p + BE)sin201%- (1+ % 5q) cos > lgl« | K, 8 - 5q sing |

It i1s difficult to find the minimum 5E for all values of 8 4 8¢ , so that Eq.(3.59)
is satisfied. However, by an iterative proceduresnwe find that an approximate minimum of
3E 1s obtained, for small sp , &g ; when
bg=7/6 K, 8p =0, 6=n/4 , (3.60)
and the equality is satisfied 1in Eq. (3.59). Under these conditions,

(3.61)

SE ~ 1/15 (K, q)

min
Returning to the definition of K, and 5E » we see, from Eqs. (3.9),(3.13) and (3.22)
that the charge in E y AE 4, 18 given by

(3.62)

AE = ESE,, =~ 1/150, VEp . -
Now JE; is Just the half width a of the beam; the formula of Eq. (3.62) 1s only correct
to first order in :z . A more accurate expression, usihg the definition of U,TQZ of Egs.
(3.9), (3.53) and (3.57) would be
AE ~ 1/15 { Noa dz, . _ (3.63)

Equatién (3.63) 1is probably the most important result of this paper, since it'gives
in a very compact form an approximation for the rate of growth of emittance. Several pry-
perties of the solution are unexpected. First of all the growth of effective phase area
does not depend on the original emittance or phase configuration of the beam, but only on
the space-charge parameter A, , and thé beam size a . Secondly, although the space —
charge forces at' the edge of the beam do not depend on a , the rate of increase of
useful emittance does. Let us give a numerical example of the magnitude of thils effect:

In a14 electron beam with the dimensions lem x 2Mim at 2MeV,

a= 1077,y =5, Ay~ 382x 107 125= 3% 10",

so that
AE ~1/5 x107 3. (3.64) .
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The effeciive emittance would therefore increase by 0.02 mm wmwrads/m. By applying a =iui-
lar procedﬁre in an accelerating beam, a procedure te be described in section %, it is pos-
sible to estimate the minimum emittance of a beam.

. b) Circﬁlar Beam. For an axially symmetrical beam, the argument 1s almost identical
to that of paragraph (a). The only difference comes in the formulae to be us=2 for A .

411 other formulae remain the same., From the space-charge potential of Eq. (3.43), the ex~

pression for X  becomes.

A=/\o(a,"r)[fidr1]/l ,
°

where now A, 1s given by Eq.(3.45), and a 1is the radius of the beam. If we again assume
that a point in ( ¢ , ¢’ ) space occuples an ellipse, with the point ( -r , -r' ) =

= (r ,y r) ther the boundary of the phase ellipse, in the absence of space charge, may

be written in the usual form

r=+Ep sinf , ' =\VE/p (cos9 + g sinf), (3 66)

where p , ¢ again satisfy Eq. (2.28), and E 1s constant. In paragraph (a), we assumed
tha%t the density of current in ( x , x’' ) space was constant, and that it was uniferm in the
y -~ direction; by analogy, since the circumference of a tuve of current increases 1li-

nearly with r 1n real space, we will assume

o) - c(A ), (3.67)
where Ar' is the length of ordinate inside the curve of Eg.(3.61); this i (r) <zn be ex-
pressed as

i(r) dr « ' E’p co0s’9 sin9do |, (3.68)
so that theA 31¢.(3.65) becomes ) -
A = A,0, (3.69)
where now A, 1is given by Eq. (3.45), and © by the relation
€ = (1 - cos’0)/sin6 . {3.70)
Equation (3.70) isAderived by integréting EG. (3.68),'subst1tut1ng for r from Eqs(3.65),

ard putting fer I the value of the integral at ¢ =n/2 « A1l the equations of Egs.
(3+52)~(3.59) will follow identically, if the @& of Eq. (3.70) replaces that of Eq.(3.54},
and we write ( r , ') for (x , x'). The variation across the beam of A and 4 of
Egs. (3.58) are given in Fig. 13 and 14, the results of section 3 are superimposed in
these figures in which th® same approximation is made as in paragraph (a) that K,~ X%, .
The curves have the same significance as those of Figs. 11 and 12. It is to be noted,
from Flg. 13, that the divergence may no longer be maximum at the outside of the beam for

sufficiently large values of K, + This result is a consequence of the fact that the in-
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tegral of the ourrent density grows more élowly than the ( i/r ) term in Eq. (3.65).
Aotually the K,-0.5 curve is too large for the theory to be valid, so that in practice
the divergence will probably still be maximum at the beam edge. However, Fig. 14 shows
that even from moderate X, , the current density is reduced in the center of the beam.
This 1§ consistent with the 'hole' which in practice oftem occurs ia round beams.

) The rate of growth of effective phase space area will again be derived from the mi-
nimum SE satisfying Bq. (3.59). For small 5p , 8¢ , K, , the minimum 1is again

near that of Eq. (3.60), and the minimum value of 5E given by

SE pin = Kl'q/g T (3071)
where the factor 1/8 is again only approximate.,WNow K, is defined by Bq. (3.13), and
o, by Eqs (3.8) and (3.9). Hence we see that the change in emittance, AE , is given,’

by analogy with Eq. (3.63), by the expreasion

2
AE=EBSE, .~ 1/8f Ayadz, ;
14

thls becomes, using the definition of A, of Eq. (3.45), %
AE = z/sx(l/uj(y’—z)”’/’z . (3.72)

Equation (3.72) 1s very 1hterest1ng, in that it indicates that the rate of growth of }
emittance in & cylindrical beam depends, to a first approximation, only on the total cur-
rent and energy of the beam, not on its physical size, or currént distribution in phase
space. In non-relativistic beams, Eq. (3.72) shows, using Eq. (3.38), that the rate of

growth of emittance depends only‘on the value ( 1/v s/2 ), the perveance oF the beam.

e M HEr i st

As a numerical example, let as consider the growth of effective emittance in a 2MeV
beam oarryihg lA. Here
y =5, I-j-*I so0 that
AE =1/8x 10° 2

Thus the effective emittance grows at approximately 1/8 mm millirads/metre. 1

- 5. The Expected Emittance of a Cylindrioal Beam 1

in an Accelerator with a Uniform Axial

Field ~

In all the previous analyses of this paper, we have assumed that the energy is con -
stant. This has allowed the use of ( x , x* ) or ( r , r’ ) as independent variables in phase
space obeying Eqs. (2.1) and (2.2). If the energy of the particles is allowed to vary

with z , then we must use conjugate variables ( x , p, ) or ( r , p, ) instead of
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(x 9% )y (r ,¢ ), where p, , p, are the momenta in the x- or r- directions. In this
case areas 1n phase space will still be conserved, but the axial varlation of the parameters
which depend on energy will also have to be considered.

In this section, we will consider the axially symmetr}c rroblem with a constant
axial field. ¥We will analyse the physical problem shown schematically in Fig. 15. The
first part, from the cathcde X to the grid G , consists of a gun which accelerates
particles from y =1 to y =y, . The second part from the grid ¢ to the anode 4 consists’
of an accelerating column with a constant axial field, which accelerates the beam from
y, to Yp o Superimposed on the axial field may be some focusing, elements which slightly

alter the axial variation of the field, but the axial effect of such variations will be
ignored. The transverse effects would’be linear in r near the axis of the acceleration
cclumn. This is the situatioﬂ‘which occurs in practice in accelerators such a Van de
Graaff generators.

The chape of the phase~plane diagram which will arise at the anode A depends on
the conditions at the entrance of the accelerator column ¢ , and the linear focusing
fields experienced by the beam in the column. ¥We will not attempt to predict this shape
in thié paper. The expected emittance, however, can be divided into two parts; the first
part is the emittance of the beam at & , the second part is the increase in the effec-—-
tive emittance due to non-linear effects in the region G-4 . In the gun region, the
fields will in any case be highly non-linear; they will te designed to reduce the emit-
tance of the beam at ¢ as much as possible. In the accelerating region, however, the
appiled fields have linear local variation some distance from the axis. The linear
fields will increase the effective emittance if the 1n1t1ai phase plot is not elliptic, or
if any other non—linear fields perturb the elliptic shape. In this section we will assume
that the beam,at entrance to the column, uniformly occupies an elllipse in phase space.
We will investigate the increase of effective emittance due to space charge using expres-—
sions analogous to those of section 4. Of course the equation must be modified to allow
for the use of new variables, but the results will be substantially the same. The initial
ellipse at G will be assumed to be that due to thermal velocities at the cathode.

First let us introduce the relativistic transverse Lorentz Force law which has the

form /see Sturrock (1955) for example/,
dr/dt=pf'/(mc) , dp,/dt:e@,. (3'73)
Remembering that m 1is related to the rest mass m, by

(3.74)

m=moy

and that y now varies with distance, we may introduce the proper time r given by
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ydr = dt | (3-75)
to obtain

de/dr = p,/(myc), dp,/dr = o, y . (3.76)

Defining arbitrarily a variable s by the relation

(3.77)
s =p /(mec) ,
we see that the equations of motion in phase space become
‘ (3.78)
dr /dr = s , ds / dr =~ f(r,r) ,
where now f is derived from &, by the expression
B
(3.79)

!--[e-y/(moc)]@, .

Equation (3.78) is formally identical with Eq. (2.2), allowing all the earlier formula-
tion to be used on the coordinates ( - s & ) in phase space. It is necessary, however,
to know how ¢ varies with . ,

As in the previous work, f may be divided into two parts, one linear in r , the
other ﬁon—linear. Since we are only interested in the increase in emittance, the only
vart of f which is 1nferest1ng is the non-linear space—-charge contribution. The intro-
duction of constant or linearly varying axial fields will have no non-linear effegt on
the transverse field. The non-linear part of f , A(r,r) will be similar to that of seo-
tion 4, with a different factor of Proportionality, due to the different units ¥,

of the independent variable. By direct comparison of Eqs (3,79) and (3.31), and remember- .

ing that §, 1s still given by %q. (3.34), we see that

f= Al {'idn 1/1 , (3.80)

where A, 1s not given by Eq. (3.45), but instead by

Ao = Ae(I/wayty?-g)~*7

(3.81)

With this exception, all the analyses of section 4 apply. Hence we may again deduce the
change of effective emittance in the (r , s ) plane directly from Eq. (3.71), where K;
is st111 defined by Eq. (3.13). Wwe may therefore dedtice that the change of emittance in
the (r , s ) plane, A4E_,1s given by

AE, w(1/8) [ Ay adr , (3.82)
0
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where A, 1s given by Eq. (3.81), and A again by Eq.(3.37).
To integrate Eq. (3.82), we must see how y , and hence A, , vary with r . The
axial equations of motion yield the relations

dz/dr = p /m, dp,/dt=eb . (3.83)

Now as in Eq. (3.30),

m=m,y , dz /dt = B¢, ﬁy=\/y2—1 s (3-30)

hence Eq. (3.83) yields the expression

, .8
d(yT=1 ) /dr = le/(myc)ly &, . (3.84)

let us assume that the accelerating column in Fig. 15 accelerates partiocles from
v, at G.to y, at 4 in.a length L , Let us also assume that y, 1s near unity,
implying a non-relativistic beam at injection; this assumption is in no way necessary,
but usually holds in practice. The axial field &, of Eq. (3.84) is related to the rest

energy of the particle &, , and the other parameters of the accelerator by

Eun (v, 7,0 6,/L (3.8%)
Substituting the &, of Eq. (3.85) into Eq. (3.84), and integrating, we obtain
ch—{y = ch"‘yo + or, (3.86)
where o 1s given by
w = (y, ~v,)e/L . (3.87)
Using the fact that y, 1s near unity, so that '
ch—l yo o \/—‘—"——2(ya - 1) , (3.88)
Eq. (3.86) can be written ‘
I (3.89)
ymch[\/2(ya-1)+wr] ,
and
(3.90)

vy?-1 =sh[\/2(y°-'~1)+wr].

Combining Eqs (3.81%{3.82), and (3.90), we obtain the equation for the effective emit-
tance, in ( r , s ) coordinates namely
Y=Yr .91
AE, =~ | [)u:I/(Brr)]cosech[mr+\/2(y°—1)] . (3.91)

Y=Y
Now for an arbitrary constdht « , o

. (3.92)
f cosech (wr + a)dr = = (1/w ) log [cosech (wr +a )+ cot(wr+a)l,

hence Eq. (3.91) may be integrated to yield
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E, (1)~ E, (0) = [Acl/(8rw )] logx » (3.93)

where X 1is given by

1 +chy2(y,—-1) sh{y2(y, = 1) + o]

x(r)= ——
shiy2(y,~1) 1+ ¢[¢2(y°-1)+071 .
(3.94)
- 2 . shiV2(y,-1) + wrl
vy, ~1) 1+ chy2(y,~1)

Thus the final emittance at A 1in Fig. 15 1s obtalned by putting - =f; in Eq. (3.94), .

E

which gives, from Eq. (3.89) and (3.90),

2 vyi-1 _ 2 -1 (3.95)
x(rg) = .
\/2()'0—1)'1+y’ ‘Jyo—l y'+1

T7he emittanoe E,, of Eq. (3.93) 1s in rather arbitrary units. The more usual units are in
the ( r , ') plane. The transition from one to the other 1s made using the reiation,
derived from Egs (3.75)-(3.77),

I (3.96)
8 = p'/(moc)=mo[B)'C /(mgc)le! = vyl-1 ¢!

Hence the emittance in the ( r , r' ) plane 1is obtained, from Egs (3.87),(3.93), amd
(3.96) in thue form

E, (r,)=Ix/(8n)ILIL /Uy, =y} Vy = 1)1logx + E,1(0)V(y 3 - 1)/(y - 1)
r r 0 ° ) F (3.97)

where x 1s given by BEg. (3.95). It is'a little difficult to decide whether the em1ttance§
of Bq.(3.97) is a lower or an upper limit. It is certainly not a lower 1limit, since by
:auitably chosen non-linear lenses, the first terms in Bg. (3.97) could be eliminated.
However in praotice, the fields inside the column have to be linear, and the periodic
foousing of the column ensures that much of the phase plane shape has become irretriev-
ably entwined. The emittance of i3. (3.,97) 1is not an upper limit, since any accidential
non-linearities in the transverse fieclds could ind;ease the figure. Since such non-linear -
ities 3o not usually occur, we may say that E, of ig. (3.97) 1is the expectea emittance.
The theory is not strictly accurate for large r , but since this would mainly affect the
» torm, which in any case only varies logarithmically » we would expect the result to

w2 fairly accurate.

mhe sevond term can be reduced to the thermal cune by usihg non—linear fiélds in the ;
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gun region. It will usually be possible to optimise the design for high current, and
rely on the fact that at low current the space—charge increase of emittance is less im-—
portant. For this reason the value of the second term can be estim:ted fairly accurately
by usiag the value of emittance at the cathode which results from thermel effects.

The E,,,» of Eq. (3.97) is then a reasonable estimate of the best beam that can be
obtained. To find the value of the second term in Eq. (3.97) we use the relevent em*tt‘me
at the cathode and assume that this is unchanged from the cathode to the anode in the
units (r, s)» Now tn (r 4 s ) space, the transverse distribution of the current j at the

cathode is given from Plerce (1954) by the expression.

j(t,s)=(2cl/a? \r'ma/(ZkTi;rTAexp —[rrosz,/(ZkT) 1. (3.98)

In Eq. (3.98) we have used the fact that in non-relativistic beams the transverse veloci-
ty is given by s ; 1in Eq. (3.98) a 1is the radius of the cathode, I the total current
emitted k 1s Boltzman's constant, T is the temperature of txe cathode, and m, the rest
mass of the particle. Integrating Bq. (3.98) with respect to s to the limitsais ’ﬁe ob—

tain

ite)=(2c/a’y 1 Ext Ls,ym /(2kT)], (3.99)

where Erf ( » ) 1is the error function of x .
If we arbitrarilly define the emittance as the area ccntalning 90% of tne heam, then

for s, we should take the value which makes the error function equal to 0.9 . Since

Erf (x) =09 1f x= 117 , (3.100)
the resulting s, 1is given by

(3.101)

s, = 1.65VkT /m

It is to 5e noted that the.;umerical factor is rather artitrary for twe reasons. First
factors other than 90% be chosen for emittance; secondly, in the earlier def*nlulons of
emittance, constant current distribution inside an ellipse in phase space was assumed.
However the figures resulting from Eq. (3.101), allow us to estimate fairly well the
emittance we should use in Eq. (3.97). Using the s, of Eq. (3.101), and rememtering
that our usual definition of emittance 1is {he area gf phase space divided by ~» , we
find . o
E_ = 1.65x(4/n)aVkT/m,

rs

(3.102)
In the units of r , s , E__1s invariant; its value at thé point 4 1s related to the

emittance. E i, by
E=E /(B v, ). (3.103)
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Bquation (3.103) can be written . .

r

E &= K\,’Ta/\ry:—l , ) (3'104)_'

when K takes the numerical values

K = 26 for electrons
s (3.105)

K = 0.14 for protons

and E :1is measured in mm millirads. As a practical case, let us consider a 1.5 MeV
electron beam coming from a circular cathode of radius <4mm and a temperature 900%. In
this case the E , due to thermal effects, the E,pof Eq. (3.104), 1s given'by

&

E_ o= 26 xy 1173 x 4 x 107 ° /& = 0.45 mm millirads . (3.106)

rr

The E,,» of Bq. (3.106) is the minimum possible obtainable emittance for 90% of the beam. !
It assumes that there 1s no increase in space charge due to space-charge spreading. ;

Let us now assume that the space charge spreading causes the emittance to increase’
by the amount given by the first term of Egq. (3.97). 4s a practical example let us ccnsi-+
der an electron beam accelerated by a space-charge limited electron gun to 20 KV, and ’
then acoelerated up to 1.5 #eV with a constant field. Lgt us assume that the current 1nf77
the beam is 1.5 &, the length of the column 1s 2m, and that there 1is no 1ncrg§se of

emittance in the gun region. We may then use Eq. (3.97) with

o
Yo= 104, I =15, y, =4, L=2. (3.107)

Under these conditions, using Eq. (3.95), x = 55, the first term of Egq. (3.97) becomes

- .
AE ,= 3.82 x 10 x 3 lod 5.5 m rads. = 6.75 mm mrads.

ee! 3nx3x\/15

(3.108)

We thus find the total emittance to be the sum of the contributions from Eq. (3.106) and

(3.108), namely 7.2 mm mrads.In an actual Van der Graaf generator with'these characterise
tics the emittances measured for 90% of the beam were 6.2 and 8.3 mm mrads (J. Gale,
Private Communication). In tﬁis case there were inhomogeneties in the fields which effec-]
ted the beam differently in the two directions’, so that it was not axially symmetric.
The agreement between the theoretical values and the average of the two experimental
values is much closer than the probable error in the theory. However the theory is cer—‘

tainly confirmed in an encouraging manner by this example.
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Figo 1.

Notation in ( x , y , z ) coordinates.

Figo 2.

Notation in ( r , ¢ ,z ) coordinates.
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Figo 3:

Representation of particles 1n phase space.
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Fig. 4.

Representation of a continuous beam 1n phase space.
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Figos 5.
Sketch of strlations in phase space



Pig. 6.

The representation of parallel lines in phase space.
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Fig. 7.

The representation of ellipses in phase space.
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Fig. 8. )

The representation of a pair of parallel apertures in phase space;
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The representation of two pairs of apertures and the circumscribing ellipse, in phase
space, at the plane of one aperture.
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Fig. 10.
Schematic of a possible

beam transport system to locate the apertures

define a given ellipse.
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Variation of the mean z/ , A across the beam cross—section for a sheet beam.
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Variation of current density across the beam cross-sectior for a sheet beam.Here’
¢ 1s the current density, v, 1its value at the centre of the beam. :
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Fig. 13.

Variation of the mean r’ , A across the beam cross-section for a round beam.



Fig. 14.

Variation of current density across the beam cross~section for a round beam.
¥ 18 the current density, ¥, its yalue at the middle of the beam.
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Fig. 15.

Schematic of a Van de Graaff generator.



