

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем

B.V. Struminsky

E - 1012

DETERMINATION OF THE ROOT-MEAN-SQUARE RADIUS OF TRANSITION $He^3 - H^3$

.

E - 1012

DETERMINATION OF THE ROOT-MEAN-SQUARE RADIUS OF TRANSITION $He^3 - H^3$

,

Дубна 1962 год

Объединенный институ ядерных исследовария БИБЛИОТЕКА The experimental investigation of μ -meson capture in He³ is of great importance for checking the universal weak interaction theory. However, the muon-nucleon interaction constant can be determined exactly only in the case when the mean-square radius of transition He³ \cdot H³, \langle H³| r²| He³ \rangle is known. The theoretical calculations of this value depend on the choice of the nucleon-nucleon interaction potential and of the nuclear model. Calculations carried out by Werntz^[1] and Fujii and Primakoff^[2] yield different results. Following Werntz $r = 1.56 \cdot 10^{-13}$ cm, Fujii and Primakoff have obtained $r = 1.78 \cdot 10^{-12}$ cm. The aim of the present note is to show that r can be claulated if we know the ratio of Panofsky for He., P_{He}, i.e. the ratio of the probabilities of the processes

$$\pi^{-} + He^{3} \rightarrow H^{3} + \pi^{0}$$
 and $\pi^{-} + He^{3} \rightarrow H^{3} + \gamma$.

The calculation is based on the following assumptions: a) the π -meson capture is considered in terms of the impulse approximation; b) in the nuclear wave function only the S-wave is taken into account.

Following I. Pomeranchuk |3| the π -meson capture in hydrogen will be described by phenomenological potentials: $a\delta(\bar{r}_p - \bar{r}_n)$ for process $\pi^- + p + n + \pi^0$, $\frac{b}{\sqrt{\omega}} (\bar{\sigma} \bar{e}) \delta(\bar{r}_p - \bar{r}_n)$ for process $\pi^- + p + n + \gamma$, where \bar{r}_n is the π -meson coordinate, \bar{r}_p is the proton coordinate, ω is the γ -quantum energy, \bar{e} is the unit vector of the γ -quantum polarization, a and b are constants. The ratio $/a/2^2 / b/2^2$ is easily expressed in terms of the Panofsky ratio for hydrogen, which is measured with great accuracy. The Panofsky ratio for hydrogen according to the V.T. Cocconi data |4| is $P_{\rm H} = 1,53 \pm 0.02$. The nuclear wave functions He³, H³ are

where

$$\begin{split} \Psi &= \frac{1}{\sqrt{2}} \left(\chi' \xi'' - \chi'' \xi' \right) \psi \left(\begin{array}{c} \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3} \right) \\ \chi' &= \frac{1}{\sqrt{6}} \left(2 a_{1} a_{2} b_{3} - a_{1} b_{2} a_{3} - b_{1} a_{2} a_{3} \right) \\ \chi'' &= \frac{1}{\sqrt{2}} \left(a_{1} b_{2} a_{3} - b_{1} a_{2} a_{3} \right) \end{split}$$

a, is the state of i nucleon with the spin projection + 1/2,

 b_i is the state with the spin projection - 1/2, ξ' , ξ'' are constructed in a similar way in the isotopic spin space^[6],

 $\psi(\mathbf{r}_{i},\mathbf{r}_{2},\mathbf{r}_{3})$ is symmetrical in all three coordinates. After having calculated the matrix elements of

$$H_{\pi_0} = a \sum_{i=1}^{3} \delta(r - r_i) r_i^{-1}$$

$$Il_{\gamma} = \frac{b}{\sqrt{\omega}} \sum_{i=1}^{3} \delta(r - r_{i}) (\overline{\sigma}_{i} \ \overline{e}) r_{i}^{-}$$

it is not difficult to get

$$P_{He} = P_H \sqrt{\frac{E(\mu+m)^3 M}{E_H(\mu+M)^3 m}} \frac{\omega_H}{\omega} \frac{M+\omega}{m+\omega_H} \frac{1}{/\langle e^{i\overline{k}\overline{\tau}} \rangle/^2}$$

where *m* is the neutron mass, *M* is the tritium mass, μ is the π° -meson mass, E = 4,06 MeV is the kinetic energy of H³ and π° , $E_{\rm H} = 3,3$ MeV is the kinetic energy of n and π° , $\omega = 135,80$ MeV is the *y* quantum energy in process $\pi^{-} + ile^{3} + il^{3} + \gamma$, $\omega_{\mu} = 129,46$ MeV is the *y* quantum energy is process $\pi^{-} + p \rightarrow n + \gamma$.

The exponent in the matrix element can be expanded in power series

$$\langle e^{i\overline{k}r} \rangle = 1 - \frac{1}{3!} k^2 \langle r^2 \rangle + \frac{1}{5!} k^4 \langle r^4 \rangle - \frac{1}{7!} k^6 \langle r^6 \rangle$$

We restrict ourselves to the three first terms of the expansion; $\langle r^4 \rangle$ and $\langle r^6 \rangle$ may be approximately expressed in terms of $\langle r^2 \rangle$. We take $\psi(r_1, r_2, r_3)$ as a product of some single-particle functions

$$\psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \phi(\mathbf{r}_1) \phi(\mathbf{r}_2) \phi(\mathbf{r}_3)$$

The estimates $\langle r^4 \rangle$ and $\langle r^6 \rangle$ depend mainly on the behaviour of $\phi(r)$ for large r. For $\phi = e^{-\alpha r}$ we obtain $\langle r^4 \rangle = \frac{5}{2} \langle r^2 \rangle^2$, $\langle r^6 \rangle = \frac{35}{3} \langle r^2 \rangle^3$; for $\phi = e^{-\alpha r^2}$ we obtain $\langle r^4 \rangle = \frac{5}{3} \langle r^2 \rangle^2$, $\langle r^6 \rangle = \frac{35}{9} \langle r^2 \rangle^3$ for $\phi = \theta(r-R)$ we get $\langle r^4 \rangle = \frac{25}{21} \langle r^2 \rangle^2$, $\langle r^6 \rangle = \frac{125}{81} \langle r^2 \rangle^3$. Calculations show that $/\langle e^{ikr} \rangle/^2$ changes about by 3% due to the choice of $\phi(r)$ and about 3% due to term $k^6 r^6$. It should be noted that these estimations are carried out for $r = 1,5\cdot10^{-13}$ cm, for smaller radius the error decreases down to 1%. The Panofs-ky ratio for helium at different r is: $r = 1,46\cdot10^{-13}$ cm, $P_{\mu_0} = 2,37$; $r = 1,56\cdot10^{-13}$ cm, $P_{\mu_0} = 2,71$.

Preliminary experiment results on the π -capture in He^{3 |5|} yield P_{Ne}=2,16±0,28. This value of the Panofsky ratio for helium corresponds to the radius of transition

$$r (= 1,24 -0.46) \cdot 10^{-13} \text{ cm}.$$

We note once again that calculations are carried out in terms of the impulse approximation. An independent determination of the root-mean-square radius in electron scattering experiments on He is of great interest both for the theory of μ -capture in He³ and the check of the applicability of the impulse approximation in the theory of π -capture in He³.

In conclusion the author expresses his gratitude to R.M. Suliaev and S.S. Gershtein

for stimulating this work , I thank also Yu.A. Shcherbakov and I.V. Falomkin for the discussions and valuable remarks.

References

- 1. C. Werntz. Nuclear Physics 16, 59 (1960).
- 2. A. Fujii, H. Primakoff. Nuovo Cimento 12, 327 (1959).
- 3. I.Ya. Pomeranchuk. JETP, 22, 129 (1952).
- 4. V.T. Cocconi, T. Fazzini, G. Fidecaro, M. Legros, N.H. Lipman, A.W. Merrison. Nuovo Cimento 22, 494 (1961).
- 5. I.V. Falomkin, A.I. Filippov, M.M. Kulyukin, Yu.A. Scherbakov, R.M. Sulyaev, V.M. Tsupko-Sitnikov, O.A. Zaimidoroga (to be published).
- 6. M. Verde. Encyclopedia of Physics edited by S. Flügge vol. XXXIX, (1957).

Reveived by publishing department on June 16, 1962.