ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем

B.V. Struminsky

$$
E-1012
$$

DETERMINATION OF THE ROOT-MEAN-SQUARE RADIUS OF TRANSITION $\mathrm{He}^{3}-\mathrm{H}^{3}$

$$
E-1012
$$

dETERMINATION OF THE ROOT-MEAN-SQUARE RADIUS OF TRANSITION $\mathrm{He}^{3}-\mathrm{H}^{3}$

The experimental investigation of μ-meson capture in He^{3} is of great importanoe for checking the universal weak interaction theory. However, the muon-nucleon interaction oonstant can be determined exactly only in the case when the mean-square radius of transition $\mathrm{He}^{3} \rightarrow \mathrm{H}^{3},<\mathrm{H}^{3}\left|\mathrm{r}^{2}\right| \mathrm{He}^{3}>$ is known. The theoretical caloulations of this value depend on the choice of the nucleon-nucleon interaction potential and of the nuclear model. Caloulations carried out by Werntz $|1|$ and Fujii and Primakoff $|2|$ yield different results. Following Werntz $r=1.56 .10^{-13} \mathrm{~cm}$, Fujii and Primakoff have obtained $r=1.78 .10^{-13} \mathrm{~m}$. The aim of the present note is to show that r can be claulated if we know the ratio of Panofsky for He., $P_{\text {He }}$, i.e. the ratio of the probabilities of the processes

$$
\pi^{-}+H e^{3} \rightarrow H^{3}+\pi^{0} \quad \text { and } \quad \pi^{-}+H e^{3} \rightarrow H^{3}+\gamma
$$

The calculation is based on the following assumptions: a) the π-meson capture is considered in terms of the impulse approximation; b) in the nuclear wave function only the S-wave is taken into account.

Following I. Pomeranchukil| the π-meson capture in hydrogen will be desoribed by
 for process $\pi^{-}+p \rightarrow n+\gamma$, where \bar{r}_{n} is the π meson coordinate, \bar{r}_{p} is the proton coorinate, ω is the γ-quantum energy, \bar{e} is the unit vector of the γ quantum polarization, a and b are constants. The ratio $/ a / /^{2} / b /^{2}$ is easily expressed in terms of the Panofsky ratio for hydrogen, which is measured with great accuracy. The Panofsky ratio for hydrogen according to the $V . T$ Cocconi datal $4 \|$ is $P_{H}=1,53 \pm 0.02$.

The nuclear ware functions $\mathrm{He}^{3}, \mathrm{H}^{3}$ are
where

$$
\Psi=\frac{1}{\sqrt{2}}\left(\chi^{\prime} \xi^{\prime \prime}-\chi^{\prime \prime} \xi \prime\right) \psi\left(r_{1}, r_{2}, r_{3}\right)
$$

$$
\begin{aligned}
& x^{\prime}=\frac{1}{\sqrt{6}}\left(2 a_{1} a_{2} b_{3}-a_{1} b_{2} a_{3}-b_{1} a_{2} a_{3}\right) \\
& x^{\prime \prime}=\frac{1}{\sqrt{2}}\left(a_{1} b_{2} a_{3}-b_{4} a_{2} a_{3}\right)
\end{aligned}
$$

a, is the state of i nucleon with the spin projection $+1 / 2$,
b, is the state with the spin projection $-1 / 2, \xi^{\prime}, \xi^{\prime \prime}$ are constructed in a similar way in the isotopic spin space ${ }^{|6|}$,
$\psi\left(r_{i}, f_{i}, r_{s}\right) \quad$ is symmetrical in all three coordinates. After having calculated the matrix elements of

$$
H_{\pi_{0}}=a \sum_{i=1}^{s} \delta\left(r-r_{i}\right) r_{i}
$$

and

$$
\left.n_{y}=\frac{b}{v \omega} \sum_{t=1}^{3} \delta\left(r-r_{i}\right) \dot{\left(\bar{\sigma}_{1}\right.} \bar{e}\right)_{r_{i}}
$$

it is not difficult to get

$$
P_{H 0}=P_{H} \sqrt{ } \frac{E(\mu+m)^{3}: H}{E_{H}(\mu+M)^{3} m} \frac{\omega_{H}}{\omega} \frac{M+\omega}{m+\omega_{H}} \frac{1}{/\left\langle e^{i k \bar{r}}\right\rangle /^{2}}
$$

where m is the neutron mass, M is the tritium mass, μ is the π^{0}-meson mass, $E=4,06 \mathrm{MeV}$ is the kinetic energy of H^{3} and $\pi^{0}, E_{K}=3,3 \mathrm{MeV}$ is the kinetic energy of n and $\pi^{\circ}, \omega=235,80 \mathrm{MeV}$ is the γ quantum energy in process $\pi^{-}+i l e^{3} \rightarrow l l^{3}+\gamma$, $\omega_{H}=129,46 \mathrm{MeV}$ is the γ quantum energy is process $\pi^{-}+p \rightarrow n+\gamma \quad$.

The exponent in the matrix element can be expanded in power series

$$
\left\langle e^{\overline{k_{r}}-}\right\rangle=1-\frac{1}{3!} \mathrm{k}^{2}\left\langle\mathrm{r}^{2}\right\rangle+\frac{1}{5!} \mathrm{k}^{4}\left\langle\mathrm{r}^{2}\right\rangle-\frac{1}{7!} \mathrm{k}^{6}\left\langle\mathrm{r}^{6}\right\rangle
$$

We restrict ourselves to the three first terms of the expansion; $\left\langle r^{4}\right\rangle$ and $\left\langle r^{6}\right\rangle$ may be approximately expressed in terms of $\left\langle r^{2}\right\rangle$. We take $\psi\left(r_{1}, r_{2}, r_{3}\right.$, as a product of some single-particle functions

$$
\psi\left(r_{1}, r_{2}, r_{3}\right)=\phi\left(r_{1}\right) \phi\left(r_{2}\right) \phi\left(r_{3}\right)
$$

The estimates $\left\langle r^{4}\right\rangle$ and $\left\langle r^{\sigma}\right\rangle$ depend mainly on the behaviour of $\phi(r)$ for large r. For $\phi=e^{-a r}$ we obtaln $\left\langle r^{4}\right\rangle=\frac{5}{2}\left\langle r^{2}\right\rangle^{2} \quad,\left\langle r^{6}\right\rangle=\frac{35}{3}\left\langle r^{2}\right\rangle^{3}$; for $\phi=e^{-a r^{2}}$ we obtain $\langle r\rangle=\frac{5}{3}\left\langle r^{2}\right\rangle^{2},\left\langle r^{0}\right\rangle=\frac{35}{9}\left\langle r^{2}\right\rangle^{3}$ for $\phi=\theta(r-R)$ we get $\left\langle r r^{4}\right\rangle=\frac{25}{21}\left\langle r^{2}\right\rangle^{2},\left\langle r^{0}\right\rangle=\frac{125}{81}\left\langle r^{2}\right\rangle^{3}$. Calculations show that $/\left\langle e^{\bar{k} \bar{r}}\right\rangle /^{2}$ changes about by 3% due to the choice of $\phi(r)$ and about 38 due to term $k^{\circ}{ }^{\circ}$. It should be noted that these estimations are carried out for $r=1,5.10^{-13} \mathrm{~cm}$, for smaller radius the error decreases down to 1\%. The Panofsky ratio for hellum at different r is: $r=1,46.10^{-13} \mathrm{~cm}, P_{H}=2,37 ; r=1,56.10^{-13} \mathrm{~m}_{\mathrm{b}}$ $\mathbf{P}_{H^{\prime}}=2,47 ; \quad t=1,78 \cdot 10^{-13} \mathrm{Cm} \quad \mathbf{P}_{H_{G}}=2,71$.

Preliminary experiment results on the π-capture in $\mathrm{He}^{3} 151$ yield $P_{\text {He }}=2,16 \pm 0,28$. This value of the Panofsky ratio for helium corresponds to the radius of transition

$$
r\left(=1,24+0,30, \quad .10^{-13} \mathrm{~cm}\right.
$$

We note once again that calculations are carried out in terms of the impulse approximation. An independent determination of the root-mean-square radius in electron scattering experiments on He is of great interest both for the theory of μ-capture in He^{3} and the check of the applicability of the impulse approximation in the theory of π-capture in He^{3}.

In conclusion the author expresses his gratitude to R.M. Suliaev and S.S. Gershtein
for stimulating this work, I thank also Yu.A. Shcherbakov and I.V. Fajomkin for the discussions and valuable remarks.

References

I. C. Werntz. Nuclear Physics 16, 59 (1960).
2. A. Fujii, H. Primakoff. Nuovo Cimento 12, 327 (1959).
3. I.Ya. Pomeranchuk. JETP, 22, 129 (1952).
4. V.T. Cocconi, T. Fazzini, G. Fidecaro, M. Legros, N.H. Lipman, A.W. Merrison. Nuovo Cimento 22, 494 (1961).
5. I.V. Falomkin, A.I. Filippov, M.M. Kulyukin, Yu.A. Scherbakov, R.M. Sulyaev, V.M. Tsupko-Sitnikov, O.A. Zaimidoroga (to be published).
6. M. Verde. Encyclopedia of Physics edited by S. Flugge vol. XXXIX, (1957).

