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The methods for solving the problems of electrical 
field shaping may be divided into two large groups. The 
first group is based on the modelling (mathematical 
modelling by using the computer, electrolytic modelling 
using an electrolytic tank, etc.) of fields produced by the 
electrodes of the known shape. This method, as a rule, 
is more or less time-consuming. The second approach to 
the problem is the analytical solution. The basic drawback 
of this method is its limited applicability. As is known, 
the form of boundary conditions does not allow one quite 
often to obtain an exact analytic solution, which makes 
one use the methods of the first group. 

Below is given a version for solving two-dimensional 
problems. Two approximated methods giving sufficient 
accuracy for a number of practical problems are described. 

The conventional two-dimensional problems require 
either the certain dependence of the potential or its 
derivative along one or some curves, or the distribution 
of all the charges generating the field in the given region 
should be given. 

In the first case one must calculate ·either integrals 
defining the series coefficients in the solution by the 
method of variable separation or the integral in the Green 
formula. This causes difficulties in solving the problems 
practically. 

Nevertheless, very often it proves possible to deter­
mine sufficiently accurately the pattern of the field in 
the given region, conserving only the final number of 
the series terms and solving in order to determine 
coefficients, the same number of equations obtained by 
selecting the proper number of points of the boundary 
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curve with the known values of the potential or its 
derivatives /I I. Then the general solution of the Laplace 
equation can be written in the approximated form as the 
sum of N particular solutions u k. ( x ,y ) and the expres­
sion for the potential U ( x,y ) can be written as fol-
lows: 

N 

U(x,y) =I 1'\.uklx,y) · 
b=I 

(1) 

The number of the functions uk ( x ,y) must be equal 
to the number of points at which it is necessary to 
satisfy the boundary conditions. Each condition is a linear 
equation, therefore, the problem is confined to the so­
lution of the system of N linear equations having the 
unknown values of a k . As a result one finds expression 
(1) having the determined coefficients a k . It is a solu­
tion of the Laplace equation which satisfies the conditions 
at N points of the boundary. 

When applying this method practically one must pay 
attention to two facts. This method gives a rich choice 
of the number and the positions of boundary points, which, 
of course, affects the form of the solution. As experience 
shows, with increasing the number of conditions N the 
system of equations becomes weakly conditioned. In 
this case the values of the coefficients greatly increased 
and the values of U ( x,y ) within the mastering points can 
be inadmissably large. Apparently, N ~ 12 is reasonable. 

It is well-known that both real and imaginary parts of 
each regular function F ( z ) of the complex variable 
z = x+ iy are harmonic and, hence, satisfy the Laplace 
equation. Thus, any of them maybeusedas uk ( x,y) Here 
we confine ourselves to considering only one of important 
cases which proves sufficient for a majority of actual 
problems. 

The regular function F { z ) in the region without 
special points can always be presented as a power series. 
For the symmetric field U(x,y) =U(x, -y ) it leads to 
the following expression for the potential 

N-I 2 2 k./2 u A ( X' y ) = I a k. ( X + y ) cos k e • (2) 
k.=O 
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where (J = arg ( x + i y ) • (3) 

The disadvantage of expression (2) is as follows: the 
field U A ( x,y) satisfying the relation &A= 0 has no 
closed equipotentials. Therefore, it is possible to use 
any of the equipotentials as a surface electrode only .in 
some restricted region where the edge effects of the 
actual system can be neglected. 

Expression (2) at the symmetry axis has the following 
form: N -r k 

UA(x,O)=~akx. (4) 
k""O 

Having as a boundary condition the field on the sym­
metry axis it can be expressed as a power series ( 4) 
and the obtained coefficients substituted in (2). All the 
calculations are easily made by means of a small com­
puter. 

E x a m p 1 e l. In the centre of coordinates ( x=O , y= 0 ) 
it is necessary to produce the electric field of intensity 
& = 80 kV ;em having a constant slope ~&Ja x -80 kV ;em 

1nx a region -0.5<x < 0.5. Let UA (-0.5; 0) :OHence, 
three conditions are applied and therefore N must 
equal 3. By solving the system of these equations , one 
obtains a 0 = -50 kV, a 1 "" -80 kV ;em, a 2 = 40 kV ;em 2. 
Figure 1 shows the corresponding equipotentials. 

Fig. l. The shape of equipotentials for a power series 
solution (solution of example 1). 
Numbers are potentials (kV) at proper lines. 
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The second approach used in this investigation to 
solve practical electrostatic problems is based on the 
image method /2/. With certain conditions one can select 
such a system of charges having a proper value and pro­
perly located outside the given region that the effect of 
these charges provides correctly or with sufficuent 
approximation the required boundary conditions. 

Thus, the actual problem having boundary conditions 
is replaced by an identical problem for the field deter­
mination in the expanded region without boundary con­
ditions, but with the account of charges-image~. Charges­
images should be outside the given region since the 
potential of the field produced by them must satisfy 
the Laplace equation in this region. If, similar to the 
first method, one puts the boundary conditions only in the 
final number of points of the given curve, one obtains 
the final number of charges-images equal to that of 
boundary points. 

Further, an identical problem is exactly solved and the 
comparison of the fields along the boundary curve both 
obtained from this solution and the given one determines 
how accurately the identical problem corresponds to the 
real one. 

The plane system of N point charges has a potential 
which can be written as the following sum: 

N 2 
lJs( x,y) = I qk x fn· [ ( x-"k_ ) + (y-yk J 2 1. (5) 

k=l 

The charges are located at the points ( "k , y k ) • The 
main advantage of expression (5) is that the equipotentials 
of such a system are closed. With the addtional condi­
tion 

N 
:£ k= 1 q k = 0 

the potential at the infinity vanishes to zero. 

(6) 

The last expressions have one more free choice in 
addition to the above-said ones, namely, before composing 
the equations corresponding to the boundary conditions 
it is necassary to distribute N charges, i.e., it is 
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necessary to set their coordinates xk , y k • We per­
formed it in an experimental way. One of the criteria for 
comparing the various results of the same problem can 
serve the sum :£ I qk I, which should be near the minimum. 
Despite the described arbitrary approach, the results 
of applying formula (5) are rather promising which is 
proved by below calculations of the focusing section of 
the electrostatic deflector of the U -120M isochronous 
cyclotron /3/ and the electrostatic peeler of the extrac­
tion system of the ,F" machine /4/. 

Exam p 1 e 2. It is necessary to find the shape of elect­
rodes producing the electric field described in example 1. 
In addition to the mentioned conditions the following 
is required: in order to have the proper linearity of the 
electric field at the symmetry line we take a 3lJ 1 a x3 =- o, 
a4 U I a x 4 = 0 . In order to provide the grounded screen 
at the height y = 3.8 em let U (-.05; 3.8) = o , II (0.5; 
3.8)= 0. Require also that condition (6) is fulfilled. On 
the whole 8 conditions have been applied. In order to 
satisfy these boundary conditions we distribute 8 charges 
in the region occupied by the supposed electrodes: 
(-0.8; 0.2), (-0.9; 0.45) (0.6;1), (0.8; 0.8), (1; 0.6), (0; 5.5), 
(0; 7.5), (1.5; 7) and their conjugated pair charges in the 
hemisphere y < 0 with equal q k , respectively. The 
results are shown in Fig. 2, where the shape of the 
electrodes producing the given electric field at the 
symmetry line is seen. 

Exam p 1 e 3. It is required to produce an electric 
field of intensity &x ( x, o ) = o with x ~ o, the linear 
increase of intensity being !Nix ;ax ly=O = 6.6 kV jcm 2 at 
a cut of o <x < 6 em. It is required to provide a grounded 
screen at the height y = 5 em and the hole in the left 
electrode at least 2 em for the proton beam to enter. 
After several solutions the best result has been taken: 
N = 12; the charges are located at the points ( -0.095; 
2.063), (7 .5; 1.623), ( -15; 9.07), ( -12.91888; 9.142), 
( -10.85777; 9.08), ( -8.66666; 9.07), ( -6.55555; 9.07), 
( -4.44444; 9.07), ( -2.33333; 9.07), ( -0.2222; 9.04), 
(2.09888; 9.085), (4; 9.22) and the corresponding symmet-
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Fig. 2. Focusing section of the electrostatic deflector 
(solution of example 2). Numbers are potentials (kV) 
at proper lines. 

rical points of the semi-plane y < 0; the following con­
ditions have been assigned: au tax , o , a 2u 1 a x 2 = o , 
a3 u 1a x

3 =0 at the point (-3.2; 0); au I ax= -19.9, 
J u ta x2

= -3.3 at the point (3; 0); a 3 u ;ax~ 0 at the point 
(2.81; 0); U = 0 at the points ( -0.04; 1.58),(-0.501;1.5~ 
(5; 5), (5.96; 5), (7 .65; 5) and condition (6) is set. The 
result of calculation is shown in Figs. 3 and 4. The 
effect of the fields in the vicinity of the point (3. 7; 5) 
and x < -1 is neglected. The equipotential U = -0.5 is 
taken as a grounded electrode. 

All the above calculations have been performed by 
means of the NAIRI-2 computer modified for the opera­
tion with a plotter /st. 

The described method allows one to find the accurate 
solution of the 2-dimensional Laplace equation with 
boundary conditions assigned in the finite number of 
points. If one knows the general properties of particular 
solutions one can select a proper form of mathematical 
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Fig. 3. Electrostatic peeler of the extraction system of the 
"F" machine (solution of example 3). Numbers are 
potentials (kV) at proper lines. 
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Fig. 4. Electric field intensity at the symmetry axis 
produced by the electrodes shown in Fig. 3. 

solution. The first method is especially convenient for 
reconstructing the electrical field by means of the field 
at the symmetry axis. Practically all the processing of 
data may be performed with a small computer. The 
second method is more convenient for practical deter-
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mination of the shape of electrodes though its drawback 
is a great freedom for selecting some parameters. All 
the equipotentials make closed figures of finite sizes and 
each of them can be replaced by the electrode surface 
which is the main advantage of that method. The impor­
tant fact is that the obtained result takes into considera­
tion the edge effects on the field of the working region. 
The use of both the plotter and graph display makes it 
possible to correct boundary conditions when solving the 
problem. 
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