0-361

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

4214/2-74

Ю.Ц. Оганесян, А.С.Ильинов, А.Г.Демин, С.П.Третьякова

ЭКСПЕРИМЕНТЫ ПО ПОЛУЧЕНИЮ НЕЙТРОНОДЕФИЦИТНЫХ ИЗОТОПОВ ФЕРМИЯ И НОВЫЕ ВОЗМОЖНОСТИ СИНТЕЗА ЭЛЕМЕНТОВ С Z > 100

1974

∧АБОРАТОРИЯ ЯДЕРНЫХ РЕАНЦИЙ

28/x-74

D7 - 8194

D7 - 8194

Ю.Ц. Оганесян, А.С.Ильинов, А.Г.Демин, С.П.Третьякова

ЭКСПЕРИМЕНТЫ ПО ПОЛУЧЕНИЮ НЕЙТРОНОДЕФИЦИТНЫХ ИЗОТОПОВ ФЕРМИЯ И НОВЫЕ ВОЗМОЖНОСТИ СИНТЕЗА ЭЛЕМЕНТОВ С Z > 100

Направлено в Nuclear Physics

объедізленній инстатут яперных всследованна БИБЛИОТЕКА

Summary

Both the experimental and theoretical data on the production of the neutron-deficient isotopes 244 Fm and 246 Fm in the bombard-ments of lead and bismuth isotopes with 40 Ar and 37 Cl ions are presented.

By using different lead isotopes the cross sections for the reactions $({}^{40}\text{Ar}, xn)$ at x =1,2,3 and 4 have been measured.

It has been shown that in case a target of the "magic" 208 Pb nucleus or its neighbours is bombarded with ions of mass \geq 40, the compound nuclei formed appear to be weakly excited and de-excite by emitting 2 or 3 neutrons.

New possibilities of synthesizing elements with atomic number Z > 100 are being discussed in the framework of the experimental data obtained.

🕲 1974 Объединенный инспипуп ядерных исследований Дубна

1. ВВЕДЕНИЕ

Одним из основных методов синтеза трансфермиевых элементов являются ядерные реакции, вызываемые ускоренными тяжелыми ионами. Известно, что различные изотопы тяжелых элементов с порядковым номером $Z_{\pm} 102-105$ были получены в реакциях, протекающих с образованием составного ядра при облучении изотопов элементов от U до Cf ускоренными ионами¹¹ B, ¹² C, ^{16,18} O и ²² Ne^{/1/}.

Дальнейшее продвижение этим методом в область более тяжелых элементов Z > 105 и попытки синтеза сверхтяжелых ядер Z = 110-126 связаны с использованием более тяжелых ио́нов. Однако целый ряд экспериментов, проведенных в различных лабораториях с ионами 31p, 40 Ar, 68 Zn, 76 Ge и 84Kr, пока не привел к положительным результатам. Так, например, верхняя граница сечения образования спонтанно делящихся изотопов 107 элемента в реакции $238U(31 \text{ p}, \text{ xn})^{269-x107}$ оказалась в десятки раз меньше сечений образования известных ядер 104 и 105 элементов, которые были получены в реакциях с ионами 180 и $22 \text{ Ne}^{/2/}$. Аналогичная ситуация имеет место и при синтезе сверхтяжелых элементов: в реакциях

²⁴⁸ Cm (⁴⁰ Ar, xn) ^{288 - x} 114 $^{/3/243}$ Am (⁶⁸ Zn, xn) ^{311 - x} 125 $^{/4/}$, ²³² Th (⁸⁴ Kr, xn) ^{316 - x} 126 $^{-6/232}$ Th (⁷⁶ Ge, xn) ^{308 - x} 124 $^{/6/}$

были получены лишь верхние границы сечений, лежащие в пределах от 5.10^{-30} см² до 10^{-34} см².

Возможно, что отсутствие ожидаемого эффекта в этих экспериментах может быть объяснено свойствами синтезируемых ядер. Вместе с тем не исключено также, что для столь тяжелых ионов существуют определенные факторы, препятствующие образованию составного ядра /7-10/. К сожалению, экспериментальные данные в этой области весьма ограничены и интерпретация их неоднозначна. Поэтому с нашей точки зрения прямой ответ на вопрос, образуется ли классическое составное ядро, дает применение традиционного метода измерения сечений реакции с испусканием составным ядром х нейтронов. С помощью этого метода можно изучать также и свойства образующегося составного ядра, прежде всего его энергию возбуждения Е*. Сечение образования тяжелых и сверхтяжелых ядер в основном состоянии очень сильно зависит от величины барьера деления, которая определяется главным образом оболочечными эффектами. Поскольку оболочечные эффекты разрушаются при больших энергиях возбуждения , исследование этого явления представляется важным для решения проблемы синтеза новых элементов. До настоящего времени такие эксперименты по исследованию процесса образования сильноделящегося составного ядра в реакциях с очень тяжелыми ионами не проводились. Наиболее тяжелые нуклиды были получены в реакциях с ионами. не тяжелее ²² Ne, а наиболее тяжелые ядра Po. которые были получены в реакциях (HI,xn) с нонами Аг, Кг, Хе, относятся к области слабоделящихся.

Целью данной работы является исследование процесса образования сильноделящихся составных ядер в реакциях с ионами тяжелее неона. Эксперименты целесообразно было начать с ионами массы A₁ ~ 4O а.е., которые могут быть ускорены с достаточно высокой интенсивностью на циклотроне Лаборатории ядерных реакций ОИЯИ У-ЗОО. В механизме взаимодействия ионов ⁴⁰ Ar с тяжелыми ядрами уже можно ожидать заметного отличия от того, что имело место в реакциях с более легкими ионами. В качестве образующегося составного ядра следует выбрать сильноделящееся ядро, барьер которого уже в значительной степени определяется оболочечными эффектами, как это имеет место для всех трансфермиевых и сверхтяжелых элементов.

Анализ весьма ограниченного количества доступных комбинаций мишень - частица приводит к выбору реакции ²⁰⁸ Pb(⁴⁰ Ar, 4n) ²⁴⁴ Fm ²⁴⁴ Fm является одним из наиболее сильноделящихся известных нуклидов. Этот изотоп, с вероятностью, близкой к 100%, испытывает спонтанное деление и имеет период полураспада 3,3 *мсек.* Свойства ²⁴⁴ Fm были установлены Нурмиа и др., которые синтезировали его в реакции²³³ U(¹⁶ 0,5n) ²⁴⁴ Fm с сечением 1.10 - ³² см²/¹²/. Поскольку при переходе от ¹⁶ O к ⁴⁰ Ar сечение образования составного ядра могло существенно уменьшиться, необходимо было обеспечить максимально высокую чувствительность экспериментальной методики для регистрации короткоживущих спонтанно делящихся ядер.

2. ПОСТАНОВКА ОПЫТОВ И ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

Схема установки показана на рис. 1. Пучок шестизарядных ионов ⁴⁰ Ar с энергией 220 МэВ и интенсивностью до 10 мкА проходил через диафрагмы и попадал на вращающуюся мишень, которая представляла собой охлаждаемый водой диск из дюралюминия, имеющий вид усеченного конуса с углом при основании 20° и максимальным диаметром 250 мм. На боковой поверхности диска методом вакуумного напыления был нанесен слой СВИНЦА, ТОЛЩИНА КОТОРОГО В РАЗЛИЧНЫХ ОПЫТАХ ВАРЬИРОвалась от 2 до 5 *мг/см*². Максимальная скорость врашения диска составляла 2800 об/мин /1 оборот -20 мсек/. Температура диска в процессе экспериментов контролировалась специальными датчиками и не превышала 60°С. Вокруг мишени на расстоянии 3 мм были расположены диэлектрические детекторы осколков деления - пластинки слюды с содержанием урана и тория < 10 $^{-7}$ г/г.

Детекторы осколков деления.

Рис. 1. Схематический вид экспериментальной установки для регистрации короткоживущих спонтанно делящихся ядер.

В данном опыте слой свинца является одновременно толстой мишенью, в которой происходит интегрирование функций возбуждения реакций Pb(⁴⁰Ar, xn), и сборником ядер отдачи. При энергии ионов 40Ar 220 *МэВ* ядра отдачи останавливаются на глубине от 1 до 3 *мг/см²* в направлении, перпендикулярном плоскости детекторов. Экспериментально было установлено, что эффективность регистрации осколков в этих условиях составляет около 50%.

Контроль за распределением и интенсивностью пучка ионов осуществлялся с помощью специального сканирующего устройства, расположенного перед диафрагмами. Интегральный поток ионов ⁴⁰ Ar в каждом опыте определялся по выходу изотопов тербия, продуктов реакций ^{114,116} Cd (⁴⁰ Ar, xn) Dy <u>Э.3.</u> Tb с помощью

Ge (Li)- γ -спектрометра. Для этого на боковую поверхность диска наклеивалась мишень из кадмия толщиной -30 мг/см², площадь которой составляла 1% от общей площади свинцовой мишени.

Чувствительность установки такова, что наблюдение одного трека спонтанного деления на детекторах в результате 10-часового облучения пучком ионов 40 Ar с интенсивностью ~5 *мкА* соответствует сечению образования 2.10^{-36} см². Низкий уровень фона, обеспечивающий столь высокую чувствительность, был достигнут благодаря применению защитных экранов, предохраняющих детекторы от рассеянных ионов, а также благодаря специальной процедуре отжига и травления слюды для наблюдения осколков спонтанного деления.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В первом эксперименте мишень из свинца естественного изотопного состава облучалась ионами ⁴⁰ Ar при скорости вращения 2800 об/мин. При интегральном потоке 1,1.10¹⁷ ионов было зарегистрировано 662 трека осколков спонтанного деления. Из временного распределения событий, представленного на *рис.* 2, можно определить период полураспада спонтанно делящегося излучателя, который равен 4,0±0,5 мсек. Это значение согласуется с данными, полученными ранее для изотопа ²⁴⁴ Fm. Полагая, что наблюдаемый эффект обусловлен реакцией ²⁰⁸Pb (⁴⁰ Ar, 4n) ²⁴⁴ Fm, можно определить ее выход, равный /3,4±0,7/1/10¹⁴ частиц.

Затем опыт был повторен с мишенью из обогащенного изотопа ²⁰⁸ Pb /содержание ²⁰⁸ Pb - 97,8%/. При интегральном потоке 6.10¹⁶ ионов зарегистрировано 214 треков осколков спонтанного деления, что соответствует выходу реакции ²⁰⁸ Pb(40 Ar,4n)²⁴⁴ Fm /1,0[±] ±O,2/.1/10¹⁴частиц.

Рис. 2. Кривая распада²⁴⁴ Fm, образующегося при облу- ' чении свинца ионами ⁴⁰ Ar.

Сравнивая результаты двух опытов, следует отметить расхождение в значениях выхода реакции 208 Pb (40 Ar, 4n) 244 Fm , определенных с мишенями из естественной смеси изотопов свинца и обогащенного изотопа 208 Pb. Этот факт приводит к предположению о существенном вкладе реакций с испарением менее 4 нейтронов в образование 244 Fm. Такими реакциями являются 207 Pb (40 Ar, 3n) и 206 Pb (40 Ar, 2n). Для проверки этого предположения были поставлены прямые эксперименты по определению сечений реакций с испусканием одного, двух и трех нейтронов.

При облучении мишеней из обогащенного изотопа ²⁰⁷ Pb /с содержанием ²⁰⁷ Pb 83%/ интегральным потоком 2.10¹⁶ ионов ⁴⁰ Ar было зарегистрировано 111 треков, а в опыте с мишенью из ²⁰⁶Pb /содержание ²⁰⁶Pb -90,4%/ при интегральном потоке 1.10 ¹⁶ ионов 35 треков. Временное распределение треков в этих опытах соответствовало распаду²⁴⁴ Fm, что позволяет пренебречь возможным вкладом более легких неизвестных спонтанно делящихся изотопов.

Сравнительно большой выход реакции ²⁰⁶ Pb(⁴⁰ Ar, 2n) позволяет исследовать реакцию с испарением двух нейтронов в другой комбинации, ²⁰⁸ Pb +⁴⁰ Ar \rightarrow ²⁴⁶ Fm, где изотоп ²⁴⁶ Fm / T1/2 = 1,2 *сек*/ испытывает спонтанное деление с вероятностью около 8% /^{12,13}/. Для регистрации распада ²⁴⁶ Fm скорость вращения диска-мишени была понижена до 7 *об/мин* /1 оборот - 8,5 *сек*/. Использовалась мишень из обогащенного изотопа ²⁰⁸ Pb. На *рис.* 3 представлено временное распределение треков спонтанного деления, зарегистрированных в этом опыте.

Из полученных данных следует, что период полураспада ²⁴⁶ Fm составляет $O,9\pm O,3$ сек, что согласуется с ранее опубликованными результатами. Выход реакции ²⁰⁸ Pb(⁴⁰ Ar, 2n) ²⁴⁶ Fm равен ~ 3.10⁻¹⁴ 1/нонов. Погрешность этой величины, оцениваемая фактором 2, обусловлена, главным образом, неопределенностью доли спонтанного деления в распаде ²⁴⁶ Fm.

Интересно исследовать реакцию с испарением двух нейтронов с более легкими бомбардирующими ионами, например, в комбинации 209 Bi (37 Cl, 2n) 244 Fm. Начальная энергия шестизарядных ионов 37 Cl составляет около 240 *МэВ*, что значительно превышает энергию ионов, соответствующую реакции 209 Bi (37 Cl, 2n). Это привело к необходимости использования поглотителя из алюминия, который служил также для вакуумного разделения экспериментальной камеры и ионопровода. Камера была наполнена гелием /~ 30 *мм* Hg /с целью охлаждения поглотителя. Интегральный поток ионов 37 Cl на висмутовую мишень составил 5.10¹⁶ ионов. Было зарегистрировано всего 18 треков осколков спонтанного деления, распределение которых позволяло отнести их к распаду 244 Fm. Выход реакции 209 Bi (37 Cl, 2n) 244 Fm составляет 6.10⁻¹⁶ 1/ионов.

Рис. 3. Кривая распада 246 Fm, образующегося в реакции 208 Pb(40 Ar, 2n) 246 Fm.

Сделана также попытка определения выхода реакции с испарением одного нейтрона. С этой целью проведен опыт, в котором регистрировалось спонтанное деление ²⁴⁶ Fm, образующегося при облучении ²⁰⁷ Pb ионами ⁴⁰ Ar. В этом опыте использовалась мишень из обогащенного изотопа ²⁰⁷ Pb с содержанием 98%, / ²⁰⁸ Pb -1,3%/. При интегральном потоке 6.10¹⁶ ионов 40 Ar зарегистрирован всего один трек спонтанного деления, который мог быть обусловлен реакцией

208
 Pb (40 Ar , 2n) 246 Fm

на примеси изотопа ²⁰⁸ Рb в мишени. Таким образом, для реакции ²⁰⁷ Pb(⁴⁰Ar, ln) может быть определена лишь верхняя граница выхода, составляющая 5.10⁻¹⁶1/'ионов.

Результаты экспериментов по получению изотопов ²⁴⁴Fm и ²⁴⁶Fm в реакциях с ионами ⁴⁰Ar и представлены в таблице. Приведены также экспериментальные величины сечений реакций, соответствующих максимуму функции возбуждения, σ макс.эксп. . Эти величины оценивались по измеренным значениям выходов реакций из толстой мишени с использованием расчетных значений ширин функций возбуждения *, которые варь-ируются от 8 *МэВ* для реакции²⁰⁷ Pb(⁴⁰Ar, 1n) до 15 МэВ для реакции ²⁰⁸ Pb (⁴⁰ Ar, 4n). При таком способе оценки о макс. эксп. основная неопределенность заключается в возможном расхождении расчетных и реальных форм функций возбуждения. Поскольку характер зависимости формы функций возбуждения реакций с испарением нейтронов от определяющих ее факторов /энергия возбуждения и угловой момент составного ядра/ известен, это расхождение не может привести к ошибке в определении абсолютных значений о макс. эксп. превышающей фактор 2. Относительная ошибка при сопоставлении о макс. эксп. различных реакций сушественно меньше и определяется, главным образом, погрешностью в измеренных значениях выходов реакций, составляющей ~ 30%.

Для интерпретации представленных результатов и сравнения с данными, полученными ранее в реакциях с более легкими ионами, воспользуемся методом Джексона-Сиккеланда для расчета сечений хп-реакций /15/, который удовлетворительно описывает большое число экспериментальных данных по получению тяжелых ядер с Z < 106 в реакциях с ионами $A_1 \leq 22^{/16}$. Предположим при этом, что механизм слияния ядер существенно не меняется при переходе от относительно легких бомбардирующих ионов / 12 С, 16 О, 22 N / к 40 Ar.

^{*}Измеренная нами функция возбуждения в реакции 207 Pb (⁴⁰Ar, 3n)²⁴⁴ Fm находится в хорошем согласии с расчетом. При оценке *о* макс.эксп. использовались данные о тормозной способности ионов аргона и хлора, взятые из таблиц Норсклиффа и Шиллинга /14/.

Тогда сечение реакции (HI,xn) может быть представлено в виде:

$$\sigma_{\mathbf{x}}(\mathbf{E}) = \{\prod_{i=1}^{\mathbf{x}} [\Gamma_{n} / (\Gamma_{n} + \Gamma_{f})]_{i} \} \sum_{\mathbf{L}=0}^{\mathbf{L}_{CN}} \sigma_{\mathbf{L}}(\mathbf{E}) \mathbf{P}_{\mathbf{x},\mathbf{L}}(\mathbf{E}^{*}) \cdot / 1 /$$

Здесь Е - энергия иона, σ_L - сечение 'L-ой парциальной волны, $P_{x, L}(E^*)$ - вероятность эмиссии x нейтронов из составного ядра с энергией возбуждения E^* и угловым моментом 'L.

Для определения величины критического углового момента воспользуемся эмпирическим соотношением, полученным из опытов по измерению угловых корреляций осколков деления при облучении ²³⁸U ионами ¹²C, ¹⁶O, ²⁰ Ne и ⁴⁰ Ar /^{17/}:

$$\sum_{L=0}^{L_{CN}} \sigma_{L} / \sum_{L=0}^{\infty} \sigma_{L} = (1 + 0.03 A_{1})^{-1} .$$
 /2/

Парциальное сечение σ_1 определяется выражением

$$\sigma_{\rm L} = \pi \, \lambda^2 \, (2 \, \rm L + 1) \, T_{\rm L} \, .$$
 /3/

 T_L - коэффициент прохождения L - ой парциальной волны через потенциал $V_L(r)$ для взаимодействующих ядер $^{/18/}$

$$V_{L}(r) = \frac{Z_{1} Z_{T} e^{2}}{r} + \frac{h^{2} L (L+1)}{2 \mu r} + V_{0} exp \frac{r_{0} (A_{1}^{1/3} + A_{T}^{1/3}) - r}{d} / 4/$$

Для параметров потенциала взяты следующие значения: $V_0 = -70 \ M_{3}B$; $r_0 = 1,25.10^{-13} cm$, $d = 0,44.10^{-13} cm$ /^{19/}. Коэффициенты прохождения T_L вычисляются в приближении перевернутой параболы /^{20/}.

Величина $P_{x,L}(E^*)$ рассчитывалась по формулам, приведенным в работе /16/. Значения входящих в эти формулы параметров были получены из условия наилучшего согласия с экспериментальными данными для формы функций возбуждения реакций (HI, xn)/15,16/ Для расчета отношения парциальных ширин эмиссии нейтрона и деления Γ_n/Γ_f использовалось эмпирическое соотношение Сиккеланда /15/.

Результаты расчетов представлены на *рис.* 4, а сравнение их с экспериментальными данными приведено в таблице. Величины сечений x_n -реакций и согласие их с расчетными значениями указывают на то, что взаимодействие ионов ⁴⁰ Ar с тяжелым ядром с достаточно большой вероятностью приводит к образованию составного ядра.

Более определенный количественный анализ данных не представляется возможным, поскольку измеряемые сечения образования сильноделящихся ядер в основном состоянии составляют $10^{-7} - 10^{-10}$ часть полного сечения слияния. Необходимое для такого анализа точное определение доли неразделившихся ядер требует проведения более детальных опытов по измерению зависимости Γ_n/Γ_f от энергии возбуждения и углового момента ядра.

Из таблицы видно, что экспериментальное сечение реакции 208 Pb(40 Ar, 4n) 244 Fm в 10 раз меньше расчетного и в 100 раз меньше сечения реакции

33
U (16 Q (4n) 245 Fm.

которое было определено Нурмна и др. в работе /12/ Однако на основе измеренных выходов xn -реакций на толстой мишени трудно ответить на вопрос, являются ли отмеченные расхождения следствием подавления образования составного ядра или следствием влияния различий в свойствах образовавшихся составных ядер на процесс девозбуждения.

Вместе с тем, рассматривая отдельно реакцию Pb+Ar, можно указать на интересную особенность: сечения реакций с испусканием двух и трех нейтронов сравнимы и даже превосходят сечение 4n -реакции.

Это обстоятельсьво представляется весьма важным как с точки зрения получения слабовозбужденных составных ядер, так и механнзма их образования. Поэтому ниже мы остановимся более подробно на этом вопросе.

Как видно из соотношения /1/, вероятность образования ядра в основном состоянии существенным образом

Puc. 4. Cevenue peakuuu 208 Pb $\binom{40}{40}$ Ar, xn) 248 - x Fm в зависимости от энергии ионов 40 Ar/лаб. сист./. Сплошные и пунктирные кривые - результаты расчетов со значением параметра d = 0,34.10⁻¹³ см и d=1,44.10⁻¹³ см, соответственно. зависит от энергии возбуждения составного ядра. В свою очередь, минимальное значение энергии возбуждения составного ядра определяется барьером взаимодействия и Q-реакции:

где $B_{int} = \frac{E_{min}^* = B_{int} + Q}{r_e(A_1^{1/3} + A_T^{1/3})}$ и $Q = M_I + M_T - M_{CN}$. На рис. 5

показана зависимость E_{\min}^* для составного ядра ²⁴⁸ Fm , полученного в различных комбинациях мишень-ион. При расчете E_{\min}^* массы ядер были взяты из работы Майерса и Святецкого ^{/21/}, а значение параметра эффективного радиуса взаимодействия г_е было равно 1,45.10⁻¹³ см.

Видно, что с ростом массы бомбардирующего иона энергия возбуждения составного ядра увеличивается и достигает максимума в области $A_I \approx 25$ и затем уменьшается почти вдвое в области $A_I \approx 40-50$.

Этим объясняется хорошо известный факт, что в экспериментах по синтезу тяжелых элементов Z = 100-105 с ионами 12 C, 14 N, 16 O и 22 Ne не наблюдались реакции с испусканием малого числа нейтронов, как это имеет место в реакции 208 Pb (40 Ar, xn).

Поскольку реакции (40 Ar, 2n, 3n) идут при энергиях налетающего иона, близких к барьеру взаимодействия, сечение их чрезвычайно чувствительно к величине барьера. Как видно из *рис.* 4, изменение B_{int} на 4 *МэВ* меняет сечение 2n -реакции в 10 раз. Благодаря этому обстоятельству из экспериментальных значений сечений реакций с $x \leq 3$ можно достаточно точно определить величину B_{int}, которая дает представление о характере механизма слияния столь сложных ядер.

На рис. 6 показано сравнение расчетной и экспериментальной энергетических зависимостей сечения образования составного ядра в реакции ⁴⁰ Ar + ²⁰⁸Pb. Теоретические кривые рассчитаны для параметров потенциала взаимодействия $V_0 = -70$ МэВ, $r_0 = 1,25.10^{-13}$ см и при разных значениях параметра диффузности d = $= 0,44.10^{-13}$ см и d = $0,34.10^{-13}$ см. Видно, что расчетные зависимости хорошо согласуются с экспериментальными

Рис. 5. Минимальная энергия возбуждения составных ядер 248 Fm и 258 Ku, образующихся в различных комбинациях мишень - частица. Пунктирные кривые проведены через расчетные значения E^*_{\min} , представленные точками.

Рис. 6. Зависимость сечения образования составного ядра 248 Fm в реакции 208 Pb + 40 Ar от энергии ионов 40 Ar . Пунктирная и сплошная кривые - результаты расчетов со значением параметра d = 0,34.10⁻¹³ см и d = 0,44.10⁻¹³ см, соответственно. Точки - экспериментальные данные, полученные в работе $^{/22/}$.

значениями. Из сравнения с экспериментальными данными для сечений 2n-и 3n - реакций /см. таблицу/ следует отдать предпочтение расчету с d = 0,34.10⁻¹ см.

Необходимо отметить, что вариации масс участвующих в реакции ядер вызывают соответствующие нерегулярные изменения в величине Q. Поэтому для близких комбинаций мишень-ион могут наблюдаться отклонения в несколько $M \rightarrow B$ от плавной зависимости E_{\min}^* , изображевной на *рис.* 5, что также должно привести к заметному различню в сечениях реакций с x <3. Примером могут служить реакции

 $^{209}\text{Bi}(^{37}\text{Cl},2n)^{244}$ Fm 206 Pb (40 Ar, 2n) 244 Fm,

в которых величина Е * принимает соответственно значения, равные ЗО и З2 МэВ. И экспериментальные, и расчетные сечения реакций отличаются более чем в 10 раз, что является следствием столь малой разницы в значениях Е* , поскольку в обоих случаях образуется одно и то же составное ядро ²⁴⁶ Fm.

Таким образом, внутренняя самосогласованность данных по описанию образования составных ядер в реакциях Cl + Bi и Ar + Pb позволяет применить предложенный метод расчета для анализа возможностей получения более тяжелых составных ядер. В этом случае образование ядер тяжелых элементов в реакциях с $x \le 2$ должно иметь преимущество по сравнению с использовавшимися ранее реакциями с испусканием четырех и пяти нейтронов, т.к. уменьшение числа испаряемых нейтронов на 2-3 единицы увеличивает долю неразделившихся ядер на несколько порядков /см. формулу /1/ при $\Gamma_n/\Gamma_f < 0, 1/$.

Если, например, построить зависимость Е * для составного ядра 258 Ku, то она будет иметь минимум при A₁ ≈ 50 . Расчеты показывают, что сечение образования 104 элемента в реакции 50 Ti + 208 Pb $\rightarrow ~^{256}$ Ku + 2n может достигать значения 10⁻³¹ - 10⁻³² см²,что в десятки и сотни раз превосходит сечение реакции 242 Pu + 22 Ne $\rightarrow ~^{260}$ 104 + 4n, в которой был впервые синтезирован изотоп 260 104.

ЗАКЛЮЧЕНИЕ

Выполненные в данной работе исследования указывают на то, что взаимодействие ионов с массой A₁ ≈40-50 с тяжелым ядром с достаточно большой вероятностью приводит к образованию составного ядра. При этом экспериментальные данные по сечениям образования составного ядра и испускания из иего х нейтронов не обнаруживают предсказанного в ряде работ значительного увеличения барьера взаимодействия. Величины барьеров слияния оказываются близкими к тому, что можно ожидать из анализа взаимодействий с ионами меньшей массы.

В результате этого минимальная энергия возбуждения составных ядер, которые образуются при слиянии ионов массы $A_1 \approx 40-50$ стяжелыми ядрами, оказывается $\approx 20-30$ *МэВ*, что приводит к образованию слабовозбужденных составных ядер, испускающих только два или три нейтрона. Поскольку 2n-и 3n -реакции идут при энергиях, близких к барьеру взаимодействия, их сечения очень сильно зависят от величины барьера и от Q -реакции. Это обстоятельство делает выбор той или иной комбинации ион - мишень весьма деликатным делом.

Совокупность экспериментальных данных показывает, что вывод об уменьшении сечений образующегося элемента с ростом массы иона, который был сделан на основе использования традиционного метода синтеза элементов с Z > 100 в реакциях с нонами $A_1 \leq 22$, справедлив лишь при A₁ < 30. С увеличением массы иона А, метод синтеза тяжелых элементов с Z ≥ 104 в реакциях, приводящих к образованию слабовозбужденных ядер, оказывается значительно более эффективным, чем использовавшийся ранее. Следует подчеркнуть, что вместо редких и сильно активных изотопов Pu, Cm, Cf в этом методе в качестве мишени можно использовать изотопы Pb и Bi. При этом полностью исключается фон спонтанного деления как от соседних ядер, таки от спонтанно делящихся изомеров.

Хотя в описанных экспериментах был исследован узкий диапазон масс A_I и A_T , число возможных комбинаций ион - мишень в этой области велико, что открывает возможность получения и исследования свойств большого числа нейтронодефицитных ядер с $100 \le Z \le 104$ и 140 $\le N \le 153$.

На основе экспериментальных данных, используя вышеописанный метод расчета сечений хп -реакций, можно оценить возможности синтеза элементов сZ=106-108 и N= 152-156, которые могут образовываться при облучении мишеней из Pb и Bi ионами Cr , Mn , Fe .

Makc.reop. cm2	I.5.I0 ⁻³²	I,4.I0 ⁻³²	I,3.I0 ⁻³³	3,6,10 ⁻³³	4,3.10 ⁻³⁴	3,6,10 ⁻³⁶	
макс. эксп. см ²	I,5.I0 ⁻³³	5.10 ⁻³³	3.10 ⁻³³	7.10 ⁻³³	1,3.10 ⁻³⁴	<1.10 ⁻³⁴	
- Внход реакции х I0 ^{-I4} I/ионов	I,0	2,5	1 , 6	ß	90°0	<0°02	
Интеграль- ный поток ионов хІО ^{I6}	Q	2,4	6 ° 0	OI	ນ	9	
Реакция	$208_{Pg} + 40_{Ar} \rightarrow 344_{Fm} + 4_{h}$	207 pg + 40 Ar -244 Fm +3 n	206 _{pb} + 40 _{År} _244 _{Fm} +2n	208 g + 40 Ar - 346 Fm + 2 h	209 ₅ ; + ³⁷ C - 244 Fm +2n	$207_{R} + 40_{A} - 246_{F_{M}+I_{R}}$	

Оценки показывают, что ожидаемые сечения образования этих нуклидов могут достигать значений 10⁻³² -10⁻³³ см². Такие эксперименты доступны для проведения в настоящее время и могут получить дальнейшее развитие с запуском новых ускорителей тяжелых ионов. Можно надеяться, что этот метод будет эффективен

и при синтезе сверхтяжелых элементов с Z >110.

Авторы глубоко признательны академику Г.Н.Флерову за большое внимание к этим работам, ценные советы и критические замечания.

Мы благодарны Н.А.Данилову, В.М.Плотко и М.П.Иванову за помощь в проведении опытов, а также Т.И.Рыбаковой и К.И.Меркиной за большой труд по обработке детекторов деления.

Выражаем благодарность группе эксплуатации 310сантиметрового циклотрона ЛЯР за получение интенсивных и стабильных пучков ионов ³⁷ Cl ^и ⁴⁰ Ar.

Литература

- 1. Г.Н.Флеров, И.Звара. Сообщение ОИЯИ, Д7-6013, Дубна, 1971.
- Г.Н.Флеров, В.А.Друин, Г.В.Букланов, Б.А.Загер, Ю.А.Лазарев, Ю.В.Лобанов, А.С.Пасюк, В.М.Плотко, С.П.Третьякова. Труды Международной конференции по физике тяжелых ионов, стр. 148, Дубна, 1971.
- 3. S.G.Nilsson, S.G.Thompson, C.F.Tsang. Phys.Lett., 28B, 458 (1969).
- 4. А.А.Плеве. А.Г.Демин. В.Куш, М.Б.Миллер,
- Н.А.Данилов. Препринт ОИЯИ, Р7-7279, Дубна, 1973. 5. R.Bimbot, C.Deprun, D.Gardes, H.Gauvin, Y.Le Beyec, M.Lefort,
- R.Bimbot, C.Deprun, D.Gardes, H.Gauvin, T.Le Beyec, M.Leiort, J.Peter. Nature 234, 215 (1971).
 P.Colombani, B.Gatty, J.C.Jacmart, M.Lefort, J.Peter, M.Riou, C.Stephan, X.Tarrago. European Conf. on Nuclear Physics, 1972, Aix-en-Provence, v. II, p. 91.
- 6. Г.Н.Флеров, Ю.Ц.Оганесян, Ю.В.Лобанов, А.А.Плеве, Г.М.Тер-Акопьян, А.Г.Демин, С.П.Третьякова, В.И.Чепигин, Ю.П.Третьяков. Препринт ОИЯИ, Р7-7409, Дубна, 1973.
- 7. W.J.Swiatecki. European Conference on Nuclear Physics, 1972, Aix-en-Provence; Preprint LBL-972, Berkeley, 1972.
- 8. W.J.Swiatecki and S.Bjornholm. Phys.Rep., 4C, 325 (1972).

Таблица Результаты экспериментов

20

- 9. S.Cohen, F.Plasil, W.J.Swiatecki. Preprint LBL-1502, Berkeley, 1972.
- 10. J.Wilczynski. Phys.Lett., 47B, 124 (1973).
- 11. L.G.Moretto. Nucl. Phys., A180, 337 (1972).
- 12. M.Nurmia, T.Sikkeland, R.Silva, A.Chiorso. Phys.Lett., 26B, 78 (1967).
- 13. В.А.Друин, Н.К.Скобелев, В.Н.Рудь. ЯФ, 12, 44 /1970/.
- 14. L.C.Northcliffe, R.F.Schilling. Nucl.Data Tables, A7, 233 (1970).
- 15. T.Sikkeland, A.Chiorso, M.J.Nurmia. Phys.Rev., 172, 1232 (1968).
- 16. А.С.Ильинов. Сообщение ОИЯИ, Р7-7108, Дубна, 1973.
- 17. T.Sikkeland, V.E.Viola, Jr., Proc. Third Conf. on Reactions Between Complex Nuclei, Asilomar, 1963.
- 18. G.Igo. Phys.Rev., 115, 1665 (1959).
- 19. V.E. Viola, T.Sikkeland. Phys.Rev., 128, 767 (1962).
- 20. D.L.Hill, J.A. Wheeler. Phys. Rev., 89, 1102 (1952).
- 21. W.D.Myers, W.J.Swiatecki. Proc. Intern. Symposium on "Why and How...", Lysekil, Sweden, 1966, Almquist and Wiksell, Stockholm, 1968.

22. Ю.Ц.Оганесян, Ю.Э.Пенионжкевич, К.А.Гаврилов, Ким Де Ен. Сообщение ОИЯИ Р7-7863, Дубна, 1974.

Рукопись поступила в издательский отдел 9 августа 1974 года.

. ...