








experimental data on the total and elastic differential cross sec-
tions. However, the problems of particle production and the proof of
the many-particle s-unitarity remained quite subtle for this model.
In the gheory with a moving pole a Feynmann ladder diagram may
correspond to every Pomeron. The representation of the Pomeron as a
ladder type graph contribution allows one to obtain the connection
between elastic and different inelastic processes. For example, Ab-
ramovsky, Gribov’and Kanchelyll) have obtained connection between the
contribution of Regge cuts to the elastic scattering amplitude and
inelastic processes with large multiplicity. At accessible energies
the small shift of the Pomeron intercept o((o) = 1 +A does not
change radically the theoretical scheme. At the same time, the cor-
responding correction arising in the amplitude allow the description
of experimental data on cross sections. The contribution of the
Pomeron to the scattering amplitude behaves at accelerator energies

2
as (s/m fﬁ - However, at ultrahigh energies, when ( én, s/m2)23>>1

this behaviour drastically changes. The value of rescattering terms

increases so much that the contribution of each term violates the

i

s-channel unitarity. Nevertheless, their sum does not violate the
unitarity condition because of cancellations of terms with different !
signs. So, the whole sum of all terms saturates the Froissart limit |
and asymptotically (;totFC ek? (s/m2 ). The effective singularity

in a complex angular momentum plane which corresponds to this sum

at t = 0 turns out to be at j = 1. The contribution of this singula-

rity to the amplitude will be called a "Froissaron®, In the impact

parameter representation at ( &\ s/m2 )A >> 1 it is a disk

with constant transparency and with a radius increasing proportion-
ally to ; = 1In s/mz. In the graph language a Froissaron can be
represented by the exchange by a Pomeron bunch. As is shown below,
the essential number k of Pomerons in the bunch grows with in-
creasing energy as (s/mz)A / en (S/mz)-

The summation of the enhanced graph contribution to the amp-
litude at asymptotically high energies again leads to the s-channel
unitarity problem. It has been considered for the first time by
Bronzanlz) and Cardyls). Cardy has noted that after summing up the
eikonal type Pomeron exchanges inside each link of the enhanced
graph it is possible to reduce the sum of these graphs down to a
set of graphs built of Froissarons (Cardy calls them "superpropagat-
ors"), He has shown that the use for the Froissaron a representation
of a disk with a sharp edge results in the total cancellation of a
enhanced Froissaron graph contribution to the amplitude. As is
shown below, for a more realistic form of the Froissaron this Cardy's
compensations are not complete. This leads again to the problem of
the s-unitarity of the sum of all enhanced Froissaron, graphs.

In this paper the theoretical scheme with (XP(O) > 1l is con-
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sidered. Some results have been published previously ).

The paper is organized as follows. Section 2 presents the con-
sideration of the energy dependence of different physical quantities
and only nonenhanced graphs are taken into account. Such an approxim-
ation may be valid because of the suppression of the enhanced graph

i i 11 s
contribution at accessible energies due to the experimental smallnes



of the Pomeron interaction constants. Taking into account the
enhanced graphs does not change qualitatively the results in the
asymptotic high energy region.

The expressions for the total, inelastic and elastic cross
sections and the ratio of the real-to-imaginary parts of the amplitude
are obtained and discussed. It is shown that in the theory with

o{(0)>1 it becomes possible to explain the so-called geometrical
scaling (GS) which has been observed experimentally in pp-scattering.
[t will disappear with energy increasing, however, at ultrahigh
energies. But when ?A>>], GS will be valid again.

The processes of particle production are considered in detail.
ft is shown that at X (0) >1 the inclusive spectra have a plateau
in the central rapidity region with a height which grows as the
power of energy. The energy conservation sum rule is not violated
becuase the length of the plateau is shorter than the total rapidity
interval. The mean multiplicity of produced particles increases also
as the power of energy, when 7A >>1.

Tn Section 3 the summation of the enhanced Gribov-Cardy graphs
is given and the s-channel u?itarity problem is considered. It is
found there that Cardy's procedure for summing up Froissaron graphs
does not provide the validity of the s-channel unitarity condition.
The new method for classifying and summing up graphs is proposed.

Tt yields the integral equation for the contribution of the total
araph sum to the scattering amplitude. It has a solution in a form of
the Froissaron,The existence of this solution proves the s-channel

unitarity condition. So far as the value of &(0)

o

which corresponds to the exact Green function it is smaller than the
initial Pomeron intercept shift, the total effects of all enhanced
graphs are reduced to the Z& —-£§° renormalization. It is
interesting to note that this phenomenon would appear at energies
which are much higher than the asymptotical ones for unenhanced
éraphs. At these ultrahigh energies the change of the asymptotic
region would take place and the growth rate of the total cross sectior
with energy increasing becomes slower. It is not excluded at all that
Ao & 0. In this case the new regime would be not the Froissaron-

like one.

2., The Growth of the Cross Sections, the Diffraction Cone
Slope and Particle Production in the Theory with of (0)>1

In this section we disregard the contribution of all enhanced
graphs. On the one hand, this contribution at accessible energies is
apparently small and on the other hand, as it will be shown below, the
total effect of it leads mainly to the renormalization of the A value,
without changing the form of the result obtained here.

2,1. The elastic scatﬁering amplitude.

It is convenient to use below the impact parameter representation.
The partial scattering amplitude (the profile function)

E (¥ ) =1 2 O(R)

of the scattering amplitude MAB ( ? y 4 ) for the particles A and B.

1(&»") = %jMAB (?n?.t)e"?*b _6%_?# ) (1)

Here ’== en(s/so), 3°= 2 mz s, b is the impact parameter, i* is

is defined by the Fourier transform

the transverse component of the mopentum transferred. The Pomeron



contribution to the scattering amplitude is equal to

oo (8, 0) =¥, Ny exp 3, 8- (2ras)g2]

where Z:?‘ %7 O‘(—?:)z1+A—o(’€f
. (1)
trajectory and MA (9:)A/6(1)(7f) =A/A(1)A/B(f)exp[_ Rie ?lz]

is a Pomeron residue. The assumption on the exponential qf depend-

is a Pomeron

ence of the Pomeron residue and the linear qi dependence of the
Lrajectory is valid in the region of small qf, €.g., in the region
of large b2 . This region of b2 will be mainly under consideration
below.

The Pomeron contribution P(;, b) to the amplitude (1) has

the following form:

f(;) L) =Ze—XP[— m]’ 3.

where

) (0
3a
z- ’gg/iﬁ&:,; e’

For the sake of simplicity we have neglected here a small con-

(4}

tribution of the real part of the Pomeron amplitude.

It follows from (3) and (4) that the value of P(}',b) in-
creases with ? and can become larger than unity violating the
unitarity condition. However, the increasing of the cross -sections
in different channels increases the shadow effects and leads to the
suppression of the amplitude. It is seen for the sum of unenhanced

graphs shown in Fig 1. The screaning effect if revealed here in the

A

alternating sign of the different rescattering termgand the total

contribution to f (;’ ,b) is equal to
& n-1~(n) ~(n) N A,
F(¥)|>)=;(—1) GA Gg ?‘?:") n! (5)

Here, GA(n) = N(:) / (NA(l) )n and Gén) = ngn) / Nél) )n, where

N(n) and N]gn) are the vertices for the emission of n Pomerons by

the particles. If b = const and ?A—-— oo , then fxgb)&eXP(FA)
is large and each term in series (5) increases with faster
than the previous one. So the large number of n~P ~GXF(;A) is
important in (5). Expression (5) can be obtained from the following

R 13
Lagrangian density of the Pomeron field Y )

L=1 +1 (6)
where

. . . : + .
Lo= $(tTF-¥¥?)+4(TNOY) ~¥iv.a )

o (n) + n
[_f Z 2 W A/A [Aj YR (¥) A;]- _ (8)
§ n=t d

The first term in (6) describes the free field with the mass
( - A ). The second one corresponds to the Pomeron particle inter-
action.

Cardy has shownls) that the summation in (5) can be fulfilled
at large ?A >>'/ , when the vertices NX“) have an analytical con-

tinuation to the complex values of n, when they have no singulari-

ties in the right half of the complex n plane and increase there no



faster than '_'(n). In this case expression (5) can be represented
in the form of the Sommerfeld-Watson integral

F(?,b):j' dn G;‘MG;")()"(?, b) [{1-n)

(9)

The path of integration goes along a vertical axis in the comp-
lex n-plane. The integrand has in thé right half-plane the only
singularity, which is the pole at n = 0. The residue in this pole

(

equals (0) Consider the case when ?A—-m and

1/2_ 1/2
b < 2(o!d'A) % (u(’/A) &\? . Here P(f, b)>> 1 and the
rest of the integral along the vertical contour decreases as

~|Renr|
f

, when the contour is shifted to the left. So, here

F (; , b) = .\';0)- Néo) = const., In the region of b»Z(o(’A)"/z?
P(?,b)<<1 and F (;,b )%P(;) b)—-‘r 0 at

7& —» &< . It means that approximately

F(3,b) = A/A(o)/\/;o)Q(‘fo(’A?z— 5). (10)

the value of

! 2
where the small correetion &\; /? to the bound value 1 of A ?

2
of b has been disregarded.

It follows from (10) that at all; F (? ,b)& 1 when
(©

A - NB 1. Tt means that the unitarity condition is wvalid at

N

N . NB < 1 due to shadow effects. Cardy's result (10) means

that the factoriration takes place in the asymptotic region. In

n
the eikonal approximation NA( ) = (NAH) )n , or Gin) - G(n)= 1
! B

in (9). Then the sum in (5) can be evaluated for all ?

F(f,b):‘.« 1 —UP[—F(?, b):l (11)
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; . . 16 (m n-1
In the quasi-eikonal approximation™ ) GA = CA and
(n) n-q .
= = is the shower enhanced coef-
GB = CB s, where CA X CB CAB s

ficient arising from the diffraction dissociation contribution. In

(o (>)

this case N ), N() =1 /C and F(? ,b)= {:1 QXP[—CABWL)]}
A B AB

The object with the profile function F( ‘, ,b) will be called a

"Froissaron". The dependence F (? , b) on b at }A > 1 is
shown in Fig. 2. It is obvious that the profile function of the
Froissaron corresponds to the picture of diffraction on a disk with

constant transparency and a radius increasing as }' . The edge

of a disk is spread in the transition region with a width which can

be estimated from the behaviour of ?(b,%) at b Z(dA)l;
1)
_/MB 2NN - b
P~ L x| il R

representation the sum (5), has the

Tn the (?’ R 91)

well-known form:

| M(3,9,)= ¢ 2(1)nn' Gy Gy @ P{ A R”‘ } (%)

2 ~QKp(¥A) , when

Here the effective number of the terms n is close

In the theory with ol(0) > 1
" —_ OO

to 2z . Therefore, the Froissaron can be considered as a bunch of
Pomerons with the effective number of them increasing with energy as

n ~2 ~eup(}0).

It is easy to write down the expressions for the total and

1"



total inelastic cross sections

Coe(F) = [2FG, % - 8 (R «'3) @),

(14)

G (3) = Jl2FGh) - FOud%b = mR5)P22). (15)

Here ‘P(E) is introduced according to

2

?(2)=S(4—€—P)J%f=C+&‘2—Ec(—z), (16)

where C = 0.5772. is the Fuler constant and Ei(~z) is the integral
exponential function; E: 62) —_— O when 2 —» o~
From (14)-(16) it follows for the ratio of elastic to total

cross sections

Get(¥) - A[4_ &.2+EL(—2)-E:(—2:)J
G 3 ? [7 C+lnz-EcCa) |~

where Gd(i)=(5 Q) —(;{h(i)is the total elastic cross section.

It is seen from (17) that 62€ /6tot is of the order of 0.2

(17)

at Z 1 and tends to 1/2 at 2 —» o< . For the transition
to the quasi-eikonal approximation it is necessary to make the sub-
stitution g2 —> 2

CAB in expressions (14) and (17) and

to divide these expressions by C .
AB
The ratio of the real-to-imaginary parts of the forward scat-

tering amplitude has the following form:

«P= 4% & Gl (5)= 4 Ry + Yl

12

12 !
As is shown below, at accessible energies o((k*'u(i)a‘:A for
pp-scattering. So, the second term in (13) is small and 8(?)2’-2)( A,
Therefore, at accelerator energies e (%) is determined

mainly by the contribution of a Pomeron and the secondary poles

l’(‘), f) » A, etc.

Consider also the expression for the diffraction cone slope
parameter B(? ), determined so that at small "t' dc—‘,’/d-é ~

~ d6/4t h:aexP&-W;ﬂ. It follows from (9) that

BG) =2R>+'H) k (), (19)

where

2
k('t‘) = ~P-f(Z) ff(") _dTX_ . (20)
o

Consider equations (14)-(20) in the regions of accessible and
asymptotic energies. It will be useful to remind that_the analysis
of experimental data on pp-scattering in the FNAL-ISR energy region
( ? 2¢ 528) has shown that the so-called geometrical scaling (Gs)
takes place17’18), CS means that the partial scattering amplitude

!(;,L) depends only on the variable bz /B(F) , 1.€4>

/(?) L):{(E%)) . (21)

13



The Froissaron contribution to the partial amplitude will 2 4 -
R= 48 - XFo % 0wt o) o

satisfy GS when =z <does not depend on ? 1’ K
i K These parameter values are very close to the results which have been
This requirement can be satisfied only approximately by tbe special
. { obtained by A.M.Lapidus, V.I.Lisin, P.E.Volkovitsky and one of the
choice of parameters when at some point ?=’O the equality
d /d authors (K.A.T.-M.) from the detailed analysis of experimental data.
2 ?\~f=?°— 0 holds. Together with equation (4) it implies

/ It is worth noting that for rITP and KP elastic scat~

f .
e — X (22) tering at the same energy B(‘,)' ~ 8(GeV/c)-2, so R2 = 2.2
= p [] .
Re +of ?o

(GeV/(:)_2 and is smaller than for pp-scattering. For this reason,

The use of existing experimental data on the total cross sec- ! meson-nucleon scattering GS should not be so precise as pp and

tion and the diffraction cone slope for pp-elastic scattering makes will. appear at higher energies

. . . 2
it possible to obtain the value of the parameters A, o(’ and RZ. ?WF 1 —- _R_'!_P ~ 3
= = T~ .
o A o
It follows from equations (22) and (14) that at 2 2~ const 27)

B i S S

the growth rate of the total cross section equals Thus, in the accessible energy region z remains nearly constant

and cross sections and slope parameters increase with energy almost

a4 =
d; &\ Gu(f) = A . (23) linearly on ? . So the ratios 6_““(?)/8 (7) s
64(?)/8(?) and 622(;)/667(;) remain con-

As it has been noted in the Introduction, the experiment gives for stant. At very high energies, when ?’A >> 1 the cross sections
this rate the value of the order of 6%, i.e., and slope parameters will behave in a universal way
2
0.06 - - -
A x o.06 (24) G (3) = &x/AF =8 B(F) =2 Gu(}) . ;
. . . 2
while at accessible energies 1(3) 2~ 1 in expression (19) and (%)
B (Z)z lO(GeV/c)_z it follows from (22)-(24) that It is interesting to note that at ’A >/ GS appears

4 -2 i i dance with the general result
ol = %B(Z)A 2~ 0.3 (GeV/c) ) (25) once again and becowes exact in accordanc g
. . of ref.lg).
Putting o= 6 in expression for B( ¥, ) yields
e . (s 2 (1), n2 : d
¥ Equation (3) ha: been obtained when "/A (7_,_ ), 'VB ( 7.1. ) The energy dependence of GM (}’) calculated from
lepend on 9. exponentially, Tt is valid for small q} ? 2 h
. P . . . . ~ re
or large bZ%. Tn the region of Large ii > 1 (Ge\-'L/c)z the equation (14) is shown in Fig. 3. At 8 10" Gev™, whe
exponential dependence of the residue seems to contradict experiment-
al (3lata. However, at large il , the accuracy to which GS is
valid, is not good.
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cosmic ray data exist , C;tot in pp collisions becomes as large as
20

100 mb. The authors of ref. } have calcualted the inelastic total

cross section

Ci( p- air) with the mean value of A =14.4
“n

in the framework of the Glauber model and came to the conclusion
.

that the increase of the pp total cross section, as given by eq. (14),

is in contradiction with experimental data on (S;“(P-Q\i)_
However, it is necessary to note that the Glauber model is not valid

9 GeV2 the trans-

at such a high enet‘gyZl) because at 8 ~ 10
verse dimension of a parton cloud becomes comparable with the nuc-
lear radius. So it is impossible to consider nucleons in nuclei as
separate scattering centres, since nucleon parton clouds become
strongly overlapped. At ultrahigh energies the Froissaron radius

will be larger than nuclear dimension and the effective number of

interacting nucleons in nuclei will be equal to unity implying

6_\'“(?-(1;"() = 6:.':) . Tt is a consequence of the univer-
sal value of C;tm in eq. (28) independent of the nature

of interacting particles, This strongly contradicts the Glauber

—2/3._,0P
model, leading to G'LH(P-Q;Z) ~ A th even in the case

. pp
if (E; O .
tot

2.2, The Multiparticle Production
Now turn to particle production processes and consider the
inclusive spectra of particles produced in the central region. It
. . 11
follows from the theorem of Abramovsky, Gribov, and Kanchely (AGK) ")
thatthe onlydiagram which gives a contribution to the inclusive

spectra is the cut pole graph, Fig. 3. At ol(0) > 1 it yields

16

the inclusive cross section growing as the power of energy

dG W, 0 , F4
—_— = Xogr ’ . N4
0(3 81(/V% A/; ‘{ . (29)

The vertex C{ is shown in Fig. 4. From equation (-9)
it follows that the inclusive spectra have a plateau in the central
region and that the Teynman scaling is violated.

11 . .
As has been noted previously "), equation (29) contradicts the

energy conservation sum rule
rF/2

R
& et 48 s < (30)

n
[¢]
Here and below we sue the c.m. frame.

If one chooses the upper limit of integration in (30) very
close to the edge of the spectrum 1—2A4 A< /I s
inequality (30) is really violated. This result seems to be

surprising because the violation of the energy conservation law

has not been included in calculations. The solution of this paradox
is in fact that eq.(29) is not valid in the whole region of integ-
ration. At the edges of the spectrum the Kanchely—Muéller graph
(Fig. 4) does not reflect the contribution of the sum of graphs in
Fig. 5 in a proper way. Really in the graphs in Fig. §5 with k cut
Pomerons the total energy is divided between them mainly in equal

Therefore, particles in each cut Pomeron are produced in the

parts.

rapidity interval of the oder of ’-—2ékk . Now find the mean

number of cut Pomerons (4. 94 in Fig. .. The cross section
S; of the k-cut Pomeron production is equal to 22)

17



7I'(R +ol ZIQZEZ@—Z?

m2K

- Jx.22)
Yo R+ Ahroreiva KDl (1)

22
where J(K,ZZ) = geNxX‘-"dX

tion. Tt gives for a mean value (K>

<Ky = Z S, /G

Ij—func-

is an incomplete

2/‘/«” (1) e’ j 1N
?(22) oA A (32)

Therefore, the rapidity interval where particles are produced

from the cut Pomeron, is equal to
It means that the inclusive spectrum can be presented in the form
181 < ¥/2

. This corresponds to the value

of (29) not in the whole region
4\ < ¥(1/2 - A)
A=1-2A

but only for

in the upper limit of the integral (30), satisfying

inequality,

Consider now the shape of the inclusive dG'/dﬁ

Y] z;(f/z -

spectrum

near its edge ) . The energy conservation

law permits the production of Pomeron showers of the length 2 |y‘

in the amount of

Ko () = exP[4 (¥ -214))

(33)

This equation taking into account (31) and (32)implies for

the average number of showers with the length of 2 |Y}|

larger
<kE> = 4 Kuw)Ks 22 Q‘Zz "°(-")(2 i)m’ﬂ
61'.!\ k=1 K A ¥ 2) i (W\—'f)' o

+
M3
T
~~
N
n
N
3
X
e

18

}-— 2lr<ky> = ?(1—2A).

The sums in brackets in eq.(34) have the following properties:
(ko) -22) >>2 2
term is small and the first term is equal to

when Q2 - Ko (1) >> 22

second term which is reduced to

the contribution of the second
exp(22) .
the main contribution comes from the
Ko (4) exp(22) /22
It implies , taking into account eqa. (33), (3%), that eq.(29) for
19l< 4, — 8400

inclusive spectra is valid only at

where

= % ? —-eh(ffl)a

(35)

Sy = (2 2)-1/2

(36)

191 > Mo + & 4o

for the inclusive spectrum acquires the additional factor exp(ﬂo-lﬂl)

In the region of expression (209)

Both the curves map together at y = Y, with the transition region

width ZSHO which becomes narrower when energy increases as .
it follows from eq.(34). In the asymptotic high energy region the
spectrum slope shown schematically in Fig. 0 has a break at Y=Y oe
Having the spectrum we can obtain an expression for the average

multiplicity (Y\) of parficles produced
/\/ ) (1) Fa

~ e (37)
w = dNegy 35, 24 ¥

Thus, at available maximal energies the inclusive spectrum (29)
must have a plateau in the central region of rapidity. The height
of this plateau increases as Q)(P (FA)

violating the Feynman

scaling. Nevertheless, at accessible energies mean multiplicity (37)

does not deviate from an ordinary linear dependence because the

19



increase of the plateau is compensated by the growth of inelastic
cross section . At higher energies the average multiplicity must
increase with energy faster, as is seen from Fig. 7.

Nue to the contribution of secondary poles the described
picture for inclusive spectra changes significantly now. The value
of ?'Z 10 is needed for the Reggeon contribution to become negligible
in the centre of the inclusive spectrum.

Now consider briefly the problem of topological cross sections.
At accessible energies the experimental data show the existence of

the KNO—scaling23), which means that
. n
Gy = S Y (&)

where Y{(X) is some energy-independent function., Let us neglect
the fact that the total energy is divided between produced showers
and assume that each shower has on average d? particles.

e)

. 1
Then eq. (31) yields 5) for <n the following expression

s < € }:)écbe (22) | | (38)

-4 oo e
where € (22) = (Bu) ' Zucy K5,
It means that in the energy region where
Zz X COV\St , the value of Me=<ne)/<h>e is energy-independent
b4
and leads to the KNO-scaling, with Me = jo X Y(x) dx .
So the theoretical scheme with ol (0) > 4 yields the KNO-scaling

in the energy region where Ze const.

20

Shabelsky and one of the authors of the present paper (K.A.T.-M.)
have calculated topological distributions in the framework of the
eikonalized Pomeron theory with d(o) > 1. (See also,rcf.22).

The Poisson distribution over the number of produced particles
in ladders forming Pomerons was assumed and the division of the
total energy between different Pomerons was taken into account. As
a result, good correspondence to experiment has been obtained. The
theory gives good description of the effect of the appreciable
broadening of multiplicity distribution with energy which is ob-
served in experiment. In the theory it occurs due to the contribution

of the simultaneous production of several multi-
peripheral particle showers, that is, the cut Pomeron lines (the
so-called "combs"). As has been discussed above, in the accessible
energy region the theory yields an approximate KNO-scaling.

At ultrahigh energies a number of peaks emerge in the theoretic-
al curve for the multiplicity distribution. They are due to the
diffraction production and to the production of one or more

multiperipheral showersll). .

The picture of multiplicity distribution with the number of

peaks appearing at very high energies (E ?.,108 Gev) strongly

violates the KNO scaling.

21



3. Enhanced Graphs

3.1. The Summing up of Gribov-Cardy’s Graphs.

Let us take now 1into account the interaction between

Pomerons. The simplest graphs containing only one interac-
tion vertex are shown in Figs. 8a) and 9%a). We assume
L . (n) (n) cos
that similar to the verteces 1] A NB ’ the transition
vertex Inn connecting m Pomerons with n ones , has the
eikonal from = m+n or 1 that i
Yon = 90091 , more general, a it per-
mits the single-valued analytical continuation €m = g (n,m ) to

the complex m and n planes. Then the sum of the graphs in Fig.
3a (9a) may be substituted by the Froissaron graph shown in Fig.
Sb(0b) with the coupling constant goo = g(0,0). This enables us to
pass from the Pomeron graphs to the summation of graphs made up on
Froissarons, ref.l3)-

It is necessary to note, however, that graphs with n =m =1
are included in the sums in Figs. 8a and 9a, although they formally
do not exist according to the form of the initial Lagrangian .Indeed,
they contain the vertex €49 of the transition of one Pomeron into
a Pomeron. The corresponding contribution to the Lagrangian gﬁ‘r+1’

has a form of a mass term and was already included in the free

Lagrangian (7) L . Nevertheless, we can use the Pomeron interaction
o
Lagrangian oo
men+2 nmyn
' dmn R (Y)Y )
L= Tt (30
2 min:

mn=q
containing this term and corresponding to Figs. 3,9 if the total
Lagrangian is redefined as the sum

1
L =L0+.L1+ L2

22

R 1 + . .
with L0 = Lo - gﬁY Y and Lo’ L, given by eqs.(7) (8). Tt is

just similar to the use of Lo as a free Lagrangian and having no
+ . : s _ ! +
term eqnY' ¥ in the interaction part L, = L2 - By vy .

The use of L’O instead of L0 corresponds to the redefinition in ‘
(7) A — A o , where
Ao‘;A’—g“ N (40)
Thus, the account of the enhanced Pomeron graph contribution leads
to the enhanced Froissaron graphs of the type shown in Figs. 5,0,
where FO is a Froissaron and P° corresponds to the Pomeron (with
A substituted by A ).

In the accessible energy region the enhanced graphs contribu-
tion is actually small due to the smallness of the Froissaron coupl-
ing constant €00 ( or of the vertices g of the Pomeron coupling).
However, in the far asymptotic region enhanced graphs could be essen-
tial as their contribution grows with energy so fast that each of them
separately violates unitarity. For instance, the singularity (.0-6
in the (W, ?.L ) representation corresponds to the graph in
Fig. 8b. Its contribution to GM(ﬁ) is proportional to ?’ at
\, —_— D ).

The 8-unitarity for the sum of enhanced graph contributions
has been analysed by Cardyl‘}). He has noted that there is a complete
cancellation, in approximation (10) of the contribution of
Froissaron graphs in Figs. 8b and 9b . Their sum is equal to the
value corresponding to the graph shown in Fig. 8b multiplied by the

factor

- 6cat 3t - B, (41)
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where
cxa = t/o(‘[&

o o - (42)

T . . 2 2 2 .
1e sum is zero as with b~ > aa.'? the contribution of the

graph in Fig. 8b is itself proportional to 6 (az.? 2 - b? ).
Since the fact e 2 2 2 i ki

actor ( ag s ? - b° ) corresponds to any additive

Froissaron line then there is always a similar complete compensation
of enhanced Froissaron higher order graph contributionsin each
order in £o0 . So far the summation over all Froissaron graphs
yields only one F0 contribution which is unitary in the s channel.
However, a bit more accurate calculation taking into account
a small deviation of the Froissaron profile from the e-function,
shows ]5) that the above compensations are not complete and do not
at all guarantee the unitarity. There are two reasons why the é-
function approximation is crude. At first, the account of the
smearing out at the edge of the 7roissaron disk, shows that the
unitarity is violated at each stage of Cardy's summation procedure.
Consider, for example, the graph 8b contribution to the partial

amplitude at the distances
1/2
b___z(dlAY/Z? —(NVAO\ g\; (43)

Let b] and y be an impact parameter and rapidity corresponding

to the vertex C With bI:& ay eqs. (3), (4) and (9) imply

Fo (y, b1 )ecl/yl . At the same time, the second Froissaron in

Fig. 8b yields the contribution F (}-y , Ib —b1 I ) = const
o A Ay
for b1 displayed in the crossing region of both the disks. The area
. o , 1/2 , _
of this region is proportional to ; . So, after integrating
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over bl and y, the contribution of the diagram in Fig. 3b will

rise as ?4/2 at the impact parameter values of the order of (43).
small compensation which occurs after the addition of the graph in
Fig. 9b does not change the result because 1 - Fo (? , b )=const

due to condition (43). So, the s-channel unitarity for the partial

. amplitude is violated even in this simplest case.

There is another reason also leading to the contribution with
the unitarity when a more realistic form of Fo( ? , b ) rather
than (10) is used. A small distinction F (? , b ) from unity
at b < aOF is important. Let us call those graphs irreducible in
the s-channel which cannot be divided by a vertical line into two
parts without crossing the Pomeron lines or vertices gmn . Let
G ( ?, b) be the contribution of such a graph differing from

f%(?ﬁ b )-Pomeron contribution, for example, the contribution
of the graph in Fig. 8., For a given graph there will be graphs gener-
ated by the iteration of G(? ,b) in the s-channel. Let us denote
the sum of such iterations by the symbol E {G( ? ,b )}, In the

eikonal approximation, e.g., it is equal to

E{GGH W} = 1 - exp{ GG}

Suppose that G( f,b) < 0 and that c ( ; ,b) is an

(44)

exponentially increasing function of ? . As is shown below, just

this case is a real one for graphs with the form of a chain of the

type shown in Fig. 8. Consider what may happen in the limit ?—c—cna

In the same eikonal approximation the rescatterings via a Frolssaron
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give (44) the screening factor

exp {-f (3, b)} (45)

-4

rather than (41). It is clear now that there can be two different
cases at G (¥ ,b )<o: () ir |a(yp)| < Pol},0) in the
limit } —» <0, then the unitarity will be conserved, or other-
wise (ii) if |a (3.0 )| > )00( f, B ), then it will be
crudely violated.

Thus, the problem of the s unitarity of the theory can be
solved only after the summation over all enhanced Froissaron graphs.
The method to solve both the problems has been developed in ref.l4)

The main idea was to consider the elastic scattering amplitude
FAB(? s b) shown in Fig. 10, as a sum of the s-channel eikonal type
iterations of the contributions ol ; » b) of all irreducible

(in the s-channel) graphs

fae (3.5 = W ONP4 (5 b) (16)
{(J.8)=E {U(;,b)}

It fulfills obviously the s-channel unitarity condition | f{ <1
if v‘(; ,b ) is positive for any Fand b.

To investigate the latter problem let us construct an equation
for the exact amplitude f (;, b). For this purpose we divide
the graphs contributing to Y (’ ,b) into three classes: the
Pomeron function Jz( ; ,b) and two groups denoted by D(; ,b) and
c(? ,b) as is shown in Fig. 11 , that is ‘0’(?, b) will be

written in the following way:

v(?,b)=f.,(;,\>)+%(;,b)+C(;,b) 7
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The group D contains the graphs irreducible both in the s-channel
and t-channel. These graphs cannot be divided by a horizontal line
without crossing Pomeron lines. It is clear that after all possible
summations and reductions within these graphs, the group D turns
into a series of Gribovl!s graphsé) built up of exact Green functions
f(? ,b) (46) and the vertices €,, * Each of these vertices couples
three or more lines f(? ,b) . Some simple examples are presented
in Fig. 11.

The totality of graphs from the group C form the t-channel
chains with the number of links not smaller than two. Each link Zz
is a sum of graphs which cannot be divided by a horizoétal line,
crossing only the Pomeron interaction vertices. At the same time
unlike the group D these graphs can be reducible in the s-channel.
For these reasons one can write Z(’ ,b) as

Z(?,b) ='f(;,b)—c(},b)- (48)
On the other hand, C is easily expressed through Z if one

looks at Fig. 11 and passes to the (&),91 ) representation.

C,9) =2 0,902 (o0 Z(w,4.0|" =

R 2%, Q) (49)
T ~Goo £ (0, 91)

c(Ww, ip can be found from (48) and (49)

oo £02,9)
C(w,91) = y +€°o_f(o,‘u> : (50)

It is clear now that the sum of the graphs shown in Fig. 12

corresponds to expression (50),

27



So, the right-hand part of (46) can be expressed through the
function f(? , b). Consequently, relation (46) has a form of an
integral equation for the amplitude f(; ,b). As a possible solu-

tion of this equation one can consider the Froissaron FO .

{(?) b)=F (% b) =~ 6(a3%>-5) . (51)

After substituting (51) into the graphs of the group D (f) large

cardy's compensations take place.

The only remaining graph in the group D is the simplest one.
with two vertices goo . Its contribution is large and positive for
b < ao? and is equal to zero at b > a°? B
The consideration of the graphs from the class C(f) is more
complicated. At the impact parameters b > ao; the contribution
of these graphs is equal to zero. let us consider the case of b & ao?
and pass to the (w’Q/.L) representation. It is convenient to re-

write {50) in the following way:

C(w,4)= f(w) 9.) = [{EZO 9.0 +Q‘to.,]—f. (52)

Froissaron (51) in the ((«), ?.L ) representation has a form of

~3/2 (53)

@, g)=as @+ g)

Since the first term in (52) is positive, concentrate our attention

at the second one. After substituting (53), it is equal to
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C(wli_L)_/(w)2-L) ( 2 a°¢L)3/2 goo (54)

~
where £ = a_ g . This expression in the case of ¢ > 0 has
(el o] o 00 [e]e]

two poles in the right () -half plane:
1/2.
~2/3 2 z 52
= -Q
[ ?1,2 %oo C?*) ° ?J‘ (55)

Tz =exp(£iT)

If g <0, then only one pole with Rel)>0 exists:

oo
4
oz[N (1)2/3_ a292. z (56)
1 oo ?L o JL .
At ?—, o< the pole term gives the main contribution to
C(?, q/.L) , which for g_ >0 is equal to:

(57)

_ 2 a,,exp{(@roo 7-a% %) f}
Cprax SR G Gy

_ s adexp{(8, - aowzﬁ i
c(",a}_‘_)% %[&e&‘?l& |3' QZ?L) e

The value of C( " ,b) 1is obtained from (56), (57) by means of

Iif goo‘ 0, then

Fourier transform L
C(3,5)= me(; %)e i“dql , (59)

The calculation of this integral is accomodated in Appendix TI.
It is carried out in the complex q—plane by means of the saddle
L

point method. The result is equal to 4

o2 0, BE3FE Dexp{$ e 47} (60)
CGEh=-2Re 25 /a5
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if e > 0. Tn the case of g
00

a 4 9(%?2 2)exp{|g°°|5 ? —bz)z}
CG.b)= G.E Q- B

Expression (60) oscillates when ? rises and b is constant.

(61)

The value of (61) is always negative. So, if one wants the sum (4%)
to be positive at any value of b and ? , one should impose the

following condition

FACASIIEN AC ALY (62)

for b< 307 . But this inequality is obviously violated near the

edge of the Froissaron disk, i.e.,at b - aO? = const. Here
e( , byec 1/ decrease with energy increasing

but |C (? b)lOC e/XP(A?i)/F is a rising function of ? .

Nevertheless, it is seen from (57) and (58) that if Eoo( ‘i-\-)

depends on q(‘i_ by means of

@) = 2,,(0) - ¥ g (63)

2, . 2 2
then the number of a_ is substituted by a~ - C_r s where C

o

. 2 2 R .

is a constant. So, the q/.\. ~ dependence of €00 (Q‘L ) is decreasing,
92

i.e.sr  » 0, then C (?, b) has a smaller radius in comparison

with ?(7 ,b) and condition (62) can be satisfied if

(0)< SA‘, for g,,>0

(64)

\EOO(O)\< Ao for oo < O

Thus, solution (51) does not contradict the s~channel unitarity.
However, this solution is only approximate, because the right-hand

side of (46) does not sharply drop to zero when b passes through

b = a07 , but smoothly decreases as E{?o(? b )} . There are

some arguments in favour of the unimportance of the smoothing edge.

Although the radius of the sum of graphs, which belong to C(f) can
rise and be larger than a07 (for g00< 0) it is possible to com-
pensate this by choosing the value of r‘2 in (63). As for the
graphs of the group D, it can be shown that each graph contribu-
tion is decreased with energy rising ag b > ao? .This is due to
the fact that each of the vertices goo in the graphs of the group
D couples three or more lines., Although the number of selection
graphs is infinite, their contributions have alternative signs, and
one can assume that the summed up contribution is also decreased
with ? rising at b > ao"\? . In the region of b <« a()?

the smoothing edge of the Froissaron disk does not play any role,
and D (;, b)ec e;}'{-fo(f, b)l is very small here because of Cardy's
compensations.

3.2. The renormalization of the A -value 1:))

Let us draw our attention to the fact that the interaction
radius squared, H «’Aa?z, corresponding to solution (51) is smaller
by 4 0(';111;2 than that which arose above for the unenhanced graphs
only. In other words, the enhanced graph contribution is reduced
effectively to the renormalization of the A-value in accordance
with (40). Tn the energy region of the near future accelerators
? />~/ 10 the transition of the total cross section to the
Froissart behaviour will begin. But the simplest enhanced grapbs
shown in Figs. Sb,9b demand the value of 7 two times larger for

the asymptotic behaviour. So, at superhigh energies when the cross

— 2 :
sections already rise as 3N o/ A} some slowing-down of the
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growth rate will take place, This change of the asymptotic regime

corresponds to the reduction of the A -value., This situation can
be explained by the simplified example, shown in Fig. 13, where only
unenhanced graphs and the first enhanced graphs with one vertex goo

are taken into account. Since we use here the Froissaron F, contain-

ing the vertex contribution, the graphs in Fig. 13¢) and e)

12
should be subtracted. At modern energies the contributions of the
triple Pomeron graph (which is negative) and more complicated

eraphs are negligibly small. So, the contributions of the graphs

b) and c) (d,e) compensate each other, and the cross sections rise
as (14). But in asymptotics the sum of the graphs b) and d) gives a
contribution to Gtot rising as ?3/2, i.e., small. As for the
graphs c) and e), they give the summing contribution - 8'[70(’811 ?2
and decrease the A—va]ue.

The same conclusion is valid for the multiparticle production
reactions. It is shown in Appendix IT that enhanced graph contribu-
tion renormalizes the value of A —-»Ao in the inclusive cross
section of (29) and in the mean multiplicity (37) 1. and changes also
the values of the factor d contained in this expression§$.
The only exception is the case when a particle is extracted from

the cut vertex, as is shown in Fig. 14. The corresponding contribu-

tion slightly bends the inclusive spectrum, which is given by the

1. If Pomeron interaction is strong enough, then AGK-cutting rules
can be violated and the mean multiplicity will rise only as a power
of ? . We thank E.M.Levin and M.G.Riskin for their helpful dis-

cussions of this problem.
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following expression:
¢y ,d) Do 2.
gétj = 8 Ny N [doQ¥ she*G-u)] (65)

The coefficient do is obtained in Appendix II, and the factor h
is defined in Fig. 14.

Jt is interesting to note that a case is not excluded when
g113 A , or A°$ 0. The p.u_.sibility of such a situation is sup-
ported by the simple estimation of gll in the one-pion ecxchange
model as is shown in Fig. 15,

After calculations one has
_ (6TM2 R.2-2 L&\g,«lkz) +/42.]
£ =~ 76"%36'&/ 1 T 4N 1 ’ (66)

. . 2 204
where /(_ is the pion mass; R1/2 describes the dependence of 6'102‘

on the virtual pion mass squared. If one puts R? = l/(GeV/C)—z,
then one finds from (66) g1 % 0.08, which is of the same order

as A . )

If the case of Aoé O is realized, then the Froissart-like
behaviour is not possible. This is seem from equations (46)}-(47)
which are valid as earlier. The negative value of CY ? ,b) cannot
be compensated by anything now, because o( %,b) —» (0 as ?’——» oo .

Consequently, the solution Fo( ?’ ,b) is not suited here and the

total cross sections will rise asymptotically not faster than

G‘tot(%)oc %? , (€7)

where

'( < 2 . (68)
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So after the change of the asymptotic regime at superhigh
energies the Froissart behaviour can pass to more gentle slope
rising. The inclusive cross section and the mean multiplicity in

this case are equal to

7+1
%—S’loc :17(?—*.-1)7; iy ¥

(69)
it is worth while noting finally that the critical value
[& - Z& . R , . 7,24
= c is known for which the strong coupling version occurs ).
Tn this case the right-hand side of (47) has a singularity with

RE(J — 0. So the Froissart-like regime is impossible and the case

of JAND [&ccorresponds to the situation with gll:> [& , 1.€.

A, = e (70)

7
This is in agreement with the estimates of [Scfrom ) and g,
from (66).

4. Conclusion
The problem of increasing cross sections has been discussed in
some papers bhased on different approaches (see, e.g., ref.ZS)). Here
we have considered a version of the Pomeron theory with o{L(0) > L.
The value of ©o{(0) has been introduced phenomenologically but it is
worth while mentioning that the Pomeron intercept in the fField
theory is a function of the coupling constant. So, the value of
A(0) = 1 is not an upper limit and the possibility of o(0) > 1
exist526’27).
A small displacement of the Pomeron pole position in the j-plane
to the right of unity at modern energies leads to a number of subtle
corrections to the physical observablés, which are needed for the

agreement between the theory and the experiment. But in the higher
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energy region which will be accessible at future accelerators, the
strong interaction theory is absolutely changed. Instead of the
Pomeron dominated in the theory with o{(0) = 1 a new object-rrois-
saron which is a many Pomeron "stream" determines the high energy
behaviour. Below is a short list of the main consequences at access-
ible and asymptotic energies from the Pomeron theory with of0) > 1.
1. Total cross sections and diffraction slopes rise linearly with

? in a modern energy region such as the phenomenon of
approximate GS takes place. As ’ becomes larger, GS is violated
and emerges again in asymptotics when both the cross section and
the slope rise as ?2 .

2. The ratio of elastic-to-total cross sections is small
(about 1/5) and constant at modern energies and will be large
(about 1/2) in asymptotics.

3. The ratio of the real-to-imaginary parts of the forward
scattering amplitude after it becomes positive will reach the value
of about i'ﬁlsand for a very long heried will remain approximately a
constant,

4. The inclusive spectrum has a plateau in the céntral region.
The height of the plateau rises as eng?A) , violating the Feynman
scaling. The rapidity interval of this plateau is only % (1L -208),
30 the momentum conservation sum rule is satisfied.

5. The mean multiplicity does not obtain any visible corrections
at modern energies and rises linearly with ’ . But at the energy
of ?z 20 significant deviation from the ordinary growth will

emerge and asymptotically ¢n)» will rise as @;P(’bb)/;'
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6. The KNO-scaling in the topological cross sections can take
place at modern energies, but it surely will be violated at higher
energies. The multiplicity distribution curve asymptotically will

have oscillations,

7. The enhanced graph contribution changes the asymptotic
regime at superhigh energies. It renormalizes the value of
A—"A °=A -811 . The coordination of the asymptotic behaviour

with the s-channel unitarity is proved.

8. In the case of AN < g1 the Froissart-like asymptotics
. 2
is not possible and the cross sections rise slower than ?

after changing the asymptotic regime.
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APPENDTX I
Let us carry out the integration in (59) for the case of
C(?, q.L) given by eq. (57). The case of g <« C is analogous.
oo

After integrating in (59) over the angle one obtains

z‘*a '*f 2 2,2 7
b)=- 2Re 22 exf{(froo'(}'ao%)zﬁ
CG ) 3 QC?”S(Q‘?; z_az;?f)i

4

Uo (?i!’)%_d‘i; (1.

Using the folowing relation:

“) )
L0 -Hx+20)=22T 00 (1.2)

one can pass to the expression

Kﬁé 22
X 330742—&% 91.)}} )
i) el - oo

The path of integration C = Co is shown in Fig. 16. The same

Cab=-4R 2
P-4 eégcg

figure shows also the branching points of the expression under the
integral in (I.3). Cuts are drawn in such a way that the function
2 2 2,2
exp{('ém/)3 '(1 — agq 91. )*;} decreases in the upper
half-plane as |QL\ —+ o>« . From the asymptotic behaviour of the
1)

function H_(2)
° 1
L2 Wi

o) 9
1% <V @

one can see that the expression under integral 1in (I.3) decreases

in the upper half-plane as lzhl—ovc, so one can change the path of

37



integration from CO to Cl’ and to carry out the integration by the
saddle point method. The place 90 of the saddle point is determined
by thc zero condition of the logarithmic derivative from the ex-

pression under the integral in (I.3):
q - :'7 b .
° " (a5 - B)

(1.5)

The motion of 70 in the 9-plane with the growth of b is shown in

A
Fig. 16. Using (I.5) and the fact that the expression under the in-
tegral (I.3) is exponentially small in the upper part of the contour

C one can calculate the integral by the saddle point method and

1?
obtain the result (60).

Tt is necessary to note that the denominator in (60) tends to
zero as b —e ao" . This is due to the fact that the second loga-
rithmic derivative from the under-integral expression in (I.3) is

14 2
equal to Z:-ai (? - bz/ a% )\3/2 /(?1; ) and tends to zero, but

for the saddle point method this derivative should be of the order

of |£"|°C 7 .
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APPENDIX IT

It is shown here that the enhanced graph contribution does
not change essentially expressions (27) for the mean multiplicity
but only renormalizes the constantsg d—- doand A\ — Ao

The inclusive cross section d6/dy corresponds to the
Kancheli-Mueller graph which is shown in Fig. 17 in the left-hand
side of the AGK graphical equality (one should compare it with
Figs. 10-12).

It follows from the AGK-cutting rules

~

forthe enhanced graphs that % (?, M ) = 0. For this reason
~ ~ ~
{) = P, + C3). (11.1)

T e notation used here is of the following type:

g“):(;,z)dﬂ - ﬁ,(f) ,

(11.2)
i.

e. b4
Z(?)= dSUY g = <> (F) -

Now pass in (IT.1l) to the (;,) -representation by the transfors

(171.3)
Cw)= S&f)e’m?d;.

o n n
If one sums up the geometrical progressions Zh:O(-") %oof(‘t).o)]

(11.4)

o~ ~
up and down from the cut link f ( W ) in € ( W), then the

following expression for C( () ) arises:

~ - _ _F(w) ~
C () (s o)) + { (W).

(11.5)
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The second term here is required because of the absence of a graph

with only one link in C. After substituting it into (II.1) one finds

~ 2N
fo=li+gfwo] for

Remembering that F(Q))= d/(w “Ao)z and £( &) ,0) = 33/03,
°

one obtains at W —ANA,
~ ~ 2
,f(w)za + ﬁ—-”) a4 ’ (11.7)

A @-0)

After passing to the ? -representation using (II.3) one has

<“>6m(%)=d,?e?A°; (I1.8)

where
AR
do- 1+ TNl
Q
So, the enhanced graph contribution changes A—> AO in
expressions (27,(37) for ¢n> and d G /dY , and also gives to

these expressions the supplementary factor ( 1 + Eoo '/A3° )2'.

\ N (1 A/A(2) A(3) A/A(n)
EP + P% EP +1@> +oeen & P{%ﬁr...
B
1) @) (3) (n)
NB Na I\/e A/s

Fig. 1. Unenhanced Pomeron graph series.

2('B)2F- (WAY 2 n}

Fig. 2. The profile function corresponding to the Froissaron.
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Fig. 4. The Kanchely-Mueller graph for inclusive cross section.

2
o o
: Z KEl=>
‘r<n=-40 m‘::;o

Fig. 5. The sum of cut unenhanced graphs giving contribution to the

100

T

70

inclusive cross section.
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0 ? 20 30 & O

T
ELAB(Gev) 10

R y—
S —

. ) P
Fig. 3. The energy dependence of Gg:w* calculated with (14). 1 y

T T

4.
The Reggeon contribution is also included. —i’ _%

Fig. 6. The asymptotic form of the inclusive spectrum in c.m.s.
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Fig. 7. The energy dependence of charged particle mean multiplicity

in pp-collision, —=—m—n ig n calculated with (37);

. 22
is a curve from ref.” ") corresponding to o{(0) =

Fig.

("’ (0)
s 1 l@mn {
On)

A/“”

) b)
Fig. 3. The simplest enhanced Froissaron graph.
(n+K) (o)

N, A
é Fo

é;nn F;
) .
/V B(vmn) N (o)
q) b)

9.

The enhanced Froissaron graph with rescattering corrections.

- —'_R_ : —,q—-
= v + ‘Ul U oot 71|... ¥+

Fig. 10. An example of the eikonalization procedure.
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7

g z
= g + l + + et z + 4+ e
{
7

~__ \_VJ
D C

Fig. 11. The classification of the graph irreducible in the

‘8§ =channel.

Fig. 12. The connection of C( ? ,b) with the exact Green function

£( ; ,b) .

F f F f
F + oo ~ » X F — |:
a) b) <) d) €)

Fig. 13. The simplest enhanced graphs which give the fisrt order

in the g,, correction to F(';,b).

A
hla

{
B

Fig. 14. The Kanchely-Mueller graph with a particle extracted

from the cut vertex g
00

Fig. 15. The pion loop graph for estimating €1 "

Im
C, s 3
oag (1,423 -8, 94) =2% ) _n oo
Qg (4.3 -809.)=0 =% 2
9o C
- Req,
~1 ~d
qzz_? _§° dza(a°91+ ?44?&1)==O
18 az&(ao?ﬁ 7, g’i):zq‘—

Fig. 16. The complex q*—plane with the saddle poits and the

integration contour pointed.
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Jan= Fan= ey Can - 3559

Fig. 17. The cut irreducible in s- channel graphs which give

contribution to the one particle inclusive cross-section.
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