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lly6osHKOB M.C. H np. 02 . 9789 
ilHH8MHK8 4JpyaccapOHOB B ¢H3HKe Bh!COKHX 3HeprHH 

TeopHSI rroMepoHa c a(O} > l rroasonHer rrony'IHTh rrpH BhiCOKHX sHeprH­
SIX XOpOWee OIIHC8HHe 3KCIIepHMeHT8JlhHh!X ./l8HHh!X 0 6HH8pHb!X peaKUHSIX H 
rrpoueccax ~.-~HoiKecrseHHoro pO)I(JleHHSI 'IBCTHU, TipH csepxsbiCOKHX sHeprHSIX 
(a(0)-1) frr s» 1 ¢opMa reopHH rronHOCTbJO MeHHeTCSI. B paccel!Hi!H anpoHos .llOMH 
HHpyer BKnan Hosoro o6'beKTa - "¢pyaccapoHa", npeacrasnHJOWefc~ co6ofi no­
TOK noMepoHoB, s¢¢eKTHBHoe 'IHcno KOToporx pacrer KaK (s/s

0
)a 0 -I/ frr2(s/~) 

TioJJHbie Ce'!eHHSI B 8CHMIITOTHKe ~8CTyT IIO 4JpyaccapOBCKOMy 38KOHy, 8 cpe.ll­
HSISI MHO>KeCTBeHHOCTh K8K (s/ s0 )a O)-Yfn(s/ s0). TipocyMMHpOB8H8 COBOKYIIHOCTb 
BCeX IlO:"..tepOHHb!X rpa4JHKOB H IIOJly'leHO ypaBHeHHe JlJlSI TO'IHOH ¢YHKU!fH fpHH8, 
PeweHHeM sroro ypasHeHHSI MO/'<eT 6btTh <PpyaccapoH. BKnan ycHJJeHHhiX rpa­
¢HKOB a¢¢eKTf!BHO yMeHhwaer seJJH'IHHY a(O) . EnaronapS! 3TOMY rrpoHCXO./lHT 
CMella 8CH\1IlTOTfl'leCKOr'O pe>KHM8, 

P a6ora sbmonHeHa s Jla6opa ropHH Sl.llP.pHhrx npo6neM, 0!1 HH. 

flpenpHHT 06be.QHHeHH010 HHCTHTyTa H.QepHbiX HCCJie.QOBaHHjf 

,ll;y6Ha 1976 

Dubovikov M.S. et al. 02 . 9789 
Dynamics of Froissarons in High Energy Physics 

The Pomeron theory with a{O)=l+l'i > l is considered. Some 
onsequences of hadron scattering at accessible and asympto 
ic energies are formulated. At modern energies the small 

~omeron intercept shift leads only to subtle effects. But ir 
he region of frr(s/m2).1';» 1 the theory changes drastically. Had 

~
on reactions are governed by a new object,"a Froissaron", 
hich is a result of the multi-Pomeron exchange. The method 
or summing up the enhanced Froissaron graphs has been pro­
osed which leads to an equation for the exact Green func­
ion. It is shown that under some restrictions on the Frois 

~aron coupling the Froissaron can satisfy this equation, and 
he effect of enhanced graphs is reduced mainly to the re ­

~ormalization of the l'!. -value.Thus,the problem of the s-chan­
pel unitarity has been also solved. 
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l . Introduction 

The increase of total hadron-hadrpn cross section s at high 

l 2 
energies has b een firstly predicted ' ) in the Pomeron theory with 
\ 

~P(O) = l. It has been obtained there due to the decrease of the 

negative Regge cut contribution related to the exchange by two or 

more Pomerons . In this approach the growth rate of e) t (s) to • 
can 

be obtained, in the ·eikonal or quasi-eikonal approximation, from the 

experimental data on the diffraction cone slope B( s) and on the 

diffraction par~icle production cross section. Th e corresponding 

estimates 3 ) have predicted the value of the order of 2-3% for the 

ratio ( d.. G t t I d. en.. s )/ 6 . A considerably larger value, o • tot. 

of the order of 6-7% , was obtain ed later4• 5) expe rimentally. It was 

found i mpos sible to e liminate this discrepancy b y onl y cha nging t h e 

sha pe of t h e t - de pe ndence of Regge vertices . Mo r eover , t he inclusion 

of enha nced graphs6 ) makes the situation even worse. It has occu rred, 

ref . 7 ), t hat an e nhan ced gr·aph correction to the Regge 'vertices 

dominates, leading to the decrease of ( d U tot.f ri~S )/ G'tot . over 

the whole region of available energies . 

has 

Jn order to solve this problem the intercept of the Pomeron 

been taken larger than unity8 •9 ) . In such a theory the Pomeron 

contribution due to its power rise 
~(0)-l S violates itself the 

s-chann~1 unitarity . But taking into a~count r escattering processes 

restores at least t h e t wo- particle s - un i tarity . Cheng and wu
10

) have 

been the first to shov1 this in the model with a fixed Regge pole 

at j = ~ (t) = l + A = const. They have obtained good desc r i ption for 
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~xperiment~l rlata on the total and elastic differential cross sec-

tions. However, the problems of particle production ant! the proof of 

the many-particle s-unitarity remained quite subtle for this model. 

In the theory with a movin17 pole a Feynmann ladder diagram may 

correspond to every Pomeron. The representation of the Pomeron as a 

ladder type graph contribution allows one to obtain the connection 

lwtween elastic and different inelastic processes, For example, Ab­

ramovsky, Gribov,and Kanchely
11

) have obtained connection between the 

contribution of Regge cuts to the elastic scattering amplitude and 

inelastic processes with large multiplicity. At accessible energies 

the small shift of the Pomeron intercept a((o) = 1 +~ does not 

change radically the theoretical scheme. At the same time, the cor-

responding correction arising in the amplitude allow the description 

of experimental data on cross sections. The contribution of the 

Pomeron to the scattering amplitude behaves at accelerator energies 

as {s/m2 
)A • However, at ultrahigh energies, when ( t.,_ s/m2 )'A>') 1 

this behaviour drastically changes. The value of rescattering terms 

increases so much that the contribution o1' each term violates the 

s-channel unitarity. Nevertheless, their sum does not violate the 

unitariLy condition because of cancellations of terms with different 

signs. So, the whole sum of all terms saturates the Froissart limit 

and asymptotically ()tot~ ent {s/m2 ). The effective singularity 

in a complex angular momentum plane which corresponds to this sum 

at t = 0 turns out to be at j = 1. The contribution of this singula-

ri ty to the amplitude will b.e called a "Froissaron". In the impact 

parameter representation at ( er... s/m2 ) ·A >> 1 it is a disk 

4 

with constant transparency and with a radius increasing proportion-

ally to ~ ln s/m2 • In the graph language a Froissaron can be 

represented by the exchange by a Pomeron bunch. As is shown below, 

the essential number k of Pomerons in the bunch grows with in-

z a 
creasing energy as (s/m ) / ~ ( s/m

2
). 

The summation of the enhanced graph contribution to the amp­

litude at asymptotically high energies again leads to the s-channel 

unitariby problem. It has been considered for the first time by 

Bronzan12 ) and Carcty13 ). Cardy has noted that after summing up the 

eikonal type Pomeron exchanges inside each link of the enhanced 

graph it is possible to reduce the sum of these graphs down to a 

set of graphs built of Froissarons {Cardy calls them 11 superpropagat­

ors"). He has shown that the use for the Froissaron a representation 

of a disk with a sharp edge results in the total cancellation of a 

enhanced Froissaron graph contribution to the amplitude. As is 

shown below, for a more realistic form of the Froissaron this Cardy's 

compensations are not complete. This leads again to the problem of 

the s-unitarity of the sum of all enhanced Froissaron.graphs. 

In this paper the theoretical scheme 

sidered. Some results have been published 

with ~p(O) > 1 is 

previously
14

•
15

). 

con-

con-The paper is organized as follows. Section 2 presents the 

sideration of the energy dependence of different physical quantities 

and only nonenhanced graphs are taken into account. Such an approxim­

ation may be valid because of the suppression of the enhanced graph 

contribution at accessible energies due to the experimental smallness 
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of the Pomeron interaction constants. Taking into account the 

enh;,nced gr·aphs does not change qualitatively the results in the 

asymptotir high energy region. 

The ~xpressions for the total, inelastic and elastic cross 

sc>r t ions and the ratio of the real-to-imaginary parts of the ampli tu<le 

are obtained an<l discussed. It is shown that in the theory with 

o(( 0) > 1 j t becomes possible to explain the so-called geometrical 

scaling {GS) which has been observed~xperimentally in pp-scattering. 

It will Jisappear with energy increasing, however, at ultrahigh 

energies. Rut when 'Cl. >> 1 1 GS wi 11 be valid again. 

Thr processes of particle production are considered in detail. 

Tt is shown that at ~ (0) > 1 the inclusive spectra have a plateau 

in the central rapirlity region with a height which grows as the 

power of energy. The ener~y conservation sum rule is not violated 

beruase the length of the plateau is shorter than the total rapidity 

interval. The mean multiplicity of produced particles increases also 

as t.he power of energy, when 1A >> l. 

Tn Section .1 the summation of the enhanced Gribov-Cardy graphs 

is eivC"n anc.l the s-channel u~itarity problem is considered. It is 

found there that C:l.rdy 1 s procedure for summing up Froissaron ~raphs 

does not provide the validity of the s-channel unitarity condition. 

The new method for classifyin~ an<i summing up graphs is proposed. 

Tt yields the integPal equation for t.he contribution of the total 

!:!.r·.-.ph sum to the scattering amplitude. It has a solution in a form of 

the Froissaron.The existence of this solution proves tl1e s-channel 

tmltarj_ty condition. So far as the value of o<(O) 

6 

which corresponds to the exact Green function it is smaller than the 

initial Pomeron intercept shift, the total effects of all enhanced 

graphs are reduced to the ~-6o renormalization. It is 

interesting to note that this phenomenon would appear at energies 

which are much higher than the asymptotical ones for unenhanced 

graphs. At these ultrahigh energies the change of the asymptotic 

region would take place and the growth rate of the total cross sectior 

with energy increasing becomes slower. It is not excluded at all that 

6 -" 0. In this case the new regime would be not the i" roissaron­
o 

like one. 

2. The Growth of the Cross Sections, the Diffraction Cone 

Slope and Particle Production in the Theory with a (O)>l 

In this section we disregard the contribution of all enhanced 

graphs. On the one hand, this contribution at accessible energies is 

apparently small and on the other hand, as it will be shown below, the 

total effect of it leads mainly to the renormalization of the ~ value, 

without changing the form of the result obtained here. 

2.1. The elastic scattering amplitude. 

It is convenient to use below the impact parameter representation. 

The partial scattering amplitude (the profile function) 

f (~ ,b 
= 1 _ e2i 0(~ ,b) is defined by the Fourier transform 

of the scattering amplitude MAB ( ~ , 

~cr, b) ~ ~ J HAB (~, 9J.) et9.Lh 

"" 

for the particles A and B. 'l.l.) 

d2q.J. (l) 

2iiF-
Here 1= ett(s/s

0
), .S0 := 2 m; b is the impact parameter, ~.1 is 

the transverse component of the mo.entum transferred. The Pomeron 
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contribution to the scattering amplitude is equal to 

{1) (-f) (1) 1 2.. 

MAs(~~ 9.L) =NA Na ~xp [1:t: 6.-(R2+ol. ~)9.J.] ( 2) 

where ~ = '- is a Pomeron 

trajectory and 

~ ' ~ (- ~.:) ~ 1 + 6. - ol. 'q; 
,..;A(1J<{tJt1~"'>(9J.z.) = ~c.,>,v~oexp[- R:8 q:J 

is a l'omeron residue. The assumption on the exponential 2 
qJ. depend-

ence of the Pomeron residue and the linear 2 
q.l. dependence of the 

trajectory is valid in the region of small 2 . tl . q.L' e.g., 1n 1e reg1on 

of large h
2 

• This region of b
2 

will be mainly under consideration 

below. 

The Pomeron contribution fq' b) to the amplitude (1) has 

the following form: 

fCt, b) =~exp[- LlfR2 ... n~'~' ' 1/· ] 
(J). 

where 

a 
NA<

1Jvt) 
(4) e'll 

R.z: -+ oJ. ' ~ 
For the sake of simplicity we have neglected here a small con-

trihut.ion of the real part of the Pomeron amplitude. 

It follows from ( 3) and ( 4) that the value of f (',b) in­

creases with ~ and can become larger than unity violating the 

unitarity condition. However, the increasing of the cross sections 

in different channels increases the shadow effects and leads to the 

suppression of the amplitude. It is seen for the sum of unenhanced 

graphs shown in Fig 1. The screaning effect if revealed here in the 
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I' 
' 

alternating sign of the different rescattering termsand the total 

contribution to f ( r 'b) is equal to 

C><> n-1 (1'1) <tt > n 
F<~,b)=~(-1) GAGs r(,,b) -1 

n.! • 

Here G (n) = N(n) I (N (l) )n and G(n) = N(n) I N(l) )n where 
'A 'A A B B B ' 

(5) 

Nln) and N~n) are the vertices for the emission of n Pomerons by 

the particles. If b = const and Til- c::>o ' 
then p<~,b)oC€xp(f6) 

is large and each term in series (5) increases with ' faster 

than the previous one. So the large number of n-p -~f'(~6) is 

important in (5). Expression (5) can be obtained from the following 

Lagrangian density of the Pomeron field f 13 ) 

L = L
0 

+ L1 , (6) 

where 

Lo= f<-r+f-'Yf+)+f~'(vr)(v't'+)- ....,+.,.,. 6 , 
(7) 

PO 

L = l_ l_ :1 . a 1'1=1 

,n.-t {n.) [ + 1- h 1 
~ MA. A. -r"'~ ('t') Aj . 
h. C:l d (8) 

The first term in (6) describes the free field with the mass 

- ~ ). The second one corresponds to the Pomeron particle inber-

action. 

Cardy has shown13 ) that the summation in (5) can be fulfilled 

at large ~~>>f, when the vertices NAn) have an analytical con­

tinuation to the complex values of n, when they have no singulari-

ties in the right half of the complex n plane and increase there no 
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r a.~t<or than r ( n). J n this case expression ( s) can be r·epresented 

j n the for'm of the Sommerfeld-Watson integral 

F <¥,b)= Jt 1f G~">G~") fn(r, b) rc1- ~> 
( 9) 

The p.1th of integration goes along a vertical axis in the camp-

lex n-plane. The integrancl has in the right half-plane the only 

,j,wularity, which is the pole at n = 0. The residue in this pole 

(o) (o) . ~A equals ': • :; • Consuler the case when u- C>o and 
\ . !l 

b < z(r:i't::.)
112

} - (<>lJI'~Y/.2~~ Here per, b)>> 1 and the 

rcsl of the lnlegral along tl1e vertical contour decreases as 

f-IRenl 
, when the contour is shifted to the left. So, here 

f (' ' b) 
·- 1\ ( 0) , A • 

(o) b (, I )1/Z~ 
NA = canst. In the region of >'>2\o:' A T 

Lhe value of f(1,1>).(<1 and F C'f,b )~pq, h)-._. 0 at 

~ ~ ~ C><) • It means that approximately 

FC~,b) ~ t~;o>N:o>()('lot.'6.'J2_- b2), {10) 

whPre the sma I l corre<':tion 

2 

~ ~ /' to the bounJ value .to( A ..,. 2 

of h has heen disregarded. 

tl follows from (10) that at all' F Cf ,h)~ l when 

:-JA (o? N~0):S; l. Tt means that the unitarity condition is valirl at 

'J ~o). N (o) < 
\ A -

due to shadow effects. rardy 1 s result (10) means 

tiLtt the factori7ation takes place in the asymptotic regitn1. In 

. . . ( 11) 
the e.tkona l approximatlon !'JA == (N (-1) n 

A ) , or G(n) 
A 

in (Ci). Tl,cn the sum in (5) can be evaluated for all' 

F(1, b) :::: 1 - e.x p[- fC,, b)] . 

10 

(n)_ 1 G -
B 

( ll) 

I 

In the quasi-eikonal approximation
16

) 
, .. , Y\-1 

GA = CA and 

(") "-1 is the shower enhanced coef-
GB = CB ' 

where C XC = CAB A B 

ficient arising from the diffraction dissociation contribution. In 

F< 1 ,b)% ~8~-exp[-cA&~1.1l} this case 
(o) (o) 

NA • NB 1 /CAB and 

The object with the profile function F( 1 ,b) will be called a 

11 Froissaron 11 • The dependence F ( ~ , b) on b at ~·6.. ">'> 1 is 

shown in Fig. 2. It is obvious that the profile function of the 

Froissaron corresponds to the picture of diffraction on a disk with 

constant transparency and a radius increasing as 1 . The edge 

of a disk is spread in the transition region with a width which can 
J. 

be estimated from the behaviour of ~ (b, ~) at b ~2(o!.'Af! 

fer. b) 
(-1).1 (f) [ 2 (ot'Ar· ~- b 

- ~s exp \ot'/c::..Y/z ,., cX.'r ]· (12) 

In the (~>9.1) representation the sum (5), has the 

well-known form: 

00 
'"' n-t i!n (n) (n) f 2 t I } 

M<~~~.L)= i. ~(-1) n:ri"!GA G8 exprr.l[R+~ !t] . (13) 

In the theory with o((o) -, 1 E. - exp(~·A) ' when 

~ c:::><o Here the effective number of the terms n is close 

to z Therefore, the Froissaron can be considered as a bunch of 

Pomerons with the effective number of them increasing with energy as 

11. -l - e,c p\1 A) . 
It is easy to write down the expressions for the total and 
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total inelastic cross sections 

Gtqt(~) = j2F(~,b)d2b=8tjl(R2+ o< 1f}'f(i), ( 14) 

<S._.,(~> ::: }[2 FC"~>)- F1r, b~,lb = frn-(R~"''r)'f(2~). (15) 

Here 'f(r) is introduced according to 

.i! 
( -p dP 

'f(t)= J(1-e Jjt- =C + ~~-Ei.l-l), 
0 

( 16) 

where C = 0.5772. is the Euler constant and Ei(-z) is the integral 

exponential function; E't ~) - 0 when e ----. ~ 

From (14)-(16) it follows for the ratio of elastic to total 

cross sections 

G'J(~) = .:f_[f- ~2+fL(-~)-Et(-2i!)] 
6-M <F) 2 c + e...l- E .. (-i) 

( 17) 

where Gat(~) =G.w.QJ -cq,,(j) is the total elastic cross section. 

It is seen from (17) that 6e~/6~ is of the order of 0. 2. 

at l ~ 1 and tends to 1/2 at "t- --- <><::> • For the transition 

to the quasi-eikonal approximation it is necessary to make the sub-

stitution i!.- i!·CAB in expressions (14) and (17) and 

to divide these expressions by C 
AB 

The ratio of tl1e real-to-imaginary parts of the forward scat-

tering amplitude has the following form: 

_J f I -1 o<' \f. -ill €(~)= f'il d) e., [6'toitJ]= fir lRtr:~.; + 'f (l)(ll- R1+.ql''f-e }_j·(l8 l 

12 

I 2. -f 
As is shown below, at accessible energies o( (R+o/~)~~ for 

pp-scattering. So, the second term in ( ld) is small and £(~)~ f'U D. 

Therefore, at accelerator energies e c~) is determined 

mainly by the contribution of a Pomeron and the secondary poles 

I. w. P A
2

, etc. 

Consider also the expression for the diffraction cone ~lope 

parameter B(' J, determined so that at small ltl d<:i/dt ~ 

~ d<:)/d·l/.t=o~p{t·B{'!j. It follows from (9) that 

B(~) 2(R2 +o<',)X(~), ( 19) 

where 

~ 

K(l);:; f-(t) f 'f(x) "; 
(20) 

0 

Consider equations (14)-(20) in the regions of accessible and 

asymptotic energies. It will be useful to remind that the analysis 

of experimental data on pp-scattering in the FNAL-ISR energy region 

l ,_ 5~8) has shown that the so-called geometrical scaling (GS) 

takes place17 • 18 ). GS means that the partial scattering amplitude 

JCJ, b) depends only on the variable 1/ IB(~) , i.e.~ 

/(1) b)= f ( ~;)) (21) 
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The Froissaron contribution to the partial amplitude will 

satisfy GS when z does not depend on ~ t , 

This requirement can be satisfied only approximately by the special 

choice of parameters when at some point ~ = )o the equality 

cJ.2/rJ. ~ \l==~o = 0 holds. Together with equation {4) it implies 

~= 
ol..' 

{22) 
(2..2. + ol'~o 

The use of existing experimental data on the total cross sec-

tion and the diffraction cone slope for pp-elastic scattering makes 

it possible to obtain the value of the parameters 1\ ' 2 L.J. 1 OC: and R , 

It follows from equations {22) and {14) that at 2 ~ canst 

the growth rate of the total cross section equals 

;r en G'tot(f) = 6 {23) 

As it has been noted in the Introduction, the experiment gives for 

this rate the value of the order of 6%, i.e., 

6 ~ o.o6 {24) 

while at accessible energies t(a) ~ l in expression { l')) an<l 

B ( 1.,) ~ lO{GeV/c)-
2 

it follows from {22 )-{24) that 

o/..1 ~ i S(~J.6, Z 0. 3 {GeV/c )-
2 

{25) 

Putting .. 0 = 6 in expression for B{ '
0 

) yields 

t.,.---. ( . . Jl4)(aa) • 1 (1)( ._) 
Equat~on { 3) has been obta1ned when N A J.J. , IYB ~.J.. 

depend on 2 9~ exponentially, It is valid for small '1-~ 
2 or large b • In the region of large '{i ~ 1 {GeV /c) the 

exponential dependence of the residue seems to contradict experiment-
al data. However, at large 'J.i , the accuracy tn which GS is 
valid, is not goog, 

14 

I 
I 

R2 ~ l B(,0 )- -<)o ~ 3,2 (GeV/c)-
2 { 26) 

These parameter values are very close to the results which have been 

obtained by A.M.Lapidus, V.I.Lisin, P.E.Volkovitsky and one of the 

authors {K.A.T.-M.) from the detailed analysis of experimental data. 

It is worth noting that for 'ir p and I< p elastic scat-

tering at the same energy B(~) ~ 8{GeV/c)-
2

, so R
2 ::::: 2.2 

{GeV/c)-2 and is smaller than for pp-scattering, For this reason, 

meson-nucleon scattering GS should not be so precise as pp and 

will. appear at higher energies 

~'1rf = _j_ 
7o A. 

2 

.&.r~~. 
ol.' {27) 

Thus, in the accessible energy region z remains nearly constant 

and cross sections and slope parameters increase with energy almost 

linearly on ~ 

<?eeC ~ )/B (~) 
• So the ratios 

and 

6-t."4'- cn/s C!) 

dee(~)/ c5t.st( ~) remain con-

stant. At very high energies, when .., /:). >> 1 the cross sections 

and slope parameters will behave in a universal way 

G'Wf(~) = 8?to<'6 ~.z.:: 8?r BC~) = 2 G'~Cf) . 
{28) 

It is interesting to note that at ,~ >>1 GS appears 

once again and becomes exact in accordance with the general result 

of ref. 19 ). 

The" energy dependence of 6~ <r> 
equation {14) is shown in Fig. 3. At 

15 

calculated from 

! z 109 Gev
2

, where 



cosmic ray data exist , ~tot in pp collisions becomes as large as 

100mb. The authors of ref.
20

) have calcualted the inelastic total 

ct'oss sect-ion (l ( p- air) with the mean value of A =14.4 

'"' in the framework of the Glauber model and came to the conclusion 

1.hat thP increase of the pp total cross section, as given by eq. ( 14), 

is in contradiction with experimental data on G:.n (p -a.;~)· 
l~wPvPr, it is necessary to note that the Glauber model is not valid 

at such a high energy 21 ) because at ~ ~ lO'J Gev
2 

the trans-

verse rjjmension of a parton cloud becomes comparable with the nuc-

lear ra(lius. So it is impossible ~o consider nucleons in nuclei as 

separate scattering centres, since nucleon parton clouds become 

strongly overlapped. At ultrahigh energies the Froissaron radius 

will be larger than nuclear dimension and the effective number of 

interacting nucleons in nuclei will be equal to unity implying 

O·W\ (p-,u't) = ~.PP 
" v..,"" • It is a consequence of the univer-

sa] value of G'tot in eq. (28) independent of the nature 

of int<>racting particles. This strongly contradicts the Glauber 

model, lPading to 

jf ~ pp 
\;;;1-Wt. - C>c:> 

~ -2/3 PP 
o .. ~<r-~·~> ~ A otot 

2.2. The Multiparticle Production 

even in the case 

~o'~ turn to particle proctuction processes and consider the 

i nr: lusj ve spectra of part-icles produced in the central region. It 

follows from the theorem of Abramovsky, Gribo~ and Kanchely (AGK)
11

) 

thatthe onlydiagram which gives a contribution to the inclusive 

spectra is the cut pole graph, Fig. 3. At clCO) > 1 it yields 

16 

the inclusive cross section growing as the power of energy 

a.c5 = B= A1<"!A,(o _j r.o 
cf. ~ IL IV A IV B · (;{ · <2 (29) 

The vertex cJ is shown in Fig. 4. From equation (.9) 

it follows that the inclusive spectra have a plateau in the central 

region and that the ~eynman scaling is violated. 

As has been noted previously
11

), equation (29) contradicts the 

energy conservation sum rule 

1 - !J gQ "{12 
G,n e ~~ o/.!:1 

< ef/2. (30) 

0 
Here and below we sue the c.m. frame. 

If one chooses the upper limit of integration in (30) very 

close to the edge of the spectrum 1-2fl4 )..< 1 
inequality (30) is really violated. This result seems to be 

surprising because the violation of the energy conservation law 

has not been included in calculations. The solution of this paradox 

is in fact that eq.(29) is not valid in the whole region of integ­

ration. At the edges of the spectrum the Kanchely-Mueller graph 

(Fig. 4) does not reflect the contribution of the sum of graphs in 

cut Fig. 5 in a proper way. Really in the graphs in Fig. 5 with k 

Pomerons the total energy is divided between them mainly in equal 

parts. Therefore, particles in each cut Pomeron are produced in the 

rapidity interval of the oder of 'f-2~1< Now find the mean 

number of cut Pomerons <tc> in Fi
0

• ~. The cross section 

S'" of the k-cut Pomeron production is equal to 
22

) 
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S = lf7r(R2+o('~)Q"2.!~(2~)m_ hc;;-(R,to~'~) ((t<,22) 
tc "" '- L.."mf - ..,u r ("'+1J' , (31) 

~~IC • ~ • 

2z 

where d (1(,2e) = (e-X X IC-t d.x is an incomplete r -func-
0 

tion. Jt gives for a mean value <~<> 

= ~ ~ 2 /11.<1~ (1) e ~A 
<~<> = K.~-r/ 5"' 16•~ =- 'P(22) ~~a A (32) 

Therefore, the rapidity interval where particles are produced 

from the cut Pomeron, is equal to ,_ 2~<k> = ' ( 1- 2 A>. 
It means that the inclusive spectrum can be presented in the form 

of (29) not in the whole region 1~1<,/2. but only for 

I~\ <. ~ ( 1/2 - A ) This corresponds to the value 

A= 1-2 o. in the upper limit of the integral (30), satisfying 

inequality. 

Consider now the shape of the inclusive rJ.G /d!i spectrum 

near its edge I.!/ I ~ ~ ( 1/2 6) • The energy conservation 

law permits the production of Pomeron showers of the length 2 I Y\ 

in the amount of 

1<0 (.!1) = exp[4:(~ -21~« 
(33) 

This equation taking into account (31) and (32)implies for 

the average number of showers with the length of 2. 1...!11 or 

larger 

1 l<oUt) 2z -lz{~<.C~)(2i)m-1 
(IC(.!i» = 6 .L. t< s~ = 'f>(2i) e L (--::i"), + 

Lr\. "- "'-1 11'1•1 WI • (34) 

00 

+2_ !(.~(.~) (2~t- 1 J . 
m=l<0C~)+1 
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The sum5 in brackets in eq.(34) have the followin~ properties: 

at (K 0 (J:I) -2 ~) >':> 2. i! the contribution of the <;;Pcond 

term is small and the first term is equal to exp (2 2-) 

When (2 2 - Ko (~)) >> 2 2 the main contr·ibution comes from the 

secontl term which is reduced to KoG!f) exp(2 i!) /2 2 

It implies, taking into account eqa. (13), (3-'f),that eq.(29) for 

inclusive spectra is valirl only at 1!11< Jio -S'.!:Io~ 

where 

~ o = i ~ - e .... <2 2) , 
( l s) 

b.!J = (Qzft/~ 
(16) 

In the region of 1.!1 \ > .!:l 0 + S" 110 expression (29} 

for the inclusive spectrum ;,cquires the additional factor exp(.!l0 -1.!11) 

Both the curves map tog-ether at y ~ y
0 

with the transition t,P{Tion 

w.idth 2 ~ .!1. which becomes narrower when energy increases as 

it follows from eq.(34). In the asymptotic high energy r·egion th" 

spectrum slope shc1wn schematically in Fig. 6 has a break ~t y=y 0 

Having the spectrum we can obtain an expr·ession for the avera(!c 

multiplicity (n.) of paM:icles ~ produced 

(n> = (c + d ~) ~<2~) 
~ 2 NA:1)MC1) 

fA»1 d o( A 8 

e'6. ( 37) 

T 
Thus, :>t :>vai lable maximal ener·gies the inclusive spectrum (29) 

must have a plateau in the rentral region of rapidity. The height 

of this plateau increases as e.xp (~6) violating the Feynman 

scaling. Nevertheless, at accessible energies mean multiplicity (37) 

does not deviate from an ordinary linear dependence because the 
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increase of the plateau is compensated by the growth of inelastic 

cross section At higher energies the average multiplicity must 

incre~se with energy faster, as is seen from Fig. 7. 

Due to the contribution of secondary poles the described 

picture fot· inclusive spectra changes significantly now. The value 

of 1 ~ l (: is needed for the Reggeon contribution to become negligible 

in the centre of the inclusive spectrum. 

Now consider briefly the problem of topological cross sections. 

At accessible energies the experimental data show the existence of 

t.he KNO-scaling
23

), which means that 

r.: - ~ "W (...!1.) vl't - <n.> I <n> . 

where 't' (.x) is some energy-independent function. Let us neglect 

the fact that the total energy is divided between produced showers 

Then eq. <.nl) 
ol~ and assume that, each shower has on average particles. 

(31) yields
15 ) for the following expression 

e e 
(n > = (d r) c:te (2i!) , (38) 

where ~(22) = (G,.,f1~: ·l~. 
It means that in the energy region where 

Z ~ Coi'\St , the value of Me={nl>/<l!)e is energy-independent 

and leads to the KNO-scaling, with Me= S:' xe'f(x) d.x . 

So the theoretical scheme with fJ(O) >1 yields the KNO-scaling 

in the energy reg ion where z.e const. 

20 

• 

Shabelsky and one of the autho•·s of the pr·esent paper (K.A.T.-'1.) 

have calculated topological distributions in the framework of the 

eikonalized Pomeron theory with ol(O} > l. (See also,rcf. 
22

). 

The Poisson distribution over the number of t;r~oduced particles 

in 1 adders forming Pomerons was assumed and the cU vision of Lhe 

total energy between different Pomerons was taken intc> account. As 

a result, good correspondence to experiment has been ob"Laine<l. The 

theory gives good description of the effect of the appreciable 

broadening of multiplicity distribution with energy which is ob-

served in experiment. In the theory it occurs due to the contribution 

of the simultaneous production of several multi-

peripheral particle showers, that is, the cut Pomeron lines (the 

so-called 11 combs 11 ). As has been discussed above, in the accessible 

energy region the theory yields an approximate KNO-scaling. 

At ultrahigh energies a number of peaks emerge in the theoretic-

al curve for the multiplicity distribution. They are due to the 

diffraction production and to the production of one or more 

multiperipheral showers
11

). 

The picture of multiplicity distribution with the number of 

peaks appearing at very high energies (E ~ 10
8 

GcV) strongly 

violates the KNO scaling. 
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3. Enhanced Graphs 

3.1. The Summing up of Gribov-Cardy's Graphs. 

Let us take now into account the interaction 

Pomerons. The simplest graphs containing only one 

tion vertex are shown in Figs. Sa) 

that similar to the verteces ~~) 

and ~a). vie 

(n) 
N 6 • the 

between 

interac-

assume 

transition 

vertex gmn connecting m Pomerons with n ones , has the 

eikonal m+n 
from gmn = googl or, more general, that it per-

mits the single-valued analytical continuation g = g (n,m ) to 
nm 

th" complex m and n planes. Then the sum of the graphs in Fig. 

~a (Qa) may he substituted by the Froissaron graph shown in Fig. 

'b(Qh) with the coupling constant g = g(O,O). This enables us to 
00 

pass from the Pomeron graphs to the summation of graphs made up on 

Proi~sarons, ref.
13

). 

It is necessary to note, however, that graphs with n = m = 1 

are included in the sums in Figs. 8a and 9a, although they formally 

do not exist according to the form of the initial Lagrangian .Indeed, 

they contain the vertex gf1 of the transition of one Pomeron into 

a Pomeron. The corresponding contribution to the Lagrangian 
+ g,., r 't' 

has a form of a mass term and was already included in the free 

Lagrangian (7) 

Lagrangian 

' L 
2 

L
0 

• Nevertheless, we can use the Pomeron interaction 

~ .Smrt ,tn·H\+2 ('t'+)rn'Yn 
L ""'I"' tn,VI:1 • h. 

(39) 

containing this term and corresponding to Figs. 8,Q if the total 

Lagrangian is redefined as the sum 
I I 

L = L
0 

+. L1 + L2 
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with L
1 

= l 
0 0 

g11 f+'t' and L
0

, L
1 

given by eqs. (7) (S). ft is 

just similar to the use of L
0 

as a free Lagrangian and having no 

term gf1 't'+'t' in the interaction part I 
L2 = L2 - gfl -y+- 'f" 

The use of ~ instead of L corresponds to the redefinition in 
0 0 

( 7) /}. - /:). 0 , where 

boo =b.- -811 ( 40) 

Thus, the account of the enhanced Pomeron graph contribution leads 

to the enhanced Froissaron graphs of the type shown in Figs. ~,q, 

where F 
0 

is a Froissaron and .fo corresponds to the Pomeron (with 

fl substituted by f:l ) . 
0 

In the accessible energy region the enhanced graphs contrihu-

tion is actually small due to the smallness of the Froissaron coupl-

ing constant g
00 

( or of the vertices gmn of the Pomeron coupling). 

However, in the far asymptotic region enhanced graphs could be essen-

tial as their contribution grows with energy so fast that each of them 

separately violates unitarity. For instance, the singularity W- 6 

in the ( W , ~.L ) representation corresponds to the graph in 

Fig. 8b. Its contribution to (3'1o't(}) is profJor·tional to 1:; at 

-,~~ ). 

The !-unitarity for the sum of enhanced graph contributions 

has been analysed by Cardy13 ). He has noted that there is a complete 

cancellation, in approximation (10) of the contribution of 

Froissaron graphs in Figs. 8b and 9b • Their sum is equal to the 

v"l"" f'orresoondin!! to the graph shown in Fig. 8b multiplied by the 

factor 

l- 9< a~ ~ 2 b2 ) , (41) 
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where 

<fo = L/ol'D.o ( 42) 

The sum is zero as with b2 > 2 2 
ao • .., the contribution of the 

graph in Fig. 8b .. 1 . (2't2 1S 1tse f proport1onal to 8 a 0 . { - b2 ). 

Since the factor e( a;. 1 2 b 2 ) corresponds to any addi~ive 

Froissaron line then there is always a similar complete compensation 

of enhanced Froissaron higher order graph contributionS in each 

order in f!oo So far the summation over all Froissaron graphs 

yields only one F
0 

contribution which is unitary in the s channel. 

However, a bit more accurate calculation taking into account 

a small deviation of the Froissaron profile from the 9-function, 

shows 15 ) that the above compensations are not complete and do not 

at all guarantee the unitarity. Titere are two reasons why the ()-

function approximation is crude. At first, the account of the 

smearing out at the edge of the ? roissaron disk, shows that the 

unitarity is violated at each stage of Cardy's summation procedure. 

Consider, for example, the graph Sb contribution to the partial 

amplitude at the distances 

b = z (.,;.'t:~Y/2 ~ - <r:~.'I{:)J112.tn ~ (43) 

Let bl and y be an impact parameter and rapidity corresponding 

to the vertex g 
00 

With b
1 
~ a

0
y eqs. ( 3)' (4) and ( 9) imply 

F {y, bl )oeljy
1 

At the same time, the second Froissaron in 
0 

Fi~. 8b yields the contribution F (Ly,lb-b1l 
0 l """""~ 

= canst 

for b
1 

displayed in the crossing re~ion of both the disks. The area 

of this region is proportional to 
412 

~ • So, after integrating 

24 

over b
1 

and y, the contribution of the dia~ram in Fi~. ilb will 

rise as ~-f/.2 at the impact parameter values of the order of (43). 

Small compensation which occurs after the addition of the graph in 

Fi~. 9b does not change the result because l-F0 (~, b ): const 

due to condition (43). So, the s-channel unitarity for t.he partial 

amplitude is violated even in this simplest case. 

There is another reason also leading to the contribution with 

the unitarity when a more realistic form of F 0 ( ~, b ) rather 

than ( 10) is used. A small distinction F 
0 

( 'f , b from unity 

atb<a0~ 
is important. Let us call those graphs irreducible in 

the s-channel which cannot be divided by a vertical line into two 

parts without crossing the Pomeron lines or vertices gmn . Let 

G {', b) 
be the contribution of such a graph differing from 

f!(l' b 

of the graph in Fig. 8. For a given graph there will be graphs gener-

)-Pomeron contribution, for example, the contribution 

ated by the iteration of G(1 ,b) 

the sum of such iterations by the symbol 

in the s-channel. Let us denote 

E lG( ~ ,b ~· In the 

eikonal approximation, e.g., it is equal to 

E tG<r, b)} ~ 1- ~P{ Gc~, b)} 
(44) 

Suppose that G( r ,b)< 0 and that G (1 ,b) is an 

exponentially increasing function of ~ As is shown below, just 

this case is a real one for graphs with the form of a chain of the 

type shown in Fig. 8. Consider what may happen in the limit ~- .,._, 

In the same eikonal approximation the rescatterings via a Froissaron 
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.e:ive (44) the screening factor 

exp {- fo (~)b)} (45) 

rather tft'!n ( 41 ) . It is clear now that there can be two different 

cases at G ( ~ ,b )<0: (i) if I G( ~,b >I < Poq, b) in the 

limit 

'- e>o= 
' then the unitarity will be conserved, or other-

wise (ji) if \c (~ ,b 

crudely violated. 

>\>.foe,, 1:.), then it will be 

Thus, the problem of the s unitarity of the theory can be 

solved only after· the summation over all enhanced Froissaron graphs. 

The method to solve both the problems has been developed in ref. 1 4) 

The main idea was to consider the elastic scattering amplitude 

fAR (' , b) shown in Fig. 10, as a sum of the s-channel eikonal type 

iterations of the contributions 11(', b) of all irreducible 

(in the s-channel) graphs 

/Ae(~, b)= N~o)tl£o)/C1, b) ( 46) 

/Cf, b)= E {trC~;b)} 
It fulfills obviously the s-channel unitarity condition lfl~ 1 

if 11' (' ,b ) is positive for any ~and b. 

To investigate the latter problem let us construct an equation 

for the exact amplitude f ( ', b). For this purpose we divide 

the graphs contributing to \! ( ~ , b) into three classes: the 

Pomeron function foe~ ,b) and two groups denoterl 

C(~ ,b) as is shown in Fig. 11 

written in the following way: 

that is tr(~,b) 

1r ( ~ , b) == fo ( ~; b) + CZ) (~, b) + C ( ~ , b) 

26 

by D(f ,b) and 

will be 

(4 7) 

,\ 
~ 

.1 
~ 

The group D contains the graphs irreducible both in the s-channel 

and t-channel. These graphs cannot be divided by a horizontal line 

without crossing Pomeron lines. It is clear that after all possible 

summations and reductions within these graphs, the group D turns 

into a series of Gribov 1 s graphs
6

) built up of exact Green functions 

f ( l , b) ( 46) and the vertices g 
( 00 

Each of these vertices couples 

three or more lines f(~ ,b) • Some simple examples are presented 

in Fig. 11. 

The totality of graphs from the group C form the t-channel 

chains with the number of links not smaller than two. Each link Z 
, 

is a sum of graphs which cannot be divided by a horizontal line, 

crossing only the Pomeron interaction vertices. At the same time 

unlike the group D these graphs can be reducible in the s-channel. 

For these reasons one can write 

Z( ~,b) f(' ,b) - c 

Z( ~,b) 

(~,b) . 

as 

On the other hand, C is easily expressed through Z if one 

looks at Fig. 11 and passes to the (CJ •9J.) representation. 

C (w, ~J.):: Z (w, ~.L)b.., G&oo ~ (w, }.L)} n 

2 

(48) 

.8oo l?. (co, ~.J.) (49) 

1 -<;:joe Z (W, 'f.J.) 
C(LJ, 9J.) can be found from (48) and (49) 

2. 

&oo few, ~.J Ccw,~.J..) ~ 
1 +~oo.{(c.:>;'f.J.) 

It is clear now that the sum of the graphs shown 

corresponds to expression (50). 
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(50) 

in Fig. 12 



So, the right-hancl par·t of ( 46) can be expressed through the 

function f(~, b), Consequently, relation (46) has a form of an 

integral equation for the amplitude f(' ,b). As a possible solu­

tion of this equation one can consider the Froissaron F
0 

tC1) b) =:Fe,(~, b)~ e(a~~'- 6') (51) 

After substituting (51) into the graphs of the group D (f) large 

Cardy's compensations take place. 

The only remaining graph in the group D is the simplest one. 

with two ~ertices g • Its contribution is large and positive for 
00 

b < a
0 

1' and is equal to zero at b > a
8 
~ 

The consideration of the graphs from the class C(f) is more 

complicated. At the impact parameters b > a
0 
~ the contribution 

of these graphs is equal to zero. Let us consider the case of b < a
0

} 

and pass to the (£J,~~) representation. It is convenient tore-

write (50) in the following way: 

-1 -1 
C (w> q.L )= /(w, 1.L)- [/CIA>, y.L) -r~o.J . (52) 

Froissaron (51) in the ( W, 9 .L ) representation has a form of 

~ (w, ~)=a! (W;l+ a~ '1--~ ,-312 
(53) 

Since the first term in (52) is positive, concentrate our attention 

at the second one. After substituting (53), it is equal to 
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l. - ao 
/

/ Q ) - .2. 3/2 ""' C (w, i ~) - lw > y.L - (w2..+ a.! ~.l J + ~ oo (54) 

-' 
where g

00 

2 
a g 

0 00 
This expression in the case of v > 0 has 

00 

two poles in the right lJ -half plane: 

-vua 
w1,2 = ( ?1,2. ~oo c~~) 
?-1,2. =e-xp(±f:.<it) 

z. 2]112. -a. Q 
0 /d. 

If g
00 

< 0, then only one pole with RQ 1J >0 exists: 

Q - [In z.)l2.13 ,_ 2..11 
1- I=:;'Joo(9.L - a.o 9.L 

(55) 

(56) 

At '!­
C( ~' 'h) 

~ the pole term gives the main contribution to 

, which for is equal to: 

(57) 
] c c~,~.L) ~ - ~ Re --4 s:., 

If 

c ( ~ ' 
(58) 

is obtained means of 

Fourier transform 

_.J.._J -~!~ 2 
cc~,b)-,ztjj C<~,~.L)e Jq.!. (59) 

The calculation of this integral is accomodated in Appendix I. 

It is carried out in the the saddle 

point method. The result is equal 

(60) 
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i[ g > n. fn 
00 

((~,b)~-:! e(Q~!~b')~xp{l.&o .. l~(~:- ~ iJ (61) 

Expression (60) oscillates when rises and b is constant. 

The value of (6l) is always negative. So, if one wants the sum (41) 

to be positive at any value of b and ~ , one should impose the 

following condition 

IC(f,b)\ ~ _fo(),b) ( 62) 

for· b < "o~ Hut this inequality is obviously violated near the 

edge of the Froissaron disk, i.e.,at b ao~ = canst. Here 

energy increasing ~ ( '1 , h) OC 1/' decrease with 

but IC(~,b)loC exp(A~f)/~ is a rising function of 

Nevertheles'>, it is seen from (57) and (58) that if g ( Q.L.) 
00 y 

2 
depends on d}.J.. by means of 

~ 

2 2 2 
g . ( 1:1.1. ) = g ( 0) - "t Q' (63) 

on ~,.. oo -y.L 

then the number of 

is a constant. So, 

a
2 

is substituted by 
0 

2 
the ~.1.. - dependence 

a
2 

- c r
2 

, where C 
0 0 

of 1];
00 

(q.: ) is decreasing, 

? 
i.e • .r·- > 0, then C ( ~, b) has a smaller radius in comparison 

with ro( r ,b) 

goo 

and condition 

3 
(o)<S/S. 0 for 

3 \;!
00

(0)\ <.boo for 

(62) can be satisfied if 

goo> 0 

(64) 

goo<. 0 · 

Thus, solution (Sl) does not contradict the s-channel unitarity. 

However, this solution is only approximate, because the right-ham! 

side of (46) does not sharply drop to zero when b passes through 

b = a 0~ , but smoothly decreases as E tfo( r ,b ~ . There are 
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some arguments in favour of the unimportance of the smoothing edf'.e. 

Although the rarliu~ of the sum of graphs, which belong to C(f) can 

rise anrl be larger than a of (for g
00

<. 0) 

pensate this by choosing the value of 
2 

r 

it is possible tlJ com-

in (63). As for the 

~];raphs of the group 0, it can be shown that each graph cnntribu-

tion is decreased with energy rising a. h 

the fact that each of the vertices g 
oo 

~ ao) .This is due to 

in the graphs of the gr·oup 

0 couples three or more lines. Although the number of selection 

graphs is infinite, their contributions have alternative sit!.ns, and 

one can assume that the summed up contribution is also decreased 

with 

' 
rising at b > ao·} . In the region of b "'- ao.., 

the smoothing edge of the Froissaron disk does not play any role, 

and D (', h) <>C 

compensations. 

ei<r[-)0(~, b~ is very small here because of Cardy's 

l -
.1.2. The renormalization of the L\-value )) 

Let us draw o11r attention to the fact that the interaction 

r·adius square<!,~ r:i. 1Aor, corresponding to solution (Sl) is smaller 

by 4 r:x gll 
1 '2 than that which arose ahov<> for the unenhanced graphs 

only. In other words, the enhanced graph contribution is reduced 

effectively to the renormalization of the A-value in accordance 

with (40\. In the energy region of the near future accelePators 

~ ~ 10 the transition of the total cross '<ection to the 

Froissarl behaviour wil I bAgin. gut the simplest enhanced graphs 

shown in Figs. 'ib,<Jb demand the value of 1 two times larger for 

the asymptotic behaviour. So, at superhigh energies when the cross 

sections already rise as ~'j\ t>/.. 1 A~ 2 
some slowing-down of the 
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gro"t,h rate will take place, This chanl!;e of the asymptotic regime 

corresponds to the reduction of the ~ -value. This situation can 

he explained by the simplified example, shown in Fig. 13, where only 

unenhanced gr'aphs and the first enhanced gr·aphs with one ver'tex g 
00 

ar~e t~ken into account. Since we use here the Froissaron F, contain-

in!' tl1P vertex g
11 

contribution, the gr'aphs in Fjg. 1.3c) and e) 

should be subtracted. At modern energies the contributions of "the 

tt'iple Pomeron graph (which is negative) and more complicated 

/'I'aphs ar·e negligibly small. So, the contributions of the ~rraphs 

b) anrl c) (d,e) compensate each other, and the cross sections rise 

as ( 1 4). flut in asymptotics the sum of the graphs b) and d) gives a 

coni..,rj buLi on to Otot ' ' ;r3/2 ' 11 rlSlngas r ,1.e.,sma. As for the 

graphs c) and e), they give the summing contribution - 8 'ii ~ :a11 ~ 2. 

and decrease the /:i-value. 

Tbe same conclusion is valid for the multiparticle production 

reactions. It is shown in Appendix II that enhanced graph contribu-

tion r·enormalizes the value of 

section of (29) and in the mean 

the values of the factor d. 

6, _......... ~ 
0 

in the inclusive cross 

multiplicity (37) t and changes also 

contained in this expression$. 

The only exception is the case when a particle is extracted from 

the cut vertex, as is shown in Fig. 14. The corresponding contribu-

tion sli~1tly bends the inclusive spectrum, which is given by the 

tif Pomeron interaction is strong enough, then AGK-cutting rules 

can be violated and the mean multiplicity will rise only as a power 

of 1 . We thank E.M.Levin and M.G.Riskin for their helpful dis­

cussions of this problem. 
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following expression: 

(1) (1} ~ 2. 
~ 
d.!i 

gqr ,.;A Ns [doerCJ.o+h.!l~(~-y) J (65) 

The coefficient a0 is obtained in Appendix II, an<l the factor· h. 

is defined in Fig. 14. 

It is interesting to note that a case is not exclurled when 

g 11~ £::::,. , or /:;:,. 0~ 0. The .c~-sibility of such a situation is sup-

ported by the simple estimation of gll in the one-pion exchange 

model as is shown in Fig. 15. 

After calculations one has 

( -2 'I. t~?· + 1. ~112. J 
(66) 

gll ~ 16crr 6 "' [ R1 - 2r & ~ 1) Ji 
wt <x..AI 

the pion mass; R;/2 describes the dependence of Gtot where j"t is 

on the virtual pion mass squared. If one puts R; = 1/(GeV/c)-
2

, 

then one finds from (66) g
11 
~ 0.08, which is of the same order· 

as l:l. 

If the case of .6. 0 ~ 0 is realized, then the Froissart-likc 

behaviour is not possible. This is seem from equations (46)-(~7) 

which are valid as earlier. The negative value of C~ 1 ,b) cannot 

be compensated by anything now, because fo{r,b)-o as r-Oo. 
Consequently, the solution F 

0 
( ., 1 b) is not sui ted here and the 

total cross sections will rise asymptotically not faster than 

G'tot(rJoe ~?. (~7) 
where 

~ <. 2 (68) 
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So after the change of the asymptotic regime at superhigh 

energies ll1e Froissart bet1aviour can pass to more gentle slope 

rising. The inclusive cross section and the mean multiplicity in 

this case are equal to 

4Sj_oc .!:170-1:1)1 
d.)J 

7+1 
<.YI..) oC. ~ . 

(69) 

Jt is worth while noting finally that the critical value 

~ =~c is known for which the strong coupling version occurs
7

•
24

). 

Tn this case the right-hand side of (47) has a singularity with 

Re t.J :::: 0. So the Froissart-like regime is impossible and the case 

of /);. = Llc corresponds to the situation with g 11 ~ /:). , i.e. , 

6. ::::: gll . e 
( 70) 

Tltis is in agreement with the estimates of 
from (66). 

b:. from 
c 

1 ) and gll 

4· Conclusion 

The problem of increasing cross sections has been discussed in 

some papers based on different gpproaches (see, e.g., ref.
25

)). Here 

wf' have considered a version of the Pomer·on theory with o((O)":>L. 

The value of 1:1((0) has been introduced phenomenologically but it is 

worth while mentioning that the Pomeron intercept in the field 

theory is a function of the coupling constant. So, the value of 

~(0) = 1 is not an upper limit and the possihi lity of o{(o) "> 1 

exists
26

'
27

l. 

A small displacement of the Pomeron pole position in the j-plane 

to the right of unity at modern energies leads to a number of subtle 

corrections to the physical observable's, which arP needed for the 

ae:reement between the theory and the experiment. nut in the higher 

34 

energy region ~hich will be accessible at future accelerators, the 

strong interaction theory is absolutely changed. Instead of the 

Pomeron dominated in the theory with o(,(o) = 1 a new object-l'rois­

saron which is a many Pomeron "stream" determines the high energy 

behaviour. Below is a short list of the main consequences at access­

ible and asymptotic energies from the Pomeron theory with o/.( 0) > 1. 

1. Total cross sections and diffraction slopes rise linearly with 

~ in a modern ene~gy region such as the phenomenon of 

approximate GS takes place. As 

' 
becomes larger, GS is violated 

and emerges again in asymptotics when both the cross section and 

the slope rise as '2 . 
2. The ratio of elastic-to-total cross sections is small 

(about 1/5) and constant at modern energies and will be large 

{about 1/2) in asymptotics. 

3. The ratio of the real-to-imaginary parts of the forward 

scattering amplitude after it becomes positive will reach the value 

of about i1l~and for a very long heried will remain approximately a 

constant. 

4. The inclusive spectrum has a plateau in the central region. 

The height of the plateau rises as exp(,A) , violating the Feynman 

scaling. The rapidity interval of this plateau is only ! (1 - 2 b ), 

so the momentum conservation sum rule is satisfied. 

5. The mean multiplicity does not obtain any visible corrections 

at modern energies and rises linearly with ~ But at the energy 

of 1 ';t. 20 significant deviation from the ordinary growth will 

emerge and asymptotically ~n> will rise as e-,.pC~'VI' 
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6. The KNO-scaling in the topological cross sections can take 

place at modern energies, but it surely will be violated at higher 

energies. The multiplicity distribution curve asymptotically will 

have oscillation~ 

7. The enhanced graph contribution changes the asymptotic 

regime at superhigh energies. It renormalizes the value of 

b..--b. 
0

= A - Cl • The coordination of the asymptotic behaviour 
~11 

with the s-channel unitarity is proved. 

8. In the case of b. ~ g
11 

the Froissart-like asymptotics 

is not possible and the cross sections rise slower than ;2 
after changing the asymptotic regime. 
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APPENDTX I 

Let us carry out the integration in (59) for· the c'lse of 

r( l, Q ) given by eq. (57). The case of g < (' is analogou,.. r -r.L oo 

After integrating in (59) over the angle one obtains 

a. .:!. 
2. c:>co ~:r 2 .z .i\2•l 

C(~ b''""'-_g_Ro.f!i. (~axp{(~ .... ?,-a.,9.LJ ¥ "1 (0 ·b)a da 
T' 'J__. ..3 ~!}("'"! 2.. 2. 2) ..Jo f~ -,.!. 1.1. 

00 
0 .&ifo ?., - ao ?.l 

'(I. l) 

Using the folowing relation: 

(1) U) Ho (x.)- H0 (-x._+to)== :t2.J0 Cx.) (J. 2) 

one can ~ass to tl1e expression 

,..:f .z 2. 2fJ 
) 

_1_ a! ('-!.xe{(-8oo ?1-aO 9.1.) 1 H(-1) 
ccy,b ~-~Re aJ l r ~1 .,2 _ :l 2)'f oC9.1.b)9J.d9.1. · (I. 3) 

'JOO c ~00 (f O..o9~ 

The path of integration C = C
0 

is shown in Fig. 16. The same 

figure shows also the branching points of the expression under the 

integral in (I.3). Cuts are 

exp{ (i!~ 3 ~: 
half-plane as 

2 2 
- a., q.l 

1£1-LI- o<:> 

drawn in such a way that the function 

)ltJ decreases in the upper 

• From the asympt.oti c behaviour of the 
(1) 

function H
0 

(z.) 

H> rr Ho (2:) ~ 'Vfi 
<.2-f;.'K 

e (I. 4) 

one can see that the expression under integral in (!.3) decreases 

in the upper half -plane as ~~~ .... ..o, so one can change t.he path of 
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jntegration from co to cl, and to carry out the integration by the 

saddlP point method. The place qo of the saddle point is determined 

by tho zero condition of the logarithmic derivative from the ex-

pression under the integral in {I.3): 

~0 
~ 71 b (I. 5) 

- Qo(a.o~- ~) 

The motion of ?o in the 9;plane with the growth of b is shown in 

Fig. 16. Using {I.5) and the fact that the expression under the in-

tegral (I.3) is exponentially small in the upper part of the contour 

c
1

, one can calculate the integral by the saddle point method and 

obtain the result {60). 

Tt is necessary to note that the denominator in {60) tends to 

zero as b - a
0
., • This is due to ·the fact that the second loga-

rithmic derivative from the under-integral expression in {I.3) is 

ell 2 2 2 312 <1 ~2.) equal to =-a 0 ( 1- b 1 a 0 l· I 1 r and tends to zero, but 

for the saddle point method this derivative should be of the order 

of lt''l OC 1 
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APPENDIX II 

It is shown here that the enhanced graph contribution does 

not change essentially expressions {27) for the mean multiplicity 

but only renormalizes the constants d.- a and 
0 b..-jj.o 

The inclusive cross section d6ldy corresponds to the 

Kancheli-Mueller graph which is shown in Fig. 17 in the left-hand 

side of the AGK graphical equality {one should compare it with 

Figs. 10-12). 

It follows from the AGK-cutting rules 
,.....,_, 

for the enhanced graphs that co ( r' ):J 0. For this reason 
,.., ,.., ,_ 

fq> = ro<~) + c (~). (II. l) 

T e notation used here is of the following type: 

i.e. 

~ f,lp)d~ 
0 

~ Jl /C1) = d~~.l:!l) d~ (II. 3) 

= ~ (~)' 
(II.2) 

<.n.>0~n ( ~) • 

Now pass in {II.l) to the ~ -representation by,the transforr 

mation similar to 

C<w) = ) ccn e-{.)~d, 
(TI. 4) 

If one st1ms up the ~eometrical progressions 2.;: (-1) "'~oo/(c.>, ot 
up and down from the cut link f { W ) in C { W ) , then the 

following expression for c( w ) arises: 

""" ""' CCw) 
j_(w) 

+ {cw). 
(II. 5) [1 + fCw,o)}2 
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The second term here is required because of the absence of a graph 

with only one link in C. After substitutin~ it into (II.l) one finds 

'"""' 2 

~ (w) = [1 + ~ 00 /(C.), 0~ fo (w) · 

Remembering that foCW)= d!( W- Ao)
2 

and f( W ,o) 

one obtains at W- b. 0 

(""J 2. 

P (w) ~ (1 -t- ~) _sL . t /\.3 (cJ -D. )2. 
0 0 

(II. 6) 

a~/(..)3, 

(II. 7) 

After passing to the } -representation using (II.3) one has 

<. n > 5 ·~ ( ~ ) = do ~ e' b.o' (II, 8) 

where 

IV 2. 

olo = (1 + -~f}d • 
() 

(II. 9) 

So, the enhanced graph contribution changes ~__. ~ in 

expressions ( 27, ( 37) for <n> and d <5 /dY , and also gives to 

these expressions the supplementary factor ( 1 + g / ~30 )l.. 
00 

40 

·I+ 
8 (1) 

~'~s 

~+~ 
('/,(2) & I (3) 

8 /Ve 

+ ... + 

IV:"' 

PEP+ ... 
N's'"' 

Fig, 1. Unenhanced Pomeron graph series, 

F(l,h) 
I 1 .f 
I 1(«16)"2" 
...,~ M(O'tJ. 

A 8 

Fig, 2. The profile function corresponding to the Froissaron. 
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_/ 

PP 

()tot(~) (mb) 

100 

70 

40 ............... 

10 ' 20 30 ] I 10 
•' ,.s,· ' ','.'. ,· '12..'' ' 

10 E (Gev) tO 
L.AB 

Fig. 1. The eneqry dependence of G~ I calculated with (14). 

The Reggeon contribution is also included. 
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I 

' 

I: 
' ' 

Fig. 4. The Kanchely-t-1ueller gr~ph for inclusive cross sertion. 

~ 
1'1'1=0 
K-:1 JID z; I]Ef[~ .~ .. ~ 

m,n=O 
K=-f 

Fig. ). The sum of cut unenhanced graphs giving contribution to Lhe 

inclusive cross section. 

g. B ,.;.'1~l1Jd fA 
fi A a € 

~ I 
I I 

1: 
I 
I 
I I I 

)! I 

l\. I y 
-1} -f1(1-2A) 0 nci-26) H 

Fig. 6. The asymptotic form of the inr.lusive spectrum in c.m.s. 
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(n.,"> 

50 

.30 

20 

10 

10 20 ~ 
..30 

tO 10 5 to"6 

ELAS (Gev) 

Fig. 7. The energy dependence of charged particle mean multiplicity 

in pp-collision. ---- is n calculated with (37); 

is a curve from ref.
22

) corresponding to ~(0) = 1. 
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Ill (0) 

~ 

0<) 

r.~t r 2_ :8mll. = 8oo 
m,tt=1 n m " 

F.. -/11.(0) 
8 

a) b) 

Fig. 8. The simplest enhanced Froissaron ~raph • 

/V.Crn+k) 

8 

a) 

Nto) 
A 

Fo 

b) 

Fig. 9. The enhanced Froissaron graph with rescattering corrections. 

J[ = 
~ 

111 
I 

--b-
+ 
~ 
11 t ~11 

'../ --1 \ b, ... ,'b' 
\ .. ./ 

+ ... +···+ 

Fig. 10. An example of the eikonalization procedure. 
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1= I+,f+I+ I···+ :I+ I+·· 
......___ _______ / 

.......,... 

co 
~ 

c 
Fig. ll. The classification of the graph irreducible in the 

S-channel. 

C<~,b)= J~· - ~J~~ .f .f ~00 
+ 

I 
~~~~ 

£to 
... 

Fig. 12. The connection of C ( r , b) with the exact Green function 

f( ~ ,b) • 

I+ I- ~~S.+ ~ ~F 
a) b) C) d) e) 

Fig. 13. The simplest enhanced graphs which give the fisrt order 

in ti1e g correction to F ( 'E, b). 
00 ( 
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I: 
Fig. 14. The Kanche1y-Hue11er graph with a particle extracted 

from the cut vertex g
00 

8ffl: ~ ~?: 
Fig. 15. The pion loop graph for estimating g 11 • 

Irr. ~J. 

-i 
a =: I? 8o, 
tJ. (-f ao 

Re q.l 

-1 
q=-?11:0 

,..,.i 

a~ (O.o~J.. + ?1 ~o!) = 0 

Q't~ ( ao9J. + ?1 J!o) = 2rrr 

Fig. 16. The complex q.L-plane with the saddle poits and the 

integration contour pointerl. 
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~{ I}y-
-,­

I 
I 
~ 

I 
I 

_J.- I +I +IJ-·f+··· 
JcF.l) = 

~<f~!t) CCf)!t) 
,.y ,...., 

'lfq,!l)= fo<.y,~) +- + 

Fig. 17. The cut irreducible in s- channel graphs which give 

contribution to the one particle inclusive cross-section. 
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