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1. Introduction 

In statistical mechanics most problems of physical interest 

are rather complicated to be solved directly. Model systems 

permitting a mathematical treatment of theoe problems are there­

fore acquiring considerable interest. Suffice it to say, that it 

has been the felicitously chosen models that enabled one to 

make a fundamental contribution to our understanding of such 

extremely phenomena as superfluidity, superconductivity, ferromag­

netism and some others (see, e.g., refs. Ll-7]). 

A considerable interest represent mathematically rigorous 

methods for studying model Hamiltonians, which do not make use 

of any version of the perturbation theory or other similar ap­

proaches. The fact is, that usually only such methods enable one 

to get complete assurance in the adequate correspondence of the 

obtained solution with the model by itself. On the other hand, 

rigorous results can be used as a reliable basis for further 

(and may be less rigorous) investigations. 

Just one of such approaches (the so-called "Approximating 

(trial) Hamiltonians" method) has been developed by one of the 

authors (N.N.B.,Jr.) in a number of works (see, e.g., refs.[6,7]), 
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where a special mathematical technique has been worked 

out in order to obtain solution exact in the thermodynamical 

limit•) for certain types.of model Hamiltonians. The approach 

is based on the replacement of the model Hamiltonian H 
\,hich is insoluble for finite system, v1ith a special trial Ha­

miltonian Ho ( C) permitting an exact solution. A range of 

assertions on the asymptotical (in the thermodJnamical limit) 

closeness of the free energies and statistical averages corres­

ponding to _the model Hamiltonian H on the one hand, and the 

trial Hamiltonian Ho ( C.) taken by special choice of th~ trial 

parameters C , on the, other, has been proved for different\ 

types of model. problems. The trial Hamiltonian method enjoys 

many applications on modern many-body theory. Among concrete 

model problems which have been investigated on the basis of 

this technique one can find, in particular, the BCS-type model 

systems in the theory of superconductivity [6,7], some ferro­

and anty-ferromagnetic models with the long-range interaction 

of J/ N type [s,9], the Dicke maser model [10], some model 

problems for ferroelectrics of the KDP-type [11], for metal­

insulator phase transition [12] and for superconductor with 

•) I.E. in the limit N➔oo , V➔ <>o , N/V= const 
.where N is the number o:f particles, V is the volume 

o:f a system. 
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electron-hole coupling . [:i:,)*). What is more, the trial Hamil­

tonian method enabled one to investigate some classes of model 

Hamiltonians as a whole, from a ~que standpoint (see [7, 14] 
and the next sections of the present work). 

It_should be noted that a variety of techniques has been 

proposed recently in order to construct exact solutions in the 

thermodynamical limit for different mociel problems in the many­

body theory. For example, a method for the asymptotically exact 

calculation of the free energy for a set of model Hai:iil tonians 

that contain a one-particle, part and separable two-particle 

operators has been developed by Tindemans and Capel in refs. 

[15,1~. A very interesting rigorous investigation of the ther­

modynamics of the Dicke-Haken-Lax maser model has been perform..' 

ed by Hepp o.nd Lieb by means of modern algebra and analysis in 

ref. [17] (see also Sec. 2, ~)). A somewhat different type of 

approach is based on the C -al5ebra technique and related 

methods, when both model and trial Hamiltonians are treated 
II 

for infinite system ~b_o:yo_ (see,e.g., ~s-2o]). Some more 

referen·ces can be found, e.g., in ref. [15) • 

It should be noted, however, that all these techniques 

make essential use of the structure of the Hilbert space on 

which the corresponding model Hami1t'onian is defini tc, so being 

well adapted only to one or another concrete model or, at best, 

•) For models considered in refs. 80-13] see also Sec. 2 of 

the present paper. 
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to definite groupo of models with the.:ident:1.cai structure of 

the corresponding Hilbert spaces. At.the same time the trial 

Hamiltonian method does not make any use of the concrete Hi1-· 

bert 

\7ide 

space structure, that enabled one to investigate extremely 

classe£ of model Hamiltonians fI-om unique standpoint [? 114] 
Just · one of such classes - a general class of many-body 

model Hainilto:ni~ with the interaction of substance and boson 

field - has been investigated in· previous paper [14], where 

the existence of exact solution in the thermod;ynamical limit 

ha,s been eOtablished for the whole set of nioaels simultaneously. 

In 'the present paper we develop a somewhat different approach 

to the problem, which possesses good potentialities and is more 

convenient, ir1 a sense, then previous one. We give the detailed 

formulation of the problem in ··the next section. 

2. l?relimillilties. 

First ·of all, let us describe the models we are going to 

We shall consider a set of model Hamiltonians deal with below. 

of the form [14} 
s + s * + H = 2.. w~ a. ~a..,c. + VN 2. (Ao<. a.G(. L o1.. + 

• o<.=1 . . c(,=1 · (1) 
-t .s + 

where: 
+ 

-+ 1i at. a-<. Lo(.,)+ T- N 2 ~o( L-c Loe: , 
. o( = I 

a) 0.. at., and Q rJ.. are creation and annihilation operators for 
+ 

the c,(-fh mode of quantized boson field; Cloe, O.,, satisfy the 

well-known Bose commutation relations: 

6 

++ ++ 
+ + 1,c1.=f a.~a,- ap O.ol. =o, 

a..o<. al - a1 aot ={ 0 °'-=/: .P., . • c2 ) 
' r o..."' a1 - ap aa1.. = o . 

+ + 
b) T = T) Lot..) L DI.. ( 1 ~ o( ~ S} are operators reprecen-

ting "substwice" or " L -subsystem" •). These operators are 

of different concrete substructure for different concrete mo­

dels. The only· e~-tremely general additional conditions are fol-

lowing: 

IILo( II~ M1, (3a) 

\\ LoL T - T L d. fl L M 2, (;ib) 

I\L,ll1-L1 ltJ. II L ~' 

+ + M 
II Lal L_,6 - L/L"'- I/ f /J' (3c) 

# 
where (I .. • I\ denote the norm of the operators and 1\111,M2.,M3 

are constants independent of N (the number of particles in 

the "substance") as well as of o<. , / ( 1 ~ c{' ,·~ S ) . 

Besides the free energy (per particle) f [T] ••) should 

exist by N finite as well as in the limit IV ➔ Do • 

•) This name comes from the notation of the operators L « , 
·+ Lo(. 

**) For the definition t [.,,] see below (16a). 
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c) Wo<. (1~o{~ S) are real positive parameters, Wot"> 0 ; 

'ae. al.. ( '1 f: ~ f:: S) are real nonnegative par=eters, 'de.a1.. ~ 0 ; 

Ao<,~: (1~o<~s)are, generally speaking, complex parameters. 

d) /\/ is the number of particles in the "substance". We 

shall be interested only in those properties of the model sys­

tems under consideration which are invariant with respect to 

the limit N ➔ 00 (thermodynamical limit). But the whole 

treatment will be performed by finite fixed N , and the 

limit N ➔ oo will be carried out at the end of the calcu­

lations. 

c) Let us describe exactly the structure of the Hilbert space 

on which the Hamilt+nian (1) is defined •. By given fixed of_ 

the Bose operators O..o(, a./ are defined on the Fock space, 
. r-fP (..t) --ro - ~ -u, (..4) which we denote as c:fL B · ; we also denote df..B- w <I'- n • + . o(.-1 ... 

The operators T , L ol , [ o<. ( 1 '=. el. ~ S) assumed to 

be defined in the separable (by finite N ) Hilbert space 

-:/tL.. independent of the space ;Je. 8 , i.e.,, 'df.L and ']e
8 

should not contain any common vectors ( ';Je L n 'Jl g = 0 ) · • 
This condition conforms to the physical assumption thut the 

"substance" and the "boson field" are of different physical 

·nature.In particular, owing to the independence of the spaces 

r;Jf.L and Jf8 the operators T , Lo<. , L-:. commute with + . 
the operators a I . a..1 by every o( and ft ( 1 b. "'-,., ~ 
~ S ) . So the Hamiltonian H (1.)is defined in the 

space --:Jf = 'J{L ® ;Jtg and describes L -subsysten coup­

led to finitely many boson field modes•). 

•) Under certain additional conditions the situation of the in­
finite (but numerical) number of modes 11 5 -= Oo "is also al­
lowable; for details see ref. [14]. 

8 

We finish the description of the Hamiltonian (1) by the 

notation, that the first term in (1) represents the free boson 

field, the second one describes the interaction, and the last 

two terms represent the "substance". 

Let us now consider some ~oncrete exanples of the model 

problems covered by our class (1) as special cases. 

i) the Dicke-Haken-Lax maser model (see ,e.g.,,Ref. [10,17] and 

references given therein). The model Hamiltonian is 

H = c.vta.. + ?iW(J+a.+J-o:t°)+E-NS~ (4) 
D 

where: 

+ -J ± =- s-+ .f' s-r S
±_ rX ,5Y rx,~,~ 1 N J_X.'a1r­

- .::>±I o "::I = - ~ V·. 
' 2N i=I ' ' 

b ~ ~ ~ b ~e 2)( 2. Pauly matrices; 
+ 
0.. and Q are photon 

creation and ~hilation operators; W , E- , /\ and j\'l 
are real parameters , W ) O , E:- ) 0 , O b. fa {: 1.. • The no­

del (4) represents N two-level nolecules coupled to one r:10-
• 

de of a quantized electromagnetic field via a truncated dipolar 

interaction, it finds a set of applications in the laser and ma­

ser theory. 

ii) A model for ferroelectrics of the KDP-type D1,1li]: The 

corresponding·model system consists of the subsysten of heavy 

ionic complexes connected via short hydrogen bonds and the sub­

syspem of protons on these bonds. In. order to describe the pro­

tonic motion in the effective potential, which reser:1bles a doub­

le-ninimum well, the quasi-spin formalism is used. The ferroelec­

tric phenomena in such substances to a large measure are due to 

the interaction of the ionic and protonic subsystems. 
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In Ref. 'D.1 J a simplified model for the ferroelectrics of 

the KDP-type, which takes into account the interaction of pro­

tons only with the long-wave optical vibrations of the ionic 

subsystem, is under consideration. The essential part of the 

corresponding model Hamiltonian can be represented ultimately 

in the form [14]: ;-

H :t K a.o+l\0£ f!J~-
F- = Wo a.1) a.<> - i[2 ru ,r;;:N ·- i 

,,,<,Jo VIV ,-1 (5) 

N X 'I. /II N 7,.. e '1-.'lo 
_Q 2. b· --;i~ Vi C,ld·, 

+ i=1 I 2.N l'""·'J''"' 
where 0. 0 and 0. 0 are the. long-wave ( K = 0) phonon creation 

and annihilation. operators; b X , b ~ are 2 )(. 2. Pauly mat-­

rices; N\ is the reduced mass of the ionic complex, Wo is the 

optical frequency of lattice vibrations in the long-wave limit 

K ➔ O ; Q.. is the de Gennes tunneling frequency, Q. ") 0 ; K 
and I are real interaction parameters, I ')' 0 . 

The model (5) permits the exact solution in the thermody­

namical limit and exibits, by a certain critical temper~ture 

9 = 0c , the second order phase transition from disordered 

into ordered state. The spontaneous polariz~tion here is due to 

the protonic ordering accompanied by the macroscopic.displace­

ments of the heavy ions (for more details see refs. [11,14 J 
and references therein). 

iii) A model for metal-insulator phase transition (e.g. 0 !31], 

see .also [13 J and references given there). The model is based 

on the Frohlich Hamiltonian for a coupled electron-phonon sys­

tem allowing for the interaction of electrons with the only lat-

10 

t1ce vibration mode Q. singled out in a special way*): 

+ + 
(EK - AA) c C + Wex b G!. bGl + 

✓-· K>b l<11P H -~ 
MI. t<, b 

+ + + (6) 

-+ ~~ ~ ( ci.:+e l!Jcl< b b& + C K1 y Ci<+6l, b b GZ '), 
vNl<b '' , + 

where C , C. and b , b are creation and annihilation operators 

for electrons and phonons,respectively. 

The model (6) is also covered by the general class of mo­

del Hamiltonians (1), and the corresponding approximating Ha­

miltonian (see below (7)) is exactly soluble, that enabled one 

to investigate closely thermodynamics of the model. It has been 

shown (see e.g • .[21]), in particular, that under certain criti­

cal temperature 6c the model (6) exhibits the second-order 

metal-insulator phase transition (due to lattice instability 

tmd the unit-cell doubling). 

It shoula be ~so noted, that some model systems allowing 

for metal-insulator and metal-superconductor phase transitions 

simultaneously has been studied recently by a number of aut.hors 

(see e.g.,(:5,21] and refrences given there) on the bases of 

the Hamiltonitm composed of HM!. (6) and the BCS-type model 

•) Q = (ft/a. )(±:1.,±:1. 1-±. 1..) , where a.. is lattice con-

stant; in (6) the electron energy spectrum has the property: 

E: K+Q -::: - EK (for s.c. and b.c.c. lattices in the tight­

binding limit). For details see refrences mentioned above. 
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Hamiltonian (the last one is of the same structure as II Qe.­

term" in (1)): 

HMI.-MS = HM1.·+ Hsc5 (?) 

Such models enabled one to investigate the in1'luence of elect­

ron-hole coupling on the Curie point temperature of supercon­

ductor, that is of considerable interest in view of some prob­

lems of high-temperature superconductivity. 

The model Hamiltonians (4)-(?) 1 being special cases of 

the general Hamiltonian (1) 1 permit of exact solution in the 

thermoeynamical limit! a.a N➔ 00 (see below). The detailed 

discussion of ~heir ph;rsical properties can be !ind in the 

literature given above. Some of these models, as well as the· 

corresponding techniques proposed in the references indicated, 

are also under discussion in ref. (:4]. 

Let us now return to our general Hamiltonian ( 1) • The 

trial Hamiltonian Ho ( C.) 1 depending on complex parameters 

C. o(. ( 1 ~ o( = S ) 1 should be teken here as follows 

(:14): 
.s ' + 

Ho(c) = T + N 2 [( voe. +joe. c°') La<.+ o<., 
. S * (8a) 

+ ( l +g co(. )Lol] + N :;.,rad.. co( Coe. , 

where 

~o(. =- 'Jeoe.-+ '"°" l~ /woe. ~- o . (Bb) 

12 

In ref. 14 we have obtained the majorating bounds v1hich prove 

the as;ymptotical closeness (as /1/ ➔ DO ) of the free energies 

corresponding to the Hamiltonians H (1) and Ho (c) (8) 

(the last one taken by special choice of the trial parameters 

C. ) for the whole class of models simultaneously: 

\t[H]- tl.bS t\l\iYI -{![Ho(C:)]\ N➔ CXJ")Q.(9 ) 
C 

As one easily see, the trial Hamiltonian Ho ( C.) (3) is 

.of considerably simpler structure than the basic Hamiltonian 

(1).Therefore for a set of concrete model problems (in particu­

lar for those of (4)-(7)) the free energy -t[Ho(C.)Jpermits 

of exact calculation by N finite, and the 

liwt { a.bs n-iin +[Ho(c)J5 
N➔ oo C. 

erists. Then, if (9) is valid, the free energy f [HJ exists, 

the problem of its calculation being solved with asymptotical 

acc~acy •). 

Another import~t result obtained in ref .~4 J is a set of 

as;ymptotically exact relations for averages constructed from 
-t-

the Bose op~ators Cl.o1. , O...p 1 on the one hand, and from the 

operators L al. , L / , , on the other ( 1 ~ o<., f b ~) . The 

key inequality hereby is the following one: 

•) There are possibly also other reasons '17hy Ho ( C.) would be 

more convenient to study than 1-\ 
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s :+ 
~ W o<. < Bel Sex~~ £. iv N ➔ DO ? O !> 

o(.=' 
where 

-1- + * 
B 

0.c,( "\ + 
o<=-+~L W Wo<. °'' B a.oe. ?ioe. L o(,=-+- ~. VN Wei.. 

(10a) 

(10b) 

The bound (10b) has been derived in ref.~4]on the basis of 

some intermediate relations obtained when proving (9). 

In the present paper we develop a somewhat different appro­

ach to the problem~ In Sec. 3 we start from the direct proof 
I 

of the inequality (10a) without dealing with any relations for 

the free energie~, but making use of special ineqiality for 

averages ferst obtained by one of the authors in ref.[6](see 

below (17c)). In Sec. 4, making use of the auxiliary Hamiltonian ...., 
H of the form•): 

N 

H - T 
s + 

N ~ ~o(. L o( Lo(. , (11a) 
ol.= \ 

where (see (Sb)) 

~c(. = 'de o(. + Ii°' 11/wo(. ~ o (1 "- ~"- s), c11b) 

we derive the inequalities: 

r-,1 

- 5 N ~ + [ H] - + [ H] ~ rz N , (12) 

where ~,v , 2N ➔ 0 as N ➔ 00 

•) The auxiliary Hamiltonian (11a) has been essentially used 

also in ref [1'£1. 
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Such succession of operations is more convenient in a sen­

se. In particular, the =joration bound in (10a) appears to be 

stronger in powers of 1/ N than the previous one 04 J (see 

Sec. 3). Such an improveaent is likely to be usefull when esti­

mating fluctuations in the systemn under consideration (say, in 

the Dicke-Haken-Lax'maser model, where the fluctuationc are of 

direct physical interest). 

The bounds (12) prove the thermodynamical equivalence 

(on the level of free energies)· of the Hamiltonians H (1) and ,..., 
H (11)·. Now it is just the right moment to note, that the· 

,-J 

thermodynamical equivalence of the Hamiltonians H (11) and 

Ho (c) (8) (where t [Ho (E)J~ a~s ~n -? [J.¾o ( C. )] ) is a 

well-known fact due to original investigations [61 7]• Namely, 

the following statement is valid: 

THEOREM 1 (N .N. BOGOJ:BBOV, JR. , [ 6, 7)). Let the Hamiltonians 

Ho ( C.) (Ba) and H (11a) be given, wherein 'Jo< ~ 0 

( 1 ~ a{ f:. S ). L~t the operators T , L ,:1.. , L ! satisfy 

the conditions (3a-c) and other requirements formulated in Sec. 

1 (see description of the Hamiltonian (1), b and €, ). Then 

the free energy -t [ Ho ( C )] attains an absolute mi~mum vii th 

' respect to the trial parameters C o< ( 1 '=. o<. ~ S) in certain fi-

nite points C. o(. , which therefore obey a set of equations 

C.o(. = < Lol)Ho(c) (1f:°'~5), (13) 
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and the inequalities hold: 

_ ,,[ ~ L s P., s a P2.. 
O f,_ ~ [Ho(C)]- T H] - N2.l5 + Af3/!; 'J (14) 

where P~ and P2. are simple combinations of the quantities 

M 'I , Iv\ 2. , M3 (see 3a-c) and Ci=- WIO..~ 9cr.• 
In particular, the inequalities (12) and (14) proves (9). 

In Sec. 4 we shall also make use of the following general 

statement: 

THEOREM 2 (N.N.BOGOLUBOV, for proof see, e.g.,refs. 6 and 7). 

The inequalities hold: 

.1. <~ -~ ) f: + [-at1l- f[~2.l ~t<~r~;)J.U , c15) 
N . 1 2. _J)J 2. + ---, + 

·where ~ 1 = -!U1 and ~9. -::.-4{2. • Here the free energy (per 

particle)f ['4t] is a well-known construction 
. -~ + + f~J = - .fl.. lvi Trt e ~ ~= ~, <16) 
IV -t-

and the averages taken over the "Hamiltonian" ,q,{ = ":it are de-

finite by a familiar expression 

•e -T -~✓ ~ + <· .. ')1lt Trt (-.. e ) T'"l e , ~ = ~ . (16b) 

One should· keep in mind, that the Hamiltoni~ ~ 1 and -i<.2, 
in (15) are both assumed to be definite in the same Hilbert 

space and by the calculation of tllfY term in (15) the procedure 

"Trace" should be taken over the.whole space. 

We finish this sectiolby special inequality (upper bound) 

for averages of the form (BB), first obtained in ref. [6] 

when proving Theorem 1 • 
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LEMMA (N .N .BOGOLUBOV, JR., [6, 7]): Let us denote 

+() -r-1:l --cli B r ·= e" e Be e 

R = BH-HB , -+ + -t-
R -=-B H + H B, 

then the following inequality holds•): 

+ -1 + < 8,8)' ~ J ( 8 ('t:")8") ol ri- + 
H o H 

-1 2/4( + +Rd)½ 
+ ([<B(-r:)B)..ol-c) (R~~~ 7:, 

(17a) 

(17b) 

(17c) 

where H is the Hamiltonian of the corresponding system, e 
is the temperature; for( •• •/H see (16b). 

3. Basic Inequality. 

In this section we prove the bound (10a) by way of direct 

employment of the general inequality (17). Putting in (17c) 

s+ B~ , 8 = Bo(. (see (10b)) and summarizinr; over°'­

from 1 to $ with the weight Wo<. , we get .. ) : 

•) One can find also.some inequalities which generalize and 

improve (17c) in refs. [22J 

••)-Fo~ convenience, in this section we omit the subscript in 

statistical averages over the Hamiltonian H ·(1), i.e.,we wri-

te <. "_• ") -=. <.. ... "')Ii • 
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s + .s 1 + 
Z: Wot..< Bo{ fso<.) ~ ~ WolJ (Bo< (-c) g «')ch:+ 
o(.=1 ol=1 0 

s r- 1 + \ 2h [ + + c1sa) 

-+ ]-=, \ u;,d. f < B~ (-r) Bot )J. 't' J we{ < go{ Rol+ R.< RoJ )~ 

where + + :t 
Rot = Bo<. H- H Bo(, Ro<.= H Bo< -tso1. H , 

(18b) 

H is the Hamiltonian (1). In order,to estimate the right­

hand side of the inequality (18a) we first calculate the quan-
~ + . 

tity f(Bot{-c')8o<.7d'C . It is not difficult to verify, 

that ~he operator Bo1. (t) (see (10a) and (1?a)) is e:iqiressible 

as follOY/S: 

+ 1 
Bo{ (-r:)-= VAi 

H -·-c H. 
Jz.. cl... ( e -c e; p( e e) ., (19) 

Wol d 't: \: . o = '"t:' ~ i • 

Making use (19) and taking into account (2), (16b) as well 

as the possibility of cycle permutations under the sign of 

"Trace", we finally obtain: ,. + + 
-1 + . <( Bo<. a. °" -a o< 8'< / 1 

wer1- f < B~ {'C) g"' > d?:: -= w = N ·c20) 
o + N + 

Consider no,1 the average <~o<. l<o<. + Roe. Rot/. One can 

derive on the basis of (2) and (3a-c) with making use of the 

Bogolubov inequqlity [2JJ: 

I <~1-i-t'l.'r\ ~ ✓ <~.~.1<-42.~2.1, c21) 

the following bound (for details see Appendix, (A10)): 

18 

s + + :7Va 
~ 

1 
[ w;- (Rot Rol + Ro< ~d.) j ~ 

- 2 S + ~Va ·,{·/2 (22) 

"'- ( sd., )'/2 ( "f.. ':P (BpBp) J + ( sd.2,N J , 

where ol 1 and ol2,Nare simple combinations of the constants 

M'1. , M2_ and.M.3 (see Oa-c)) and of the parameters occu­

ring in (1) (see Appendix, (A9a,b)). 

On the basis of (18a), (20) and (22) we obtain: 

S :i- ( )¾(S + \11 ct- ~o( <. ~ot Boe) ~ : st1 g f-~P < B/J Bp)) + 
(23) 

.. . ( s. cf2,N )2/J S 9 
+ -- ➔-· N N 

whence follows in turn•): 

s + 
~ Woe (&oe Bo< 7 ~ 

o<= I . 
2-(5,1;:/ )~ 

• .2 s 
1
( e + vii d-1) = EN 

4- N 

(24) 

0. 

So the bound (10a) is proved. We note, that the majoration es­

timate in (24) ~N rv N-¾ as N ➔ oo appears to be stronger 

than previous one [14], which is of order N- 215'. 

•) When passing from (23) to (24) we have made use of the fol­

lowing simple reasoning: the inequality (23) is of the for~ 

b fa a. 2/] b '1/3 + o{ and two situations are possible: (i) 

a213 b ½ ~ of , then 62136 2c/b and h ~2.31
2.a..; 

(ii) a..7/J h 1/3 f:. o{ , then b ~ ~ • So in any case b ~ 2 3/~ + 

which is equivalent to (24). + ~o( , 
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On the basin of (21) and (24) one can easily derive some 

important asymptotical relations·for averages, For example, 

using (3a), (21) and (24), we get: 

I<~ Lp > + !: <to<Lp)\= k 8:Lp )'\ ~ 
· + + (tN \Y2 (25a) 

f. ✓<Bo( 8 °' )< Lp L1) L M 1. c:;;;. ) N➔ o0 ➔ o, 

+ + l<tlo1.i"1+ ~ <~Lp)\= l<Bo1.Bp) * ¼ (25b) 

- Aot. / L B '\ ~ M ,~otl (EN)~ '-c.N ; ~ o. 
Wo1. ~ ol. ~ I . 1 Wo1. Wp VWot.~ N➔ oa 

From (25a) and (25b) it follows in particular: 

+ l'.A \~ + ( 0 G - ½)) <a.otact.) _N wd..2. <~o1.LrJ.') 1.+ N_ -<25c) 
c,(. 

The relations of the type (25a-c) and their physical sense are 

under retailed discussion in ref. [14], Here we only note, that 

for a set of concrete models (in particular, for those of (4)­

(7)) the averages <Lo1.Lo1. 7 (1~ d. f: S) characterize the 

long-range order in the L -subsystem (magnetization, polari­

zation, "gap" in the theory of superconductivity, etc.).Then 

(25c) means, that the phase transitions in the L -subsystem 

from disordered ( (L~Lol. / = O) into ordered ( (to1.~o1./-:/= 0) 
state without fail should be accompanied by the compensating 

o:acroscopic inflation of the boson modes < tel.. ac,( ~ N . 
Such inflation, which also renders the averages ( B 0(. Bo1.7 to 

be small (24), appears advantageous from energetical conside­

rations (see below (26)). 
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4. Free energ;z:. 

In this section we derive the upper and lower bounds in 

(12). 

a) The upper bound. Note first of all, that the Hamiltonian 

(1) can be rewritten in the form: 
r-' s + 

H = H + N "2:W""- Bo<. Bo<. , (26) 
rJ o(=• 

where H is defined by (11). L~t us now introduce the auxi-

liary Hamiltonian 
,,...., s + 

H = H +fN ~ w ... Bot Bo(.., <27) 
'.f ol=I 

where f is real positive parameter, 0 '- f L 1. . Putting 

in the inequalities (15)-:U, 1 = 1-\ (i.)and -::U2.= }y (27), 

we obtain: 

+ [ H 1 - ./'.[ Hr J " c 1--.f) f ';'"' d"' B"'l if c2ai 

On the other hand, one can obtain the Hamilto:rian ry, (27) 

through the f!>llowing transformation of the parameters 'de« , 
Wot.. and llol , A~ in the Hamiltonian \--\ (1): 

ge ol ➔ 'deo<. + C 1-f) /?-.o1. ,ei.; w o(., 

Woi ➔ .f'w o1. <21) 
, * * 

'Aoe.. ➔ I' 'Ao<.:, ?io1. ~ J° Ao< 
T 

Since the operators B~, Bo1. (10b) are invariant under the 

transformations (29), we can estimate the right-hand side of 

the inequality (28), performing (29) on both sides of the 

inequality (24). By doing so, and taking into consideration, 

that (see (A9a,b)) 
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t'?a)'ls+ t'?Ans.f ol 
cl 1.. ➔ '4'l. ~ fd 1. ~di, 1,"t of2,,-, f: q 2,N , 
we get: 2/: 

iw .. J,.& .. )H ~ 2 (5~;) ~ !lls(e~d1~00l 
a(= I 'f 

Let us now leave the bound (30) for the time being and ma-

Im uGc of' Theorem 2. Putting in ( 15) '::2l 1 =- H_r and -Q,( 2 = H + 
+/Hg, where S + 

H 8 -=.. N }:: Wc,l f.A. o(a.ol., ' ("1) ol.=, _,, 
we find: 

rl 

.f? [ Hj J - + [ H + _f He] ~ 

s < /Aod~ -t ciol * aot +/; · 
L f 2 - Lol.Lo1.+?ic1.. 'IN La1.+).o1.VNL°' ~32) 

oC=I Wot /1/ H+.fHB 

In virtue of' the independence of the Hilbert spaces;JeL MJ.d-;JeB 
rJ 

on which the Hamiltonians H (11) and Hs (31) are definite 

(see Sec.2), we have•) 

•) Owing to the independence of the spaces °JeL MJ.d -;/f 8 , for 

arbi trnr'J operator 'UL @B -:UL~~ g G "'J{'L ® ;J{ B , where 

;UL t ;ff L and -tl{ B E- ;tt;,8 , we have ,... 
,.. H Hs 
H+/H8) -- T (. -f-) 

Trz.L~B (~L@Be- 8 = T'l.L.(~Le 8
) lrzg \~Be l9 , 

whence (33) =d (34,lef't) follows. Here in the subscriptsL@B , 

L, 8 neon, that "Trace" should be taken over the spaces 

'Jft_fi/]/B,-;}fi.a.nd 'Jt8 ~respectively. The free energies (see 

(16a)) in (53) should be considered as+ [H+fHB]g
0

L ,J[tiJL, 
f[f/1g]g• 
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+ [11 +fHg J f [H]+t [fHg J 03) 

and 

-+ + / < o. d. Lat. lr-- -= < o.. /, 'Lo< t rr =- o 
H+..f'Hs '.f Hg ' 

(3i,aY 

+ . + 
/ao1..La(.....,~ = <o..)pu <Lo1.;;r=O. (34b) 
'- IH +.fHB 1 ! 18 

The right-h=d side equalities in (34a,b) are valid due to the 

gauge invariance of the Hamiltonian H B (31) with respect to 

the transformations O.;.. ➔ ~o( exp Ci'PQ(), licK dc,(.~(-tV'ot). 
We note next, that the free energy .f [,r H BJ for the free 

boson gas is defined by a well-known formular and proves to 

~~~~: ~ 

es o ( -f-) . .f [f Hg] = IV .f-=~h 1-e & £0. 05) 

On·the basis of (3a) and (32)~(35) we obtain: 

+[Hr] -f [fi'J b.fM;i_,'~~ · 
./ 

(36) 

From (28) 1 (30) and (36) follows in turn: 

+ [Ji] - +[HJ 6:. fM}]=, l~~i+ 

+ 2 ( SJ2,N \
2
~ QS(9+ nct1) 

jN I N 

(37) 

Since the left-hand side of thj,s inequality is independent of . 

f I the value f ( 0 L. f £. 1_ ) is our choice. In ~or- \ 

der to obtain the best majoration bound (as N ➔ oO ) we cho-
-2/o 

ose in (37) f = N and finely e;et: 

23 



/ 

-F [HJ- +[H]t:. 
'l. s ( 2./c 2./ 

L M1 ~, (ioe.\ Wo< ")+ .2 (sd2.,N) 
3 

N 2./5' + 
(38) 

+ 2.s ( e + n ot1.) N = ytN N ➔ oO )0 · 

Thus the upper bound in (12) is completely proved.· 

The lower bound, We shall derive the lower bound in (12) fol­

lowing the scheme of ref. (:t4J. Putting in (1~) .;&1 =- H and 

-:t{ 2. = H - b,. f +f H
8

, where 

"- - NL~ l)cA.12.L+ L o L.f'L. 1.:, 
Up - 1-P L.. W~ t:/.. d.. , 

J J o(= I 
we find: 

0 L + [H] - f [H-~.f +/Hg]. (39) 

On the other hand 

+ [H - b._t+ f Hg]= -f[H-~,rJ+f.[fH8J<4o) , 
where (oee (35)) 

s ( 6 I 0 ..f._[µ,.1. ) + [jHB] ~ - ~ iv-<-1tf- + /\I . 
oL:::q Wot ~ ,..., 

(41) 

next, putting in (15) ~ 1 = H-b..f and :U,i = H 
get: · 

S 1'2. (> ,v rv - L Mei~~ k. -r[H-b..t ]- + [HJ 
-1 J 1 ol=1 Wo1.. 

, we 

(42) 

On the basic of (39)-(42) one can easily obtain the inequality: 

24 

- f ( .I' M 2. l ~c,( \'l + . .§._ fn. JL. + f'Wo..)f: 
ot=, 1-.f 1 Wol N fW~ N (43) 

~ f [HJ - -P [HJ , 
where the right-hand side does not depend on .f' . Choosing in 

the left-hand side./'= -1/ N · , we finely obtain: 

- SN f: + [H] - -? [HJ , (lf.4.a)· 

where o 2 s I t\ ·,'l s . o e 
_ semN+ M.., ~ ~+~Omwo<+wo( s-N- N N-1. c,(,=, We,{ o<=t N' ,(44b) 

SN'""(lv,N)jN ASAJ➔ oo • The bound (44) completes the proof 

of the range of inequalities (12). 

APPENDIX 

Here we derive the bound (22). Taking into account that 

a.! commute with ), L; ( 1 ~ "'-,ft!:. S ) (see Sec.1) 

and making use of (2), one can easily calculate the operator 

R.o1.h8b), 

Ro1. = We,{ B°" + /lot. (x o( +Ye,{+ z"'") 
Wt:1.. , 

(A1) 

where S + 

Xo<. -= J; ,AP B..,s N [Loi-; Lft J , (A2a) 

s * + Y ol -::. ~ ?i /J B p N [ l~; l ~ ] , 
ft::.j 2. + 

Zc,( = - ½ ~ N (Lp [t.~; Lil];-~=, Wp r 
. + 

(A2b) 

(A2c) 

+ L/3 [Lot;Lp']) + [Lol; TJ 
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Lialdncusc of (21), (A1)_, and eler.ientary inequality 2./X1) b 

L X2--f- L1 ~ , ,·1e set: 
- {J + < g c< Re,<) b 4 W; < Bo£ gc:,() + 

4 /').. /2. (, + . · + . + ()A3) 

+ 2()(. \<Xe( X"')+ (Yoi. Y.i. )-t-<_Zo(. Zo1.1 • 
wt>(, . 

0n the basis of (3c), (21) 1 (A2a) and Causby inequality 

we obtain in turn: 

+ ~(s ~)~ < x~ 'x~ 1 L M3 'f=,''A' IV<t ~ '> ~ 

~(s l'A..,s/2. (s + ~ ~ M3 ~ --) 2. wB<BR B.s? ~ 
.f=1 w..B J3=• r r r 

~ ( s + \ 
~ M3 Ps l-1wfo < Bp Bf)), 

where 

Ps. = f l?.11
2 

p=1 w, • 
By analotous way one can find: 

+ ~ s + 
( Y"'- Y~') f=. M

3 
Ps ~ < B°" 8""-"')= 

o(=, 

(A4) 

(A5) 

' 2, s + + 
- M p'.:> "i:. wo1. <-Bo< Bcx. + [Be,{; B o<l) '=. 

3 o(= I 
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s + s ~ 
~ M3~ Ps [l';'o((BotBo()+ i (M3 Ps+J;.':""'JJ_(A6) 
·Besides, in virtue of the additional conditions (3a-c) we have: 

!_Z"'-_Zo<./ -~ \\ z~ \\2L:.cM~ +~M1M3 Ps)°:(A?) 

Substi~uting tlie bo.unds (A4)-(A7) into (A3), i.1e obtain ·the 

bound foi-< Rot Rc1..)• Quite the sam~ bound can be deri vea. for 

<+ . 
the average g.,_ Ro1..J • So one can easily find as a result: 

i:t (RolR~+ R~ F-~1 ~ ; 4 i ~!. < i o( Eo() + 

+ g· ( M~ Ps )~_~
1
w/ <~ fspt-+-

p . . (A8) 
- . . '2. 

+4 P5 {M2. + q.M1M3 Ps) + 

(£M.3 Ps)'-(M1 P.s + j.~,) ~ d
1

'!2,1__wo1.<..lo1. &)+~~ 
N o<.-1 

where 
·2· • ·2. .s .. · ~ 

(d1 ) = Lt [~ (M3Ps) +7=,w, J, · (A9a) 

(ol2.,A1)'!= Lf Ps (M'l. + QM1Nl,g Ps )~+ 

. -1 ( )~ ( . s ) + N ~M3 Ps M3 Ps + ~~/3 , 
(A9b) 

for Ps see (A5). On the basis of (A8) 1 making use of the Hol­

der inequality and dr the elementar; ineq~~lity ( X+;J ) ½ ~ 
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~ . y . 
X + d '3 , \"1e finally obtain the bound: 

S [ Wo1- + . -+ . ~ ~,- £< l2.-. Ro1. + Ro<. R~)] ~ 

fc (sd1 )2h (J-~f < i 8.,s'> )~+ ( sol2.,%?<•1oi 
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