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1. Introduction

In statistical mechanics mos@ problems of physical interest
are rather complicated to be solved directly. Model systems
permitting a mathematical treatment of these problems are there-
fore acquiring considerable interest. Suffice it to say, that it
has been the felicitously chosen models +that enabled one to
~ make a fundamertal contribution to our understanding of such
extremely phenomena as superfluidity, superconductivity, ferromag-
netism and some others (see, e.g., refs.[;—i]).

A considerable interest represent mathematically rigorous
methods for studying model Hamiltonians, which do not make use
of any version of the perturbation theory or other similar ap-
proaches. The fact is, that usually only such methods enable one
to get complete assurance in the adequate correspondence of the
obtained solution with the model by itself. On the other hand,
rigorcus results can be used as a rellable basis for further
(and may be less rigorous) investigations.

Just one of such approaches (the so-called "Approximating
(trial) Hamiltonians® method) has been developed by one of the

authors (N.N.B.,Jr.) in a number of works (see, e.g.,'refs.[§,7]),



where a special mathematical technique has been worked

out in order to obtain splution exaot in the thermodynamical
limit *) fer certain types of model Hamiltonians. The approach
is based on the replacement of the model Hamiltonian F{

which is insoluble for finite system, with a special trial Ha-
miltonian F{ (3:) permitting an exact solution. A range of
assertlons on the asymptotical (in the thermodynamical limit)
closeness of the free.energies and statlstlcal averages corres—
ponding to the model" Hamiltonian }4 on the one hand, and the
trial Hamlltonlan F{ (kl) taken by special choice of the trial
paraneters (:  on the other, has been proved for dlife:entK
types of modellbroblems, The trial Hamiltonian method enjoys
maﬁy applications on modern many-body theory. Among concrete
modelrproblems which have been 1nveét1gated on the basis of
this technique one can find, in partlcular, the BCS~type model
systems in the theory of guperconduct1v1ty [? 7], some ferro—
and anty—ferromagnetlc nodels with the long-range 1nteract10n
of J/N type [8,9], the Dicke maser model EIO],; some model
problems for ferroelectrics of the KDP~type [1{], for metal-

insulator phase transition [ﬁé] and for superconductor with

*) I.E. in the limit A/=>00 » V—> 00 » N/V: const ,
-where N = is the number of particles, V is the volume

of a systen.

electron-hole coupling [ﬁé}'). What is more, the trial Hamil-
tonian method enabled one to investigate some classes of model
Hamiltonians as a whole, from a unique standpoint (see [?,14]
and the next sections of the present work). ‘

It should be noted that a variety of techniques has been
proposedkrecently in order to construet exact solutions in the
thermodynamical limit for different model problems in the many-
vody theory. For example, a method for the asymptotically exact
calculation of the free energy for a set of model Hamiltonians
that contain a one-particle, part and separable two-particle
operators has been developed by Tindemans and Capel in refs,
[55;1é]. A very interesting rigorous investigation of the ther-
modynamics of the Dicke-Haken-Lax maser model has been perform;
ed by Hepp and Lieb by means of modern algebra end analysis in
ref. [:17:l(see also Sec. 2, (4)). A somewhat different type of
apprqach is based on the (:9e—algebra technique and related
methods, when 5oth nodel and trial Hamiltonians are treated
for infinite system ab_ovo_ (see,e.g.,[ﬁB-Zéﬂ). Some more
references can be found, e.g., in ref. [?2] .

It should be noted, however, that all these techniques
nake essential use of the structure of the Hilbert spacevon
which the corresponding model Hamiltbnian is definitc, so being

well adapted only to one or another concrete model or, at best,

*) For models considered in refs. [30-1§]‘see also Sec. 2 of
the present paper.



to definite groups of models with the identical structure of
the corrésponding Hilbert spaces. At the same time the trial
Hamiltonian method does not moke any use of the concrete Hil-
bert.space structure, that enabled one to investigafe eitrémely
wide classes of model Hamiltoniane from unique standpoint [?,ﬁ{]
Just ‘one of ‘such classes - a general class of many-ﬁody
nodel Hamiltonians with the interaction of substance and boson
field - has been investigated in' = previous paper [jd]; where
“the ‘existence of exact solution in the thermodynamical limit
has been ‘established for the whole set of models simultaneously.
In the present paper we develop a somewhat different approach’
to the problem, which possesses good potentialities and is more
convenient, in a sense, then previous one. We give the detailed

formulation of the problzem in the next section.
2. Preliminaries.

First 'of all, let us d_escri'be the models we are g'01ng to
deal with below. ' We shall consider a set of model Hamiltonians

of fhe'fom'[‘]l}]: . % ) &

S oibadut VTS Omanlut
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< S T+ L. ,
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where: o ‘ . ' a '
+ 3 N - ) -
a) O g and Q g are creation and annihilation operators for
-+
the o(*'ﬂl mode of quantized boson field; (L, aﬁ satisfy the

well-known Bose commutation relations:

4+ + +

aogaﬁ—algaol =0,
’ + (2

Q.a(aﬂ—;algao.(= o .

-+ -+ 4)0(:%
iy ~ap as ={ o) udp”

+ “+ ‘
) T = T) L.,( 3 L « (15 A & S) are operators represen-
L
ting "substuance" or " [_ ~subsysten" ). These operators are
of different concrete substructure for different concrete mo-

dels. The only extrémely general additional conditions are fol-

lowing:

Il € M | (3a)

1Lt T— TLall &€ Mo, Com

|Luly-LpLall< M NLalp -LoLulle D2,

s -
where "--- “ denote the norm of the operators and M’I;MQ,M_-;
are constants independent of N (the number of particles in
the "substance") as well as of oK ,/5 (1& d;ﬁé S .
Besides the free energy (per particle) should
exist by A/ finite as well as in the limit A/ —> 0o .

) Tbis name comes from the notation of the operators le ,
L« -

**) For the definition‘F[.n ] see below (16a).



c) W (_'\éd & S) are real positive parameters, Wux > O 3
=T (4 3 a(L 5) are real nomnegative parameters, @Qn 2 O ;
7‘0(72::( (14 a(L 5) are, generally speaking, complex parameters,
a) /V is.the number of particles in the “substance". We
shall be interested only in those properties of the model sys—
tems under consideration which are invariant with respect to
the limit IV —> 0O (thermodynamical limit). But the whole
treatment will be performed by finite fixed A/ g y and the
limit N —> 00 will be carried out at the end of the calcu-
lations. .

e) Let us describe exactly the structure of the Hilbert space
on which the Hamiltg*r_zian (1) is defined. By given fixed oL )
the Bose operators a.,( alg are .defined on the Fock space,
which we denote as gf (d) H we also denotex @ 'JC(;)_
The operators | L oL L ok (1 AL S) assumed to
be defined in vthe separable (by finite A ) Hilbert space
%g_ independent of the space 'JEB y 1. e.,, ¢ and JgB
should not contain any common vectors (%L nxg QS) e
This condition conforms to the physical assumpt:.on that the
"substance" and the "boson field" are of different physical

" nature. In particular, owing to the independence of the spaces

,Jf/_ and jgg ;t,rze operators | , Ld . L-: commute with

the operators (. , , A £ by every o and ﬁ ( 1¢ o(,ﬁd
S ) + So the Hamiltonian H (i.):.s defined in the

space 76 = }rfl_Q JCB and describes L. -subsysten coup-

led to finitely many boson field modes ‘).

* Under certain sdditional conditions the situation of the in-
-finite (but numerical) number of modes ¥ § =00 is also al-
lowable; for detalls see ref, E"‘;]'

We finish the description of the Hamiltonian (1) by the
notation, that the first term in (1) represents the free boson
field, the second one describes the interaction, and the last
two terms repiesent the “substance".

Let us now consider some éoncrete'exanples of the model
problems covered by our class (1) as special cases,

i) the Dicke-Haken-Lax maser model (see,e.g.,Ref. [10,’1’7] and

references given therein). The model Hamiltonian is-
+ : - : z
H =waa + AW (ITa+T " )+envss w
D .

where:
N X E

= Si-l-/Vl 5? St_g™% 54 g)v' ZNS @-',
@’){ @gﬁ%re 2%X92. Pauly matrices; -Oi- and Q. are photon
creation and annihilation operators; LW , € , A and M
are real parameters, Wy, & O ,Oé/l/\l_—_’_L . The no-~

del (4) represents N two-level molecules coupled to one’ mo-

~de of a quanti.zed electromagnetic field via a truncated dipolar

interaction, it finds a set of applications in the laser and ma~

ser theory.

ii) A model for ferroelectrics of the KDP-type E1,1E_j: The

corresponding model system consists of the subsystem of heavy
ionic complexes connected via short hydrogen tonds and the sub-
system of protons on these bords. In order to describe the pro-
tonic motion in the effective potential, which resembles a doub-
le-minimum well, the quasi-spin formalism is used. The ferroelec-
tric phenomena in such substances to a large measure are due to

the interaction of the ionic and protonic subsystems.



In Ref.‘E'I] a simplified model for the ferroelectrics of
the KDP-type, which takes into account the interaction of pro-
tons only with the long-wave optical vibrations of the ionic
subsystem, is under consideration. The essential part of the
corresponding model Hamiltonian cen be represented ultimately
in the form [14]: -+
H + . K Qo+0o0 Y 6% ~

F i

= WpQholo — [—————ZMWO m <, .

= o% ZD
—S2'|z=|é Q.NF‘-\?"

where Qo and QL are the long-wave (K= O) phonon creation
and annihilation operators; & x , Zgi are 2 X2, Pauly mat-

rices; M is the reduced mass of the ionic complex, (Wo is the
optical frequency of lattice vibrations in the long-wave limit
K~>0 ; Q. is the de Gennes tunneling frequency, Q?O ;K
and 1. are real interaction parameters, L » O . ,
The model (5) permits the exact solution in the thermody-
namical limit and e:ci.bitsg, by a certain critical tempergture
0= ec s the second order phase transition from disordered
into ordered state. The spontaneous polarization here is due to
the protonic ordering accompanied by the macroscopic displace-
ments of the heavy ions (for more details see refs. EI'I 14]
and references therein). o
iii) A model for metal-—insulator phase transition (€.g.» E21],
see also [_13] and references given there), The model is based
on the Frohlich Hamiltonian for a coupled electron~phonon sys-—

tem allowiné for the interaction of electrons with the only lat-

10

*):

tice vibratiocn mode. O_ singled out in a special way
+
_ _ Jw L be +

(8)

+ Tf% kz,za( Ya,wcx, b +C“”’C“*&'7’ Q\’
“+

whereC , C and b,b are creation and amnihilation operators
for electrons and phonons, respectively.

The model (6) is also covered by the general class of mo~
del Hemiltonians (1), and the corresponding approximating Ha-
milt_onian (see below (7)) is exactly soluble, that enabled one
to investigate closely thermodynamics of the model. It has been'
shown (see e.g.,[_Z'l]), in particular, that under certain criti-
cal temperature GC the model (6) exhibits the second-order
metal-insulator phase transition (due to lattice instability
and the unit-cell doubling).

It should be a.m',lso noted, that some model systems allowing
for metal-insulator and metal-superconductor phase transitions
simultaneously has been studied recently by a number of authors
(see e.g.,[:IS,Z'I] and refrences given there) on the bases of
the Hamiltonian composed of HMI (6) and the BCS-type model

*) Q= (7‘{/&)(“’1,:\:1,_ fL) , vhere Q. is lattice con-
stant; 1n (6) the electron energy spectrum has the property
6K+G. = — ék(for s.c. and b.c.c. lattices in the tight-

binding limit). For details see refrences mentioned above.

1"



Homiltonian (the last one is of the same structure as " DQ -

term" in (1)): -~

HMI.-'MS:: HMI.'+ HBCS' “”
Such models enabled one to investigate the influence of elect—
ron-hole coupling on the Curie point temperature of supercon-
ductor, that ::LS of considerable interest in view of some prob-
lems of high~temperature superconductivity.

The model HAmiltoniahs-(#)—(?), being special cases of
the general Hamiltonian (1), permit of exact solution in the
thermodynamical limit, as A/=> 00 (see below). The detailed
discussion of their ph,ysical properties can be find in the
literature given above. Some of these models, a8 well as the’
corresponding techniques propbsed in the references indicated,
are also under discussion in ref, [_14]

Let us now return to our general Hamiltonian (1). The
trial Hamiltonian Ho (C.) y depending on complex parameters
C ( 1€ L & S) ,» should be taken here as follows

EMJ: s \ | N
Ho(c) =T+ A/“Z [(Dal'\'got Cu) Lo+
(8a)

* * . - 3 *
+(Dg(f+g CoL)Lel]'\’ NE‘Q‘*C“C"‘ >

where

J = @t l"‘*«\i/w‘* 20 . @

12

In ref. 14 we have obtained the majorating bounds which prove

the asymptotical closeness (as AM=—>00 ) of the free energies

corresponding to the Hamiltonians H (1) ana He (C.) (8

(the last one taken by special choice of. the trial parameters

C ) for the whole class of models simﬁltaneously:
\-F[H] —~ abs mén ‘? [HO(C)]\ Ts';% 0-®

As one easily see; the trial Hamiltonian Hb (C) (3) is

.of considerably simpler structure than the basic Hamiltonian

(1) . Therefore for a set of concrete model problems (in particu-
lar for those of (4)-(7)) the free energy ‘FEHO(C-)] permits
of exact calculation by N finite, and the
lim {abs min $[Ho(@)]§
N-> ca <
exists. Then, if (9) is valid, the free energy 4[’1] exists,
the problem of its calculation being solved with asymptotical
accuracy '). . '
| . 4 . . .
Another important result obtained in ref.[’_l#] 1s a set of
asymptotically exact relations for averages constructed from
+ .
the Bose opc_e‘x_:-ators O.o 3 OLggsoOn the one hand, and from the
operators L. o , LF, on the other (1’.—. o(,f & g) . The

key inequality hereby is the following one:

) There are possibly also other reasons why Ho(C) would be

more convenient to study than H o

13



Z o <BoL Bd}‘ v VNI 5 O 5 (108
A=)

4+ -+ »*
B —'——““+"°‘Z Bu=22 ML&
ol \[7;;' W X9 ol V7{7 .

The bound (10b) has been derived in ref, Eli-]on the basis of

where

(10b)

some intermediate relations obtained when'proving 9).

‘ In the present paper we develop a somewhat different appro-
ach to the problem. In Sec. 3 we start from the direct proof
of the iﬁequality (102) without dealing with any relation; for
the fre_e energie's,' but making use of special ineqiality fbr
averages ferst obtained by one of the authors in ref.[_G:] (see

below (17¢)). In Sec, 4, making use of the auxdiliary Hamiltonian
H of the form -):

s +
T—NzgdeLoiv (11a)
ol =
vwhere (see (8b)) ‘

. o :
9o = Wt Nl Waz 0 (1e4e8), ()
we derive fhe inequali:bies: .

-5, ¢ £IWI-£[A1e 7,, o

where g/\/ ’2/\/_90 as N-ﬁoO .

.
) The auxiliary Hamiltonian (11a) has been essentially used
2lso in ref ]—_’I‘ﬂ.

14

Such succession of opérations is more convenient in a sen-
se, In particular, the majoration bound in (10a) appears to be
stronger in powers of 1//\/ than the previous one [’_14] (see
Sec. 3). Such an improvement is likely to be usefull when esti-
mating fluctuations in the systems under consideration (say, in
the Dicke-Haken-Lax maser model, where the fluctuations are of
direct physical interest).

The bounds (12) prove the thezﬁodynamical equivalence
(on the level of free energies) of the Hamilltonians H (1) and
H (11). Now it is just the right moment to note, that the
thermodynamical equivalence of the Hamiltonians H (11) and
Hov(a) (8) (where -F[Ho(E)]: abs m.én 'F D—lo (C.)_-_l ) is a
well-known fact due to original investigations EG,’?]. Namely,

the following statement is valid:

THEOREM 1 (N.N.BOGOLUEOV, JR., [6:7]). Let the Hami1tonians
Ho (C) (8a) and H (112) be given, wherein g,( z 0

('1 S & S). Le‘t the operators | , La ,LI satisfy
the conditions (3a-c) and other requirements formulated in Sec.
1 (see description of the Hamiltonian (1), b and € ). Then
the free energy -F[Ho (C)] attains an absolute min:j.mum with
respect to tl_li trial parameters C o <1é. ’(‘=$) in certain fi-

nite points C ol » which therefore obey a set of equations

Cu = Lay, Ho (<) (1eaeg), G2

15



and the inequalities hold:

SPa 50 Py

0 < P[Hf’(-c-)]“ 'pEH] & NZIs ¥ N3E 2 (w
where P:I. and PQ_ are simple combiﬁations of the quantities

MJ‘ ’ Mg_ vM3 (see Bé"c) and G1=ma&9d~.

In particular, the inequalities (12) and (14) proves (9).

In Sec. 4 we shall also make use of the following general
statement:
PHEQREM 2 (N.N.BOGOLUBOV, for proof see, e.g.,refs., 6 and 7).
The inequalities hold:

<4L,, ﬂ.g_) ¢ £l 'F[J’u'ﬂ-i@'{a. D 7(15),'

‘where 4,(,1 = QL,‘ a.nd Ug = -2{9_ . Here the free energy (per
partlcle)F[ﬂ,{] is a well-known constructlon

-+
{:[q,q=- ary=y —6 U=, 8
and the averages taken over the "Hamiltonian" 44 = ZA are de-

finite by a familiar expression

% _u
Cm Tl €)Y Te S amdl oo

One should-keep in mnd, that the Ham:l.ltomans m»] and QAQ_
in (15) are both assumed to be definite in the same Hilbert
space and by the calculation of any term in (15) the procedure
"Trace" should be taken over the.whole space.

We finisgh this sectiog_by special inequality (upper bound)
for averages of. the form <B B> , first obtained in ref. [6]

when proving Theorem 1.

16

IEMMA (N.N.BOGOLUBOV, JR., [6,7]): Let us denote

+ H e B
B(z)= etg pe~*e, (17a)

+ + + (17)
R=BH-HB , R=-BHR+HEB, :
then the following inequality holds *7:

<BB> J’<B(«.—)B>d'c +
«+ / <RR+RR / (17¢)
+ (BR B(t)B)Hol'c) ———__—}!26.2 ,

where H is the Hamiltonian of the corresponding system, B

is the temperature; for <--7H see (16b).

2. Basic Inequality.

In this section we prove the bound (10a) by way of direct
employment of the general inequality (17). Putting in (17¢)
R E-t‘ , B= B, (see (10b)) and summarizing over &
from.1 to & with the weight Wo , we get ")_:

’

* One can find also some inequalities which generalize and ”

improve (17¢) in refs. [22_] .

**). For convenience, in this section we omit the subscript in

statistical averages over the Hsmiltonian H (1), i.e.,we wri-

te <..'.> = (...7H .

17



S wa {BxBuY & zwdj@,‘(r)e SdT +

ol = |

s 1 + 3 + (18a)
+3 (5 [<B) B«w'cﬁ | qRaRr BuR
where + +
Ro('—"gp(H“HBa() Ra(='— HBa(_é-oLH, (18b)

H is the Hamiltonian (1). In order, to estimate the right-
hand s:Lde of the inequality (18a) we first calculate the quan-
tity .f( Bd(t)3u>d T . It is not difficult to verify,
that the operator °g("l:') (see ('10a) and (172)) is expressible
as i‘ollows H

’Ce+ 'c—e—
T € ) (19)
Bo(() \(— wp‘o('t( OLT’(_i,

Making use (19) and taking into account (2), (16b) as well
as the possibility of cycle permutations under the sign of

"Trace", v'e i‘lnally obtain: - + +

< B" ao‘ -0 Bat7 1

wot f < Bo& (T)BxydT = v LA o
4 d

Consider now the average <Ro€ Ro( + P\oﬂ ‘Ra(7 One can
derive on the basis of (2) and (3a~c¢) with making use of the

Bogolubov inequelity [ 2 3]
‘ <‘Q/(1(\’/19_7 -J<ﬂl-{ml><m1m27 > (21)

the following bound (for details see Appendix, (Ajo)):

18

g

A=

o (sd0)® (Z“ﬂ@ﬁBﬁ) - (sdgn) -

S

[_(.21: < R R,( + Ro( Ro\}]l’/g

(22)

where 0‘1 and O‘ Nare simple combinations of the constants
M'.L ’ M2 a.ndM_3 (see (3a~c)) and of the parameters occu-
ring in (1) (see Appendix, (A9a,b)).

On the basis of (18a), (20) and (22) we obtain:

> LB, By & (S"‘* (z ,3<Bp8p>>

a(=l
(23)
(Sdz, >2/3+ se
N N
whence followd in turn ~7: ‘
S + WALEY )3
Wa L < ( —) +
Zpeclary e o (5
(24)

1 2s(e+vada)

~ = &5 > O-

So the bound ('10a) is proved. We note, that the magoratlon es-
timate in (24) &~ N7 % as N> o0 appears to be stronger
than previous one EM-], which is of order N

. .
) When passing from (23) to (24) we have made use of the fol-

’low1ng simple reasoning: the inequality (23) is of the form

b ca 3L/3+ d and two situations are possible: (i)

a2/3 LV.? 7 0{ » then l)2/3.é 202/3 and bl_-. 3/?.&
(11)(12/31,;1/3 3 s then ,)é 2d . so in any case b £ 23/%,4-
which is equivalent to (24). +2d 4

19



On the basis of (21) and (24) one can easily derive some
important asymptotical relations “for averages. For example,
using (3a), (21) and (24), we get:.

+
[t + d2 <atpy|= KB\ e

. %
erv V2 (25a)
< \}<§dg“><IﬁLﬂ> < M\ ) ms=20,

+ +
a’“aﬁ 7\_3 [ " \_ s —_
K ~ >+wﬁ G Ley\= |[<BBsY
% %
a2 (EVN2 €n
— o dLaBgy | e Mg (2) 7 Vo wk O
From (25a) and (25b) it follows in particular:
2 |
(&:la,b:N '2;2\ <EaL¢>(ﬁ.+ O(N /3))-(250)
. , hry .

The relations of the type (25a-c) and their physical sense are

(25b)

under retailed disoussion in ref. ['m]. Here we only note, that
for a set of concrete_'inodels (in particular, for those of (4)~
(7)) the averages <L°(Ld> (’]é od & S) characterize the
long-~range order in the L ~subsysten (magnetization, polari-
zation, "gap" in the theory of superconductivity, ete.). Then
(25c) means, that the phase transitions in the L ~subsysten
from disordered ((L-:( L,(): O) into ordered ((Ed/-ab‘-# O)
state without fail should be accompanied by the com’pensating
 macroscopic inflation of the boson modes <d:‘ a,(z—h-’ N .
Such inflation, which also renders the averages <B°( 8“7 to
be small (24), appears advantageous from energetical conside-

rations (see below (26)).

20

4, Free energy.

In this section we derive the upper and lower bounds in

(12).
2) The upper bound. Note first of all, that the Hamiltonian

(1) can be rewritten in the form:

~ s + .
H=H+NSTwa« BuBx (26)
. ol=|
where H is defined by (11). Let us now introduce the auxi-

liary Hamiltonian
" S aBuBu,
— = Wababa
Hf = H+f/\/‘,{____l ’ @n
where f is real positive parameter, OLfL"_‘L . Putting
in the inequalities (15) 2 = H ('1-) and 'QA?_: Hf 27,

LIH1-F[neTe (4-f)§=clox<§,< B« . (23).

On the other hand, one can obtain the Hamiltonian Hf’ 27)

through. the following transformation of the parameters Qe“ ’

Wt and Ag » X, in the Hamiltonian H (1):

€y > D€+ (1-£) 2t 12/ wu,

(FSPVREN ']awd’ " * 2%
Al =D f 'Aok,_'_?ol—:’jo Aot .

Since the operators Bog, B‘,L (10b) are invariant under the

transformations (29), we can estinate the right-hand side of

thg inequality (28), performing (29) on both sides of the

inequality (24). By doing so, and taking into consideration,
that (see (A9a,b))

2



| teansg Transf
dy>d, "2 pdicds,dy 2o & VPoly,,,
we get:
s + , Sdg,m)/ 2s(6+V3d)
Z(,:),(<B& g,(>Hf_ Q( NP -+ v X (30)

Let us now leave the bound (30) for the time being and ma-

ke use of Theorem 2. Putting in (15)4{1—- Hf and Q(Q H+

fH , where < + v
— Wa A ot Aot

we find:

#Lhe] ~F[H+pPHe] ¢
-’—fz < 2|2t

+
L o Lot An 2 o L.¢+AATL ?(32)
H+fHB

In virtue of the independe;lge of the Hilbert spaces 7{2 and'xg

on which the Hamiltonians H (11) and HB (31) are definite
N

(see Sec.2), we have

*) Owing to the independence of the spaces 7&_ and WB y for

arbitrary operatorfui@:; ﬂ &2( < ;[FL ®j(3 s where
U, e £, =a ﬂee% , we have’_,

H+fH f
X (z( e
L@e( Les )_T'Z (ﬂ" )TZ B
whence (32) znd (34,left) follows. Here in the .,ubscrlptsLGB .
L 8 nean, that "Trace" should be taken over the spaces
MQJ{BDJFL and ;{8 respectively. The free energies (see
(16a)) in (33) should be considered as 'FEH +fHE]B® ,-F[i?]b

Fffﬁg]s .

22

£+ He]=FLA]+4[FHe]

-and

< — * L ~ = O Zha)
<ax Ldvﬁ-ﬁf’ﬁg— <a ?/’Hg< f’<7H ) (Z4a)

<<'6\d.l:ﬁKj7ﬂquFy1£= <:Ck:5ﬁh' <:L'dj7.J-— O. (34b)

The right-hand side equalities in (34a,b) ore valid due to the
gauge invariance oi‘ the Hmnlltoman Hg (31) with respect to
the transformations Q&2 O exF (\\P,() Q O-AW(—]‘@‘)
We note next, that the free energy -F Lng:' for the free
boson gas is defined by a well-known fbrmular and proves to

‘FIfHB__, "——E e" (4 ef—)"‘o (35)

On‘the basis of (3a) and (32)-(35 ) we obtain:

FLHp1-PLAT e pmi 3 TEL 7

(36)
From (28), (30) and (36) follows 1n tu:rn

EIHT - P[] 2 P23 A<l

N Z(Sda,ﬂ)ﬁzr g_s(e+,v;aa0_ €

Since the left-hand side of this inequality is inéependent of .

L ,thevaluef ( OLf < 4. ) is our choice. Inor-f“_
der to obtain the best majoration bound (as N-=>00 ) we cho—

ose in (37)f=N s and finely get:
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fIH]- FLA]< 2,

M1 2 (l’)wt\ /ooo<)+ 2(50!2, ) 4 (38)
£ == N 2
N as(e+ VZolg) . >0 -

N> o0
N

Thus the upper bound in (12) is completely proved.

The lower bounds We shall derive the lower bound in (12) fol-
lowing the scheme of ref. [14] Putting in (15) z(,, = H and

'4,(9___ H A +,fH s where
I'hoLIQ‘"’
Dp = /V E

we find:

_ﬁ[H]-—w"Eﬁ'—Af*f”’?j' o

Ld, OLf‘iD

on the other hand |
£ [A-sp+He = f[A-np]+tlrH]uo

where (see (35 _

fIrml -2 (Bdnag

Next, putting in (15)2{.{: Q'—Af and 4/(9_ H , We
get:
M g m.d < @[H b~ ﬁ[H]

1 oL—\

o) w

(42)

" On the basis of (39)-(42) one can easily obtain the inequality:
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e

Ky
—- f’ ‘z m«\ 8 p b _ SLw

< {-‘[H]—#[H] ’

where the right-hand side does not depend on Ff . Choosing in
the left-hand sidef= 4//\/' » we finely obtain:

—%u & £[MT-£[AT, = s

where 9 12 .
e = ____SG&N'_P M3 é (2] Zﬁ'&n +at
N V. N-1 =1 Wa

=1 /. 9o (HD)
&NN(& N)/N as M- 00 « The bound (44) completes the proof

of the range of inequalities (12).

APPENDIX

Here we derive the bound (22). Taking into account that
a“ commute v?ith T; (1< & ﬁL S ) (see Sec.1)

end making use of (2), one can easily calculate the operator

R (181):

Rak=wolgo(+ %(XK+Y‘*+ Zd), (A1)

where

$ . |
Xo = )F B,B NLLasl ﬁ (422)
Y /9 /g B/g NELdg Lﬁ] (42‘0.)
L = _;L: .’555 G B

+ ng [L,,LgLﬁ])+ ELong-] .
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Making use of (21), (A1), and elementary inequality ,Q,IX?] L
Z xz.{.% "y we get:

<Rd]20<>/_ 4()\)0( {Bdgo(>+

4+ (A3

" ‘ll')ocl (<X XuO+ <Yde7+<Z,<Z,<7)

Cn the basis of (30), (21), (A2a) and Caushy 1nequa11ty

we obtain in turn:

- <X«-§&>§ sz(il fl\r—>
€ M (2 DALY (2 ey 150 <

Lg

-+
< M.2p, (ﬂ%lwﬁ CBoBY),

(An)
where
| S %)
= Z —— 8

By analogcus way one can find:

<Y,,LYA>A M, > Ps z <B.,<B,‘7—-
M P iw"‘<80480(+ ]:80‘9ij>£
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EENORIICHES TOE

. | o .
<M 2P [§w¢<§,¢ ,<>+1(M3 ps-.-gwd)_l.qs)

‘Besides, in v1rtue of the addltlonal condltlonu (3a-¢) we have:

(2.2 4120 (Mav2miM, P~

Substltutlng the" bou.nds (A4)-(AP) 1n1:o (AB), we obta:r.n the
bound for< Rd i) Qu:.te the same bound can be derlved for

the average <R¢L Rd7 « So one can easily find as a result:

‘2_ <RdRal+ RotRbL 4200 <a— g,(>+

o(=

+8 (MzPs) 'Zw/e<g B/B>+
. (A8)
+4 P, (M2+9.M1M3 P )%t

(emM3R) (MZ Ps + ,e-?Jﬂ) zwdéE.,( B,D—k

/V

(d) 4[2(/\43;75) Ew,e_],j(wa)

where

(dg,/\/)?':r-_w»l{@ (MQ“" Q,NMM_Z‘PS)Q—I— "
" o "  (agw)

for I?'s see (A5) On the basis of (AB), mak1n5 use of the Hol-
der inequality and of the elementary 1nequa11ty (X+y )[3 <
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Y :
, We fipally obtain the bound:

'[u¢<2@Rd+-ded>]
< (sd)%(% wﬁ<8ﬂ, B> ) +(50/2,,,3 T
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