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I I. INTRODUCTION 

Recently a large number of theoretical models has been proposed t o  
explain the pairing mechanism in the new oxide high-T, superconductors 
discovered by Bednorz and Muller "I. These models may be divided into 
two classes: in the first one an electron-phonon mechanism is considered 
which has been proved in observing of a small isotope shift, and in the second 
class the pairing due to  electronic correlation of exchange type is proposed 
(see, e.g./Z1). There is still increasing experimental evidence for large Cou- 
lomb correlation in 3d states of c u 2 +  ions that strongly interact with 2p 
states of 02- ions, which results in highly anisotropic electron bands. On the 
other hand, structural instability usually observed in perovskite-type com- 
pounds brings about a highly anharmonic lattice dynamics which may also 
enhance the superconducting transition temperature (see '3 ). To develop 
a selfconsistent theory of superconductivity in the new oxide compounds, 
all these specific properties of electrons and phonons should be taken into 
account. In the present paper, we propose for that aim a Green-function 
method within a simplified model of oxide metals. 

I 2. A POLAR MODEL OF METAL 

Due to a localized character of electron wave functions in 3d and 2p  
states in the new oxide superconductors the most appropriate method to  
calculate electron energy bands is the method of orthogonalized atomic or- 
bitals developed by N.N.Bogolubov '4/ in the polar model of metals origi- 
nally proposed in 1 5 '  . 

For simplicity we consider a twodimensional lattice in the bya l  p l y e  
of La2Cu04 (or YBa2Cu30 ,) with copper ions in thejattice sites f  = n la ,+ 

+ + 
+ n 2a and oxygen ions at the lattice sites i ,  = ? + r ,  , where 2 Cpy = a x,y . 
By taking into account the crystal field effects we consider only one nonde- 
generate d(x 2- y 2 ,  orbital with the atomic energy c i  and wave function 

-, -, -, 
V(f ,  r ) a t  lattice sites f  and two p,  or p orbitals +wit$ the atomic energy 
c O and wave functions 4, (i,. ;) a t  lattice sites g, , g y, respectively. By 
P 

neglecting all overlap integrals except for the nearest;ne$hbour one for ortho- 
gonalized set of wave fu f  , g a in the second order 
one gets: I 1 



3 e + + +  
+ - S  X 'P (f + a a . r ) .  

8 f d ,  

r a l i ~ d  by considering other atomic orbitals, e.g. d(5zz-rz) a t  copper si- 
tes f and p ,  at oxygen sites g,, o r  by taking into account a more complica- 

, ted lattice structure in the case of YBagCu307-type compounds. Since all 
the matrix elements in (4) are given by a small number of microscopic pa- 
rameters, the Hamiltonian (4) or  (5) can be used as a basis for calculations of 
electron energy bands, phonon spectra and for development of the theory 
of superconductivity in the oxide metals. By applying a perturbation theory 

(2) in the operator form small S in eqs. (4)  or  (5) as proposed by N.N.Bogolu- 
bov 14/, one can obtain some effective Hamiltonians of the Heisenberg t y p  
with an exchange integral J - t 2 /u  (see.'2/). Some results of these calcu- 
lations are presented in 

where the overlap integral 

+ + + + 
s = t Y ( f , r ) I $ , ( f f  r a  ) >  (3) 3. GREEN FUNCTIONS 

is considered t o  be a small parameter, S << 1. 
Now by employing the orthogonalized one-particle set of wave func- 

tions ( I ) ,  (2) the total Harniltonian of the system H = Ho+V can be writ- 
ten in the second quantized form as 

where L i j  = I L fg , L f f . ,  L gg, I depends on the atomic energies r , r i  and 
matrix elements of the one-particle part Ho of the Hamiltonian, and the func- 
tion V(ij I kt) is described by matrix elements of the Coulomb interactions 
between electrons. Here L fg-  S and L , L are given by the renorma- 
lized energies cd and r for I = f '  and g = 7 while for the next t o  nea- 
rest-neighbours they are given by matrix elements of S 2  order (for details 
see"'). In the lowest order of S in (4) the generalized Hubbard Hamilto- 
nian can be obtained as follows: 

To consider the electronic band structure and superconductivity in 
the system described by the model Hamiltonian (4) of (5),  we introduce 
the matrix Green function 

G.. (t - t ' )  = << VIO ( t )  ; Y + (t ') >>. 
I J  J 0 (6) 

Further we consider the model (5) with the electron-phonon interac- 
tion !efined by the term t c  u y j  in the decomposition of the transfer integ- 

+ 
ral t(R - 2 ,  ) over ion displacements u p  - (; - u ,  ) rr . By differen- 

11 - 
tiating the Green function (6)  with respect t o  time t and employing equa- 
tions of motion for the Heisenberg operators one gets the following equation 
for the Fourier transform of the Green function: 

C1 C1 00' + 
+ L t i k r 3  < < u i k v m  P ~ ? ~ > > ~ ,  + x V i k  <<n i P .  >?, , 

k k o '  
J 0 

where 
(5) 1 

1 0  *o 0 =(' o ) ,  r 3  =( ), V r ' =  V + 8 ik U i (  ). (9) 
where t ij  = t fg -. S and U = (U , U p )  . Vij =V are of the zeroth O 0 1  0  -1 i k  3 

f g 6, *O 
order in S . To consider electron-phonon interaction, one+ sh2dd t%ke +into 
accoun; lattice vibrations ; I by making the substitution f + R = f + u , 
+ In the band limit ( t  >-z U i, V ik ) the Coulomb interaction can be con- 

+ R = + , in (4) or  (5). The Hamiltonian (4) or (5) can be gene- sidered as a perturbation. For this we introduce an irreducible part (ir) of 
many-fermion operators as, e.g., 



n k a 1  = &ata.aiO - 
+ (10) 

- I <nk,e>ai, - 6,*, <aka " lo>  a + < a k - o a i o  > a ;-o 1 ,  

where both the Hartree-Fock correlation functions as well as superconduc- 
ting one are taken into account I * ' .  To obtain equations for the Green func- 
tions with the irreducible parts, e.g. T(t - t ' )  = << A ir ( t )  ; V i a  (t  ' )  >> 
we differentiate them with respect to the second time t '  and employ the 
same-type decomposition as in eq. (10). After some algebra (see '8') we 

I can obtain the Dyson equation in the form: 

I 
- 

where r = r + X ,Vik<nk,. > and the selfenergy operator in the mean 
ko 

field approximation is given by 

The contributions to it from electron-phonon and higher order terms 
of Coulomb interactions are described by 

1 Some approximations for (13) wit1 be discussed in the next section. 
1 In the limit of strong Coulomb interaction, t i j  << U ,  an atomic limit 

should be considered as a zero-order approximation. In this case the Green 
functions for many-fermion operators of the Hubbard type, e.g. {aio(l  - 

) , a i,n ,, 1 should be introduced and equations of motion for - n .  
them should be considered as given below: 

One can see that due to the projection operator (1 - n -, ) there appe- 
ars in the right-hand side of eq. (14) a kinematisal interaction that is usually 
described by special vertices of the diagram technique (see, e.g. 'lo '). To ob- 
tain the lowest order contribution from this interaction, one should consi- 
der the simplest approximations of the Hubbard-I type1 91: 

4 

ai- ,  a i a  a t  + < a i -  a ,, > a;, - <ai- ,  > a i o  . 1-0 

Here we take into account both the types of anomalous correlation func- 
tions: at  different lattice sites, <ai,,a , a >  , as well as at the same lattice 
site, <a -, a io  >. The latter has not been considered in 'lo/ though 
they play an essential role, especially for finite U .  As a result of these appro- 
ximations, a closed system of equations for the Green function (6) is obtai- 
ned. Here we present this system only for a simple Hubbard model with c i =  

= c , U i =  U , Vi j  = 0 in (5) (for details see l1 '): 

where the < representation for the Green functions in (6) is given by 

The Green function in the atomic limit, t . . = 0, is described by the equa- 
IJ tions: 

t({) is the -representation for t i j  . The ;dependent gap A(:) in (16) 
is defined by the equations 

A = 2 2  t . .  < a i o a j - a  >, F = . a  
11 I -a " 1 0  . 

j 

i Here the parameters 5 and F obey the condition ( 2 ~  + U ) F = 2 I . Some 
results obtained from eq. (16), (17) will be considered in Sect. 5. 

4. ELECTRON-PHONON INTERACTION 

Let us consider the selfconsistent equation for the C,;*en function (11) 
provided the electron-phonon interaction in the selfenel-gy operator (13) 
in the second order 

- 
.> 



is taken into account. The last tgrm in (13) that describes Coulomb scatte- 
ring in the second order m V: can be obtained by applying the "mode- 
coupling" type approximations (for details see /'/): 

+ + i n  ,(t) Yio (t) Yla  n fo, > + <nko,(t) n ,> < Y  ia(t) Y . >. 
ko e a J 0 

In these approximations one can take into account electron screening effects 
which are both due to  the one-site excit2tions and charge transfer excitati- 
on for a two-atomic system with i = (1, g . To solve the obtained system -, 
of equations, one should introduce the q - representation for the Green 
function. As a result, well-known equations for the supperconducting gap 
can be obtained, where the effective electronelectron coupling is described 
by the phonon Green function in (18) (see'"). As have been pointed out 
in 3 , highly-anharmonic bond-bending-type vibrations for oxygen ions 
can produce strong coupling and high T,, T, -100 K ,  for reasonable values 
of  parameters in the model of oxide superconductor. Since other types of 
oxygen-ion harmonic vibrations have a high frequency, ha, - %+70 meV, 
they give a sm& contribution to the coupling constant, which results in a low 
value ofT,, T, < 40 K 12 . 

where 

Here E = - p ,  where chemical potential p can be found from the equation 

1 n = -- Z <n+ > .  
2 + qa (21 

q a 
Equation (18) is greatly simplified in the limit U -+ m when F = 2A/(24 - 

- U )  + 0. For the lower Hubbard band, n < 1 ,  one gets 

By solving the system of equations (21), (22) for a model density of 
electronic states which is constant in the band with a half-width K,  one can 

/ l l / .  obtain 4T) and T,. In the logarithmic approximation we get . 

5. KINEMATICAL INTERACTION 

In the limit of strong Coulomb correlations, u -. . t , there is a possi- 
bility for attraction for lloles in the lower part (213 < n i 1) or for elect- 
rons in the upper part (1 . n < 413) of the Hubbard bands, that can bring @ 

about the superconductivity at high T, lo.' . We consider here this mecha- 
nism and obtain equations for the gap and T, from our system of equations 
( l o ) ,  (17). By calculating the anomalous-type correlation functions in (17) 
from the Green functions in (16), one gets an equation ' I 1  ' : 

and 2 A(0) / T, = 2n/ y ;r 3.5 - the standard value for the weak coupling 
1imit.Analogous results can be obtained for the upper band when 1 < n < 413. 
They reveal the particle-hole symmetry of the problem with respect to  the 
substitution : 

The results obtained here for the Hubbard model on the basis of equa- 
tions for the Green functions (16), (17) are in qualitative agreement with 
the theory /lo/ developed on the basis of diagram technique. Bt t  we have 
only one "q dependent gap function of the extended s-type A(q) (17), in- 
stead of two functions, Al ,  A ' that have been obtained in /lo/ . The ndepen- 
dence in the exponent in the formula for Tc(23) does not coincide with 



that in'lo/ though we have the same value for the critical concentration 
of holes, x , = 1 - n , = 113 for suppressing T,. 

As shown originally in '101 and here proved by the equation of motion 
method for the Green functions, in the limit of strong Coulomb correlations, 
U .? t ,  an additional attraction due to the kinematic interaction develops 
for holes (213 < n i 1) or particles ( 1  < n < 2/3), which results in high 
Tc (23). The Coulomb interaction V i, in (5), as well as the electron-phonon 
contribution (18) and higher- order terms in U and V i, (13) can be easily 
incorporated in the present approach. The influence of these contributions on 
T, will be considered elsewhere. 

In summary, a model of oxide metals developed in the present paper 
in the framework of the polar model'4' permits one, in principle, to  calcu- 
late microscopically the model parameters. The Green function method " '  , 
applied to the model, gives us a sufficiently simple method for deriving equa- 
tions for the superconducting gap and T, both in the band and atomic li- 
mits. On its basis different types of pairing mechanism can be considered and 
compared. The developed theory can be applied to the new superconductors 
of La2Cu04 and YHa2Cu30, types. With their real crystal structure taken 
into account, one may in detail describe the observed properties of these 
high- 'I, superconductors. 
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P ~ C C M O T P ~ H ~  CaCTeMa C W b H O C B R 3 W H b I X  3d- &i ~ P - ~ J I ~ K T ~ O -  

HOB Ha ocHoBe n o n ~ p s o i i  Monena MeTanna. C noMouIo  MeTona 
@YHKL@ r p ~ ~ a  nOny9eHbI YpaBHeHHR CBepXnpOBO~UMOCTU. 
O T M ~ ~ ~ H O ,  9TO BbICOKUe T c B OKCUnHbIX MeTanJ'IaX MOrYT BO3HU- 

KaTb 31 C9eT C W b H O  52HI'aPMOHUrlf?CKUX K o J I ~ ~ ~ H u ~ ~  HOHOB KUCJ'IO- 

POxa, a TaKXe 3a CrleT KAHeMaTUrlecKOI'O npUTRXeHUR 3neKTpO- 
HOB B CJly9ae CUnbHbIX OnHOY3eJIbHbIX KYJ'IOHOBCKUX KOppeJIR- 

Bogolubov N.N., Aksenov V.L., Plakida N.M. D l  7-88-76 
On the Theory of Superconductivity in a Model 
of Oxide Metals 

A tight-binding system of 3d9  and 2p6 electrons is consi- 
dered in the framework o f  a polar model for metals. By applying 
the Green function method an equation for a superconducting 
gap is derived. It is pointed ou t  that high-T , in metal oxides 
can be caused by highly anharmonic oxygen vibrations and by 
kinematic attraction of electrons due to the strong single-site 
Coulomb correlations. 
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