GGbELHHEHHI A
HHCTHTYT
RABPHBIX

MCCAGADBANKA

AYGHA

e D17-88-76

N.N.Bogolubov, V.A.Aksenov, N.M.Plakida

ON THE THEORY
OF SUPERCONDUCTIVITY
IN A MODEL OF OXIDE METALS

Submitted to the International Conference of High-Tempe-
rature Superconductors and Materials and Mechanisms
of Superconductivity, Switzerland, 1988

1988




I. INTRODUCTION

Recently a large number of theoretical models has been proposed to
explain the pairing mechanism in the new oxide high-T, superconductors
discovered by Bednorz and Muller “!’. These models may be divided into
two classes: in the first one an electron-phonon mechanism is considered
which has been proved in observing of a small isotope shift, and in the second
class the pairing due to electronic correlation of exchange type is proposed
(see, e.g.”?’). There is still increasing experimental evidence for large Cou-
lomb correlation in 3d states of Cu®* ions that strongly interact with 2p
states of O%~ ions, which results in highly anisotropic electron bands. On the
other hand, structural instability usually observed in perovskite-type com-
pounds brings about a highly anharmonic lattice dynamics which may also
enhance the superconducting transition temperature (see’3’). To develop
a self-consistent theory of superconductivity in the new oxide compounds,
all these specific properties of electrons and phonons should be taken into
account. In the present paper, we propose for that aim a Green-function
method within a simplified model of oxide metals.

2. APOLAR MODEL OF METAL

Due to a localized character of electron wave functions in 3d and 2p
states in the new oxide superconductors the most appropriate method to
calculate electron energy bands is the method of orthogonalized atomic or-
bitals developed by N.N.Bogolubov 4/ in the polar model of metals origi-
nally proposed in’%/ .

For simplicity we consider a two-dimensional lattice in the basal plane
of La2CuO4 (or YBayCuyO 4) with copper 1ons in the lattice sites f = n la +
+ nga.y and oxygen ions at the lattice sites ga S ra , where 27 = d, Y-
By taking into account the crystal field effects we consider only one nonde-
generate d(x 2_ y2) orbital with the atomic energy f° and wave function

‘P(r r) at lattice sites r and two p_ or Py orbitals w1th the atomic energy
°and wave functions ¢q(847) at lattlce sites gx.gy, respectively. By
neglectmg all overlap mtegrals except for the nearest-ne}ghbour one for ortho-

gonalized set of wave fu s f, g gin the second order
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is considered to be a small parameter, § <<1.

Now by employing the orthogonalized one-particle set of wave func-
tions (1), (2) the total Hamiltonian of the system H = H,+V can be writ-
ten in the second quantized form as
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where L. = {L, Ly, L -1 dependson the atomic energies €3 , ¢} and

matrix elements of the one-particle part Hg of the Hamiltonian, and the func-
tion V(ij|kf) is described by matrix elements of the Coulomb interactions
between electrons, Here L ~S and Ly, L g’ are given by the renorma-
lized energies ¢4 and ¢ for t-t’ and g=g° while for the next to nea-
rest-neighbours they are given by matrix elements of S2 order (for details
see’®/). In the lowest order of S in (4) the generalized Hubbard Hamilto-
nian can be obtained as follows:
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where tjj =t ~ S and U; =(Uq,Up), Vij =Vrg are of the zeroth
order in S . To consider electron-phonon interaction, one should tg.ke into
account lattice vibrations ﬁl by making the substitution f - R = f +u, ,
€4+ Rgg= €4+, in (4) or (5). The Hamiltonian (4) or (5) can be gene-
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ralized by considering other atomic orbitals, e.g. d(3z 2.r2) at copper si-
tes f and p, at oxygen sites g,, or by taking into account a more complica-
ted lattice structure in the case of YBayCu g0, -type compounds. Since all
the matrix elements in (4) are given by a small number of microscopic pa-
rameters, the Hamiltonian (4) or (5) can be used as a basis for calculations of
electron energy bands, phonon spectra and for development of the theory
of superconductivity in the oxide metals. By applying a perturbation theory
in the operator form small 8 in eqgs. (4) or (5) as proposed by N.N.Bogolu-
bov ‘4’ one can obtain some effective Hamiltonians of the Heisenberg type
with an exchange integral I - t2/U (see “2/). Some results of these calcu-
lations are presented in 78/ .

3. GREEN FUNCTIONS

To consider the electronic band structure and superconductivity in
the system described by the model Hamiltonian (4) of (5), we introduce
the matrix Green function

Gy (t=t7) = << ¥y, (1) 1 W[, (1) >>. | (6)

Further we consider the model (5) with the electron-phonon interac-
tion gefineg by the term tﬁ u’ij in the decompo*sitio_r_l of the transfer integ-
ral t(R; -Rj) over ion displacements u‘;‘j = (U -u;) By differen-
tiating the Green function (6) with respect to time t and employing equa-
tions of motion for the Heisenberg operators one gets the following equation
for the Fourier transform of the Green function:

lwrg - ;731G (@) = 8 7g + i tix TG jle) +
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In the band limit (¢ >> U i+ Vi) the Coulomb interaction can be con-
sidered as a perturbation. For this we introduce an irreducible part (ir) of
many-fermion operators as, e.g.,
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where both the Hartree-Fock correlation functions as well as superconduc-
ting one are taken into account’8’. To obtain equations for the Green func-
tions with the irreducible parts, e.g. T(t-t") = << A, (t): w}a (t’) >
we differentiate them with respect to the second time t’ and employ the
same-type decomposition as in eq. (10). After some algebra (see /8') we
can obtain the Dyson equation in the form:

-1 -
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there € p =6 ¥ .}kla fVik<nka' > and the self-energy operator in the mean
field approximation is given by
c +
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The contributions to it from electron-phonon and higher order terms
of Coulomb interactions are described by

[T i v +
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Some approximations for (13) will be discussed in the next section.

In the limit of strong Coulomb interaction, t;; <<U; an atomic limit
should be considered as a zero-order approximation. In this case the Green
functions for many-fermion operators of the Hubbard type, e.g. {a;,(1 -
-n i__a), a,n io§ should be introduced and equations of motijon for
them should be considered as given below:

[aw(l—ni_a), Hl = ¢.a, (1 -n

i ia( +

i-a)
. (14)
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One can see that due to the projection operator (1 ~n;_,) there appe-

ars in the right-hand side of eq. (14) a kinematical interaction that is usually

described by special vertices of the diagram technique (see, e.g. /1°”). To ob-

tain the lowest order contribution from this interaction, one should consi-

der the simplest approximations of the Hubbard-I type/ 9/
1

+ ¢ +

i 021-0%j0 > <3i_0%i-0" %0 ~<3i-03jo” Bi-g >
+ + +
8 52,8 5 <8i_58i5>8 5~ <8j_g 8] 5>8j, .

Here we take into account both the types of anomalous correlation func-
tions: at different lattice sites, <a;_sa jo > , as well as at the same lattice
site, <a;_g, 85 >- The latter has not been considered in 19’ though
they play an essential role, especially for finite U. As a result of these appro-
ximations, a closed system of equations for the Green function (6) is obtai-
ned. Here we present this system only for a simple Hubbard model with ¢;=
=¢, U;=U, Vj;= 0in(5) (for details see 114.

[1-g(0 ta)] GG w) = glw) + ylw) A@) F(Q, w),
(16)

(1 - g(-~0)t@)IF@G @) = - yl-w) F*= y(-0) A*(@) G(q, »).

where the ?1 representation for the Green functions in (6) is given by
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The Green function in the atomic limit, t T 0, is described by the equa-
tions:

glw) =(1-0/R) g {w) + (0/2) g2(w), y(w) = g (w) - gslw),
gl(m)=(w-—()_l, gg(w)=(w—c-—U)_l .

t(q) is the a-representation for ty; . The adependent gap A(E’ in (16)
is defined by the equations

A@ = A+t QF, (17)

A= 22". tij <2ig%j_g 7> F-ca, ja.,
i
Here the parameters A and F obey the condition (2¢ « U)F = 2\ . Some

results obtained from eq. (16), (17) will be considered in Sect. 5.

4. ELECTRON-PHONON INTERACTION

Let us consider the self-consistent equation for the Gieen function (11)
provided the electron-phonon interaction in the selfenergy operator (13)
in the second order

vt



o0 dw
M@= _dader 1 0r, cth—) x
! e w-(wy+wp) 2 2T 2T

v 1 u v 1 (18)
¥ EP t':k tje[— —;Im<<u ‘k\ujg>>m2][—?lmr3 ka(o)1+i8)f3 ]
k

is taken into account. The last term in (13) that describes Coulomb scatte-
ring in the second order in VK‘G can be obtained by applying the “mode-
coupling” type approximations (for details see /8/):

+ +
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In these approximations one can take into account electron screening effects
which are both due to the one-site excitations and charge transfer excitati-
on for a two-atomic system with i = (?, g 2) . To solve the obtained system
of equations, one should introduce the q — representation for the Green
function. As a result, well-known equations for the supperconducting gap
can be obtained, where the effective electron-electron coupling is described
by the phonon Green function in (18) (see /8/). As have been pointed out
in 3, highly-anharmonic bond-bending-type vibrations for oxygen ions
can produce strong coupling and high T,, T, ~100 K, for reasonable values
of parameters in the model of oxide superconductor Since other types of
oxygen-ion harmonic vibrations have a high frequency, hw ~ 50+70 meV,
they give a small contribution to the coupling constant, which results in a low
valueof T,, T < 40K 12",

5. KINEMATICAL INTERACTION

In the limit of strong Coulomb correlations, U - t, there is a possi-
bility for attraction for holes in the lower part (2/3 <n < 1) or for elect-
rons in the upper part (1 <« n < 4/3) of the Hubbard bands, that can bring
about the superconductivity at high T .- 10" We consider here this mecha-
nism and obtain equations for the gap and T, from our system of equations
(10), (17). By calculating the anomalous-type correlation functions in (17)
from the Green functions in (16), one gets an equation- 1
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Here ¢ = - u, where chemical potential ¢ can be found from the equation
n=—1—2 <t >. (21)
2 > qo
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Equation (18) is greatly simplified in the limit U+ ~ when F = 2A/(2 -
-U) - 0. For the lower Hubbard band, n <1, one gets

s Al -n/2) t(Q " E (9 ' (22)

q Eg(é’) 2T

A=

1
N

By solving the system of equations (21), (22) for a model density of
electronic states which is constant in the band with a half-width W, one can
obtain A(T) and T,. In the logarithmic approximation we get /1

T, o Mgy 2O B (23)

¢ o 2 3n -2

and 2A0) /T, = 2n/y ~ 3.5 — the standard value for the weak coupling
limit.Analogous results can be obtained for the upper band when1 <n < 4/3.
They reveal the particle-hole symmetry of the problem with respect to the
substitution:

n-.2-n' t(d.) —-t(a)v 51’2(6.)"_‘2'1(&)'

The results obtained here for the Hubbard model on the basis of equa-
tions for the Green functions (16), (17) are in qualitative agreement with
the theory /10/ developed on the basis of diagram technique. But we have
only one q-dependent gap function of the extended s -type A(q) (17), in-
stead of two functions, A,, Ap that have been obtained in 710/ . The n-depen-
dence in the exponent in the formula for T,(23) does not coincide with
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that in”10/ though we have the same value for the critical concentration
of holes, x,=1-n, = 1/3 for suppressing T,.

As shown originally in 710/ and here proved by the equation of motion
method for the Green functions, in the limit of strong Coulomb correlations,
U>>t, an additional attraction due to the kinematic interaction develops
for holes (2/3 < n < 1) or particles (1< n < 2/3), which results in high
T, (23). The Coulomb interaction Vij in (5), as well as the electron-phonon
contribution (18) and higher- order terms in U and Vi (13) can be easily
incorporated in the present approach. The influence of these coatributions on
T, will be considered elsewhere.

In summary, a model of oxide metals developed in the present paper
in the framework of the polar model /4/  permits one, in principle, to calcu-
late microscopically the model parameters. The Green function method e,
applied to the model, gives us a sufficiently simple method for deriving equa-
tions for the superconducting gap and T.both in the band and atomic li-
mits. On its basis different types of pairing mechanism can be considered and
compared. The developed theory can be applied to the new superconductors
of LagCuO, and YBay,CuzO, types. With their real crystal structure taken
into account, one may in detail describe the observed properties of these
high-'T, superconductors.
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Boromw6os H.H., Axcenon B.JI., [lnakuna H.M. J17-88-76
K T€OPpHH CBEPXIIPOBOOAHMOCTH B Moaenu
OKCHUJIHBIX METaJlJIOB

PaccmoTpeHa CHCTeMa CHIIBHOCBA3aHHBIX 3d- u 2p-a3nmeKTpo-
HOB Ha OCHOBe IOJIApHOH MomenH Metaiuia. C noMoupio MeToaa
¢yuknuit CpuHa mOJyuYeHbl YPaBHEHHA CBEPXMPOBOLIUMOCTH.
Otmeueno, uto Beicokue T ¢ B OKCHMIHBIX MeTA/IaX MOT'YT BO3HH-
Karh 3a CueT CHIbBHO aHrapMOHHYECKHX KOJIe0aHUH HOHOB KHCJIO-
pona, a Tak)Ke 3a CueT KHHEeMaTHUECKOIr'O NPHTAXKEHHA 3JIeKTpOo-
HOB B Cllyuae CHJIbHbIX OJHOY3€eJIbHbIX KYJOHOBCKHX KOppens-
L1H.

PaGora BeinosHeHa B JlabopaTopHu TeopeTHuecKoi (hrU3MKH
OoUusu.
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On the Theory of Superconductivity in a Model
of Oxide Metals

A tight-binding system of 3d® and 2p® electrons is consi-
dered in the framework of a polar model for metals. By applying
the Green function method an equation for a superconducting
gap is derived. It is pointed out that high-T, in metal oxides
can be caused by highly anharmonic oxygen vibrations and by
kinematic attraction of electrons due to the strong single-site
Coulomb correlations.
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