

СООбЩЕНИЯ Объединенного института ядерных исследований дубна

Д15-92-324

1992

В.Б.Беляев, А.Бертин¹, Вит.М.Быстрицкий², Вяч.М.Быстрицкий, А.Витале¹, Я.Возняк³, А.Гула³, О.И.Картавцев, А.В.Кравцов⁴, А.В.Лучинский⁵, Г.А.Месяц², Л.А.Ривкис⁶, Н.А.Ротахин⁵, А.А.Синебрюхов², С.И.Сорокин⁶, С.Г.Стеценко, В.А.Столупин

ИССЛЕДОВАНИЕ СИЛЬНЫХ ВЗАИМОДЕЙСТВИЙ ПРИ СВЕРХНИЗКИХ ЭНЕРГИЯХ (50 эВ + 1000 эВ) /

¹Национальный институт ядерных исследований, г.Болонья, Италия

²Институт электрофизики, г.Екатеринбург

³Институт физики и ядерной т**ехники, г.К**раков, Польша ⁴Санкт-Петербургский институ**т ядерной ф**изики, г.Гатчина ⁵Институт сильноточной элект**роники, г.**Томск

⁶Всесоюзный научно-исследова**тельский и**нститут неорганических материалов. г.Москва

Исследование сильных взаимодействий легчайших ядер при сверхнизких энергиях (Т ≈ эВ + кэВ) представляет значительный интерес. При тепловых энергиях существуют данные только по взаимодействию нейтронов: длины nn-, nd-, nHe-, nLi-рассеяний в различных спиновых состояниях. Для исследования вопроса о зарядовой симметрии ядерных сил необходимы данные о длинах рр-, pd-, pHe- и т.д. рассеяний, а также о других характеристиках (фазах рассеяния, вероятностях) в указанной области энергий. С этой же целью необходимы данные о сечениях реакций р + d→³He + γ, р + t→ ⁴He + γ и др. в области энергий от единиц эВ до нескольких кэВ. Анализ фаз дублетного пр-рассеяния указывает на наличие виртуального уровня в этой системе с квантовыми числами трития /1/. Возникает вопрос об изучении такого же состояния в pd-системе. Наличие виртуального уровня может изменить в 10 раз значение дублетной длины pd-рассеяния при экстраполяции существующих данных, полученных при энергиях ~400 кэВ, в область супернизких энергий /1/.

Теоретический анализ кулоновской энергии ³Не указывает^{/2/}, что никакой из существующих NN-потенциалов не позволяет (в рамках зарядовой симметрии ядерных сил) объяснить экспериментальное значение данной величины (E_{theor} = 0,65 МэВ, E_{ехр} = 0,76 МэВ).

Кроме исследования ядерных сил при сверхнизких энергиях значительный интерес представляет процесс радиационного захвата в реакциях pd \rightarrow ³He + γ , n³He \rightarrow ⁴He + γ и др. с точки зрения изучения структуры обменных мезонных токов^{/3/}, которые имеют существенный вклад при этих энергиях.

представляется весьма актуальным исследование Наконец, реакций с легчайшими ядрами для астрофизики. Например, при анализе распространенности легких ядер звездах И В Галактике обнаруживается недостаток (за исключением ⁴Не) этих ядер по сравнению с тем, что следует из предсказаний, основанных на теории звезд/4,5/ общепринятых моделей В термоядерных реакций И частности, дейтерий начинает "разваливаться" в звездах уже при температурах Т ≥ 50 эВ, Li при Т ≥ 200 эВ и т.д.

Для объяснения этого явления обычно предлагается модификация моделей звезд. При этом при экстраполяции ядерных сечений в

> объекансьный вистетут якучных веслевованей БИБЛИОТЕНА

астрофизическую область энергий (~кэВ) предполагается отсутствие резонансов или какого-либо другого аномального поведения сечений в этой области энергий. Однако не исключено, что ядерные сечения могут иметь резонансный характер, следствием чего будет усиленное выгорание легких элементов в звездах. Наблюдение ядерных реакций холодного ядерного синтеза также может быть объяснено на этой основе.

В недавно выполненном эксперименте /6/ по измерению сечений dd-реакции в области энергий дейтронов 20÷400 эВ были получены аномально высокие значения сечения этой реакции (~10⁻³² см²), что на 30÷40 порядков выше расчетных величин. В данном эксперименте проводилось облучение титана, насыщенного дейтерием, каплями, состоящими из 100+300 молекул D₂O, ускоренными до энергий 100+300 кэВ. Как следует из условий проведения эксперимента, данные о сечениях dd-реакции извлечены косвенным образом с привлечением ряда модельных представлений, что, в свою очередь, требует их проверки. Чтобы исключить неоднозначность интерпретации результатов, необходимо проведение экспериментов по исследованию dd-реакции при непосредственном взаимодействии пучка дейтронов с дейтериевой мишенью.

ХАРАКТЕРИСТИКИ ИОННЫХ ПУЧКОВ

При использовании классических ускорителей в области энергий 20 эВ ÷ 2 кэВ невозможно получить пучки частиц с интенсивностью, достаточной для измерения сечений взаимодействия изотопов водорода на уровне 10⁻³² см² и ниже с необходимой точностью. В настоящее время имеются данные измерений сечения dd-реакции на уровне 10⁻³⁰ CM² выше / 7 / . и Нам представляется более перспективным использование интенсивных наносекундных ионных пучков, получаемых с помощью лайнерной плазмы, в данной области энергий /8/. Интенсивность пучков, полученных таким методом, составляет ~10²¹ частиц в импульсе в указанной области энергий. Суть этого метода заключается в следующем. По лайнеру – легкой металлической оболочке – пропускается мощный импульс тока, который взрывает оболочку. Затем плазма лайнера ускоряется к оси под давлением магнитного поля, пропускаемого по ней тока (см. рис.). Время

Рис. Схема эксперимента:

 медленный накопитель [τ ~ (250+300) нс]; 2. быстрый формирующий элемент (плазменный прерыватель тока);
цилиндрический лайнер; 4. мишень (CD₂, LiD);

5. блок детекторов

существования сжатого состояния составляет от единиц до десятков наносекунд и определяется как радиусом сжатого состояния, так и максимальной скоростью сжатия лайнера к оси, однако этого времени достаточно для протекания ядерных реакций. Для нагрева лайнера до температуры ~1 кэВ необходимо ускорить плазму лайнера до скорости $V_{max} = 3 \times 10^7$ см/с, при этом ипульс тока должен составлять 1÷2 МА, а мощность, выделяемая электрофизической установкой в нагрузке, порядка 1 ТВт.

В Институте сильноточной электроники СО РАН действуют установки, которые позволяют осуществить эксперименты по исследованию взаимодействия легких ядер в области энергий ≤ 1 кэВ. При этом статистическая достоверность измерений может быть обеспечена в режиме от 1 до 100 срабатываний ускорителя. Такими установками являются: СНОП-III (мощность – 0,5 ТВт, напряжение – С,7 МВ, ток – 1 МА, длительность импульса – 75 нс) и ГИ-4 (мощность – 1 ТВт, напряжение – 1 МВ, ток – 1,5 МА, длительность

2

3

импульса - 100 нс). При этих параметрах можно получить следующие характеристики сжатия лайнера (для дейтерия):

$$V (cM/c) = 10^6 W^{1/2} (3B)$$

где W - кинетическая энергия частицы, V - скорость сжатия лайнера. При W = 100 эВ скорость частиц V = 10^7 см/с, а при W = 1000 эВ V = $3,2\times10^7$ см/с. Если ток I = 1 МА и W = 100 эВ, то линейная плотность частиц В лайнере составляет $~10^{20}$ част./см, а при W = 1000 эВ плотность частиц равна $~10^{19}$ част./см. Увеличивая ток и длину лайнера, можно достичь более высокой плотности частиц В лайнере.

ИССЛЕДУЕМЫЕ ПРОЦЕССЫ

Принимая во внимание указанные параметры ионных пучков, мы предлагаем на первом этапе провести исследования следующих ядерных реакций (см. таблицу).

МЕТОДИКА РЕГИСТРАЦИИ ПРОДУКТОВ ИССЛЕДУЕМЫХ РЕАКЦИЙ

Как видно из таблицы, продукты исследуемых ядерных реакций представляют собой у-кванты, нейтроны и заряженные частицы. Для регистрации у-квантов предлагается использовать сцинтилляционные у-детекторы на основе кристаллов NaJ(Tl), а для регистрации нейтронов – времяпролетную методику с применением сцинтилляционных спектрометров и реакции активации. Регистрация заряженных частиц осуществляется полимерными трековыми детекторами на основе CR-39^{/9/}, расположенными вблизи области сжатия лайнера. Трековые детекторы CR-39 позволяют регистрировать протоны и более тяжелые заряженные частицы в присутствии значительного фона у-квантов, нейтронов, мощных электрических и магнитных полей, возникающих при работе данных установок (СНОП-III, ГИ-4).

продуктов	сечения реакции при различных энергиях [.] (10 ⁻²⁴ см ²)
$E_{n} = 2,46 \text{ M} \Rightarrow B$ $E_{p} = 3 \text{ M} \Rightarrow B$ $E_{t} = 1 \text{ M} \Rightarrow B$ $E_{He} = 0,8 \text{ M} \Rightarrow B$	~ 1,4×10 ⁻¹² (1 кэВ)
Еγ≃ 5,5 МэВ	~ 4×10 ⁻¹⁰ (1 кэВ)
Е _р ≃ 5 МЭВ	3,07x10 ⁻¹³ (10 кэВ)
E _γ ≃ 5,6 M∋B	> 5x10 ⁻¹² (10 кэВ)
E _α = 1,7 M∋B E _{He} = 2,3 M∋B	4,7х10 ⁻¹⁰ (10 кэВ)
E _α = 7,9 M∋B E _{He} =6,3 M∋B	~ 10 ⁻¹⁰ (10 кэВ)
E _γ ≃ 16,4 M∋B	~ 10 ⁻⁹ (6 кэВ)
Е _р = 14,7 МэВ Е _{не} = 3,7 МэВ	~ 10 ⁻⁹ (6 кэВ)
сплошной спектр	1,1x10 ⁻¹⁰ (30 кэВ)
E _γ ≃ 22,3 M∋B	~ 5x10 ⁻¹⁵ (10 кэВ)
E _α = 11,2 M∋B	4,96х10 ⁻¹³ (10 кэВ)
E _γ ≃ 17,3 M∋B	~ 7x10 ⁻⁷ (100 кэВ)
E _α = 8,67 MэB	7,43x10 ⁻⁵ (100 кэВ)
E _γ = 1,586 M∍B	3,7x10 ⁻¹⁰ (100 кэВ)
	продуктов $E_n = 2,46$ МэВ $E_p = 3$ МэВ $E_1 = 1$ МэВ $E_{He} = 0,8$ МэВ $E_{\gamma} \simeq 5,5$ МэВ $E_{\gamma} \simeq 5,6$ МэВ $E_{\gamma} \simeq 5,6$ МэВ $E_{\alpha} = 1,7$ МэВ $E_{\alpha} = 1,7$ МэВ $E_{\alpha} = 2,3$ МэВ $E_{\alpha} = 7,9$ МэВ $E_{\alpha} = 16,4$ МэВ $E_{\gamma} \simeq 16,4$ МэВ $E_{\mu e} = 3,7$ МэВ $E_{\mu e} = 3,7$ МэВ $E_{\mu e} = 3,7$ МэВ $E_{\gamma} \simeq 22,3$ МэВ $E_{\alpha} = 11,2$ МэВ $E_{\alpha} = 11,2$ МэВ $E_{\alpha} = 1,586$ МэВ

5

Таблица

Предлагается использовать следующие типы мишеней: дейтерированный полиэтилен (CD₂)_n, дейтерид титана (TiD₂), а также LiD, LiH, ⁶Li, ⁷Li. Исследование ядерных реакций с участием ³Не предполагается проводить на встречных пучках с формированием так называемой "горячей" мишени. При этом разброс по энергии частиц в исследуемой области энергий увеличивается до 150 эВ, а количество частиц в сформированном плазменном сгустке лайнер +"горячая" мишень (площадь поперечного сечения 0,01+ 0,03 см², длина 1+2 см, время удержания сгустка 20+50 нс) достигает порядка 10²² част.

ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ

Принимая во внимание параметры ионных пучков, эффективность регистрации продуктов ядерных реакций, можно оценить нижнюю границу измеряемых сечений в предлагаемых экспериментах.

Например, для dd-реакции в расчете на один цикл срабативания ускорителя при использовании конденсированной мишени оценка сечения составляет

$$\sigma_{dd} = \frac{1}{n \times \varepsilon \times 1 \times I} \simeq 10^{-38} \text{ cm}^2$$
 ,

где n – плотность ядер мишени (n $\approx 8 \times 10^{22}$ част./см³); ε – эффективность регистрации заряженных продуктов dd-реакции ($\varepsilon \approx 0,1$); l – длина пробега дейтрона в веществе мишени (l ~ 10^{-5} см); I – интенсивность потока дейтронов, падающего на мишень (I ~ 10^{21} част./цикл).

В случае "горячей" мишени + лайнер граничная оценка измеряемого сечения составляат (в расчете на одно срабатывание ускорителя)

$$\sigma_{\rm dd} = \frac{1}{N \times \varepsilon \times I} \approx 10^{-41} \, {\rm cm}^2 \, ,$$

где N — число частиц в "горячей" мишени (N ~ 10²¹ част.), ε ≈ 0,1, I ~ 10²¹ част./цикл.

6

Увеличивая количество циклов срабатывания ускорителя и принимая во внимание технические ограничения, нетрудно видеть, что реально можно понизить граничное значение измеряемых сечений до величин 10⁻⁴⁰ см² (конденсированная мишень) и 10⁻⁴³ см² ("горячая" мишень).

Имея в виду дальнейшее совершенствование техники мощных импульсных ионных пучков, можно ожидать понижение границы измеряемых сечений на порядок и более. Это открывает возможность использования данной методики для исследования слабых процессов в малонуклонных системах.

ЛИТЕРАТУРА

1. S.P. Merkuriev et al. / Proc. Int. Conf. on the Theory of Few Body and Quark-Hadronic Sistems. - P6, Dubna, 1987.

2. K. Okamoto, C. Pask // Ann. Phys., 1971, v.68, p.18.

3. Bargholz C. // Astr. J., 1979, v.233, p.L161-L171; Nucl. Phys., 1987, v.A474, p.1.

4. C. Rolfs / Proc. Intern. School of Phys. "Enrico Fermi", Course C3, Villa Monastero, 23 June - 3 July 1987, edited by P.Kienle, R.A.Ricci and A.Rubbino, North Holland, 1989, p.417.

5. M. Arnould, M. Forestini / Nuclear Astrophysics Proc. of the Third Intern. Summer School, La Rabida, Huelva, Spain, 1988. -Springer-Verlag, Reseach Reports in Physics, p.48.

6. R.J. Beuhler et al. // Phys. Rev. Lett., 1989, v.63, p.1292.

7. A.S. Belov et al. // Nuovo Cim., 1990, v.103A, p.1647.

8. Н.Ф. Ковшаров и др. // ПТЭ, 1987, N.6, с.84-89.

9. С. Дюррани, Р. Балл / Твердотельные трековые детекторы – М.: Энергоатомиздат, 1990, с.149.

> Рукопись поступила в издательский отдел 24 июля 1992 года.

> > 7

Беляев В.Б. и др. Исследование сильных взаимодействий при сверхнизких энергиях (50 эВ ÷ 1000 эВ)

Предложена экспериментальная программа исследования ядерных реакций d+d \rightarrow t+p, p+ ⁶Li \rightarrow ⁷Be+γ, d+³He \rightarrow p+⁴He и т.п. при сверхнизких энергиях (50 эВ ÷ 1000 эВ) с помощью сильноточных плазменных установок типа СНОП-III. Для регистрации продуктов ядерных реакций используются трековые детекторы на основе CR-39, кристаллы NaJ(T1) и др. Ожидаемая нижняя граница измеряемых сечений взаимодействия изотопов водорода $\sigma \simeq 10^{-38}$ см². Измерения предполагается проводить в Институте сильноточной электроники, г.Томск.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1992

Перевод авторов

D15-92-324

A15-92-324

Belyaev V.B. et al. Investigation of Strong Interactions at Very Low Energies (50 eV - 1000 eV)

To study nuclear reactions $d+d \rightarrow t+p$, $p+^{6}Li \rightarrow ^{7}Be+\gamma$, $d+^{3}He \rightarrow p+^{4}He$, etc. at very low energies (50 eV-1000 eV) by means of liner plasma the experimental programme is proposed. The products of nuclear reactions are proposed to be registered with polymeric track detectors on the basis of CR-39, NaJ(Tl) scintillation detectors, etc. The lower limits of cross sections estimated for dd-reaction is $\sigma \simeq 10^{-38}$ cm². The investigations are proposed to carry out in the Heavy Current Electronics Institute (Russia, Tomsk).

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1992