

ОбЪЄДИНЕННЫЙ Институт Ядерных Исследований Дубна

6 388

89-455

Д14-89-455

1989

ИССЛЕДОВАНИЕ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ µSR-МЕТОДОМ НА ФАЗОТРОНЕ ЛЯП ОИЯИ

Направлено на Международный семинар по высокотемпературной сверхпроводимости, Дубна, 28 июня - 1 июля 1989 г. Бежитадзе Д.Т. и др.

Исследование высокотемпературных сверхпроводников µSR-методом на фазотроне ЛЯП ОИЯИ

µSR-методом исследованы высокотемпературные сверхпроводники (ВТСП) La_{2-x}Sr_xCuO₄ (x = 0+0,25), Ho(Er)Ba₂Cu₃O_{7-δ} и Bi-Sr-Ca-Cu-O (фаза -2212 с небольшой примесью фазы 2223) в нулевом и поперечных внешних магнитных лолях ~100 и ~400 Э в диапазоне температур 4,2+300 К. Для образцов La-Sr-Cu-O с x=0 и x=0,01 магнитное упорядочение наступает при температурах ниже T = 250 К и T = 170 К соответственно. Значительное возрастание ширины распределения магнитного поля на мюоне при увеличении содержания стронция свидетельствует об увеличении отклонения магнитных можантов Cu²⁺ от оси магнитного упорядочения. При содержании стронция x = 0,07 результаты обработки µSR-спектров указывают на формирование спин-стекольного состояния в образце. В противоположность керамике HoBa₂Cu₃O_{7-δ} не обнаружено магнитного упорядочения атомов Er в образце ErBa₂Cu₃O_{7-δ}. Определены глубины проникновения магнитного поля в сверхпроводник $\lambda_1(0)$: (3200±79) Å - La_{1,9}Sr_{0,1}CuO₄; (2420±60) Å - La_{1,85}Sr_{0,15}CuO₄; (2000±50) Å - Bi-Sr-Ca-Cu-O (фаза 2212) и '(1600±50)'Å - ErBa₂Cu₃O_{7-δ}.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследования. Дубна 1989

Bezhitadze D.T. et al. μ SR - Investigation of High-T_c Superconductors at the LNP JINR Phasotron

High-T_c superconductors $La_{2-x}Sr_xCu0_x$ (x = 0+0.25), Ho(Er)Ba₂Cu₃O_{7-y} and Bi-Sr-Ca-Cu-O (the main phase 2212 with a small admixture of the 2223-phase) were investigated in the zero and 100+400 Oe transverse external magnetic fields in the temperature interval 4.2+300 K. The magnetic ordering for the $La_{2-x}Sr_xCu0_x$ samples with x=0.00 and x=0.01 occurs below $T_x \simeq 250$ K and $T_x \approx 170$ K respectively.A considerable increase in the distribution width of the magnetic field on the muon with an increase in the Sr-content indicates an enhancement of the Cu²⁺ magnetic moment deviation from the magnetic ordering axis. The results of the analysis of the μ SR spectra indicate the formation of the spin glass state in the $La_{1,93}Sr_{0,07}Cu0_x$ sample. In contrast to the behaviour of the HoBa₂Cu₃O_{7-y} ceramic the magnetic ordering of the Er-atoms in the FrBa₂Cu₃O_{7-y} sample is not observed in the comparable temperature interval. Our data has also allowed the magnetic field penetration depth $\lambda_1(0)$ to be determined: 3200±70 Å for $La_{1,9}Sr_{0,1}Cu0_x$, 2420±60 Å for $La_{1,85}Sr_{0,15}Cu0_x$, 2000±50 Å for Bi-Sr-Ca-Cu-O (phase 2212), 1600±50 Å for ErBa₂Cu₃O_{7-y}.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1989

D14-89-455

Д.Т.Бежитадзе¹, И.П.Боровинская², Я.Бурянек³, В.Валвода³, В.Г.Гребинник, И.И.Гуревич¹, В.Н.Дугинов, Ю.Ф.Ельцев⁴, В.А.Жуков, С.Капуста, В.Р.Карасик⁴, Б.Ф.Кириллов¹, Е.П.Красноперов¹, А.Б.Лазарев, М.Д.Нерсесян², Б.А.Никольский¹, В.Г.Ольшевский, О.Е.Омельяновский⁴, А.Г.Пересада², А.В.Пирогов¹, В.Ю.Помякушин, А.Н.Пономарев¹, В.А.Суетин¹, Г.Ф.Тавадзе¹, С.Шафрата⁵, Й.Шебек⁵, С.Н.Шилов

¹Институт атомной энергии им. И.В.Курчатова, Москва ²Институт структурной макрокинетики АН СССР, Черноголовка ³Математико-физический факультет Карлова университета, Прага ⁴Физический институт АН СССР, Москва ⁵Физический институт ЧСАН, Прага

Введение

При изучении сверхпроводников MSR-методом /I/ может быть получена ценная информация о величинах внутренних магнитных полей в исследуемом веществе и их распределениях. В ВТСП эти поля обусловлены как формированием решетки вихрей в смешанном состоянии, так и образованием областей с магнитным упорядочением, которые могут быть связаны с антиферромагнетизмом ионов Си в слоях Си О /2-I0/ или присутствием в сверхпроводнике редкоземельных элементов с большими магнитными моментами электронных оболочек /II-I4/.

Данные по распределению магнитных полей в смешанном состоянии позволят определить глубину проникновения магнитного поля, намагниченность, изучить эффекты, связанные с пиннингом. Изучение явления магнитного упорядочения и сосуществования магнетизма и сверхпроводимости представляет интерес с точки зрения выяснения механизма, ответственного за сверхпроводимость /15/.

В данной работе представлени результати по исследованию μ SR – методом следующих ВТСП: $La_{2-x}Sr_x$ Си O_4 (x = 0; 0,01; 0,05; 0,07; 0,10 0,15; 0,25), Ho (ϵ r) $Ba_2Cu_3O_{3-\delta}$ и Bi-Sr-Ca-Cu-O.

Условия эксперимента

1.536

0.520

: Handist

Фазотрон Лаборатории ядерных проблем создает протонный пучок с энергией 659 МэВ /16/. В MSR-экспериментах использовался выведенный протонный пучок интенсивностью ~ I мкА. Вторичный пучок положительных моонов имеет следукщие характеристики: импульс I30 МэВ/с, интенсивность ~ 10⁵ I/с, поляризация ~80%, апертура 5х5 см². Эксперименты выполнялись с помощью одного из спектрометров MSR- установки/17/, который обеспечивал проведение измерений в магнитном поле до 0,5 Гл, направленном перпендикулярно направлению спина мюона. Исследования проводились в диапазоне температур 4,2+300 К. Использовались образцы в виде дисков диаметром ~ 40 мм и толщиной ~ I0 мм, расположенных таким образом, что их плоскость была перпендикулярной направлению пучка мюонов, а внешнее магнитное поле направлено вдоль этой плоскости.

Эксперименты проводились при трех условиях: a) измерения при охлаждении образцов в нулевом магнитном поле (ZF); d) измерения при охлаждении образцов в поле (FC) и в) измерения при охлаждении образцов в нулевом поле с последующим увеличением магнитного поля

05555280 *

PDE0-20

при фиксированной температуре или увеличением температуры при фиксированном магнитном поле (ZFC).

Сигналы прецессии спина мюона описывались функцией

$$N(t) = N_0 e^{-t/T_M} (1 + P(t)) + N_B , \qquad (1)$$

где N_o - счет позитронов $\mu^+ \rightarrow e^+$ распада в начальный момент времени, $\mathcal{T}_{\mu} \simeq 2.2$ мкс - время жизни моона, $N_{\rm B}$ - не зависящая от времени постоянная, P(t) - зависящая от времени функция, содержащая информацию об эволюции спина мюона в образце. Вид P(t) в дальнейшем будет приводиться в каждом отдельном случае.

Антиферромагнетизм и спин-стекольное состояние

Для изучения этих явлений были выбраны образцы керамики Lq_{2-x} Sr_x Cu O_4 (x = 0,00; 0,01; 0,05 и 0,07).

Для образцов (x = 0,00 и 0,01) функция P(t) в условиях (ZF) выбиралась в виде

 $P(t) = a [\frac{1}{3} + \frac{2}{3} e^{-\Lambda \cdot t} \cos \omega_{\mu} (t + t_0)] + (a_{\Sigma} - a) e^{-\Lambda_0 t}, (2)$

где первый член описывает поведение спинов мюнов, останавливающихся в междоузлиях, где присутствует магнитное поле. Второй член описывает то же поведение в местах образца, свободных от магнитного поля. Q - коэффициент асимметрии $M^+ \rightarrow e^+$ распада, относящийся к мюнам, испытывающим воздействие магнитного поля. $Q_{\Sigma} \simeq 0,18$ - суммарный коэффициент асимметрии. Λ - скорость релаксации спина мюона, связанная с дисперсией $\langle \Delta B_{\mu}^2 \rangle'^2$ распределения магнитных полей на мюоне соотношением $\Lambda^2 = \gamma_{\mu}^2 \langle \Delta B_{\mu}^2 \rangle$, где $M^{\mu}/2\pi$ = 13,55 кГu/Гс. $\omega_{\mu} = \gamma_{\mu} \langle B_{\mu} \rangle$, где $\langle B_{\mu} \rangle$ - среднее магнитное поле на мюоне. Коэффициенты 1/3 и 2/3 возникают вследствие усреднения по поликристаллу.

На рис. Ia-в представлени температурные зависимости среднего магнитного поля $\langle B_M \rangle$ на мюне, скорости релаксации Λ и коэффициента асимметрии " α ".

Из рис. Іа видно, что при низких температурах ($< T_N$) на мюон действует заметное магнитное поле. Это свидетельствует о наличии антиферромагнитного упорядочения в образцах. Сплошными линиями на этом рисунке показаны теоретические температурные зависимости намагниченности, вычисленные в приближении молекулярного поля для спина 1/2.

Слабая зависимость величины Λ (рис. 16) от температуры (за исключением областей вблизи T_N) свидетельствует в пользу того, что релаксация Λ обусловлена статическими полями. Несмотря на то, что

Рис. I. Зависимости среднего магнитного поля на мюоне $\langle B_{M} \rangle$, скорости релаксации Λ и асимметрин " Λ " (см. формулу (2)) от температуры для образцов $La_{2-x} Sr_{x} Cu O_{4}$ (x = 0 и 0,0I) в нулевом внешнем магнитном поле. Сплошные линии – теоретические.

средние магнитные поля на мюне (рис. Ia) для обоих образцов не сильно отличаются друг от друга, скорости релаксации отличаются более, чем в два раза: Λ (x = 0,00) ~ I,8 мкс^{-I} и Λ (x = 0,0I) ~ 4,5 мкс^{-I}. Это может быть интерпретировано как увеличение отклонений магнитных моментов Cu^{2+} от оси антиферромагнитного упорядочения.

На рис. Ів представлена зависимость коэфициента асимметрии " а " от температу-

ры. В области температур существенно ниже, чем T_N , отношение a/a_{Σ} дает долю образца, находящегося в антиферромагнитном состоянии. В области, близкой к T_N , постепенное падение " A " может быть связано как с неоднородностью содержания кислорода по образцу, так и с увеличением амплитуды флуктуирующей части магнитного поля при приближении к T_N .

Из-за сильного увеличения скорости релаксации спина мюона (приводящего к падению амплитуды MSR -сигнала) оказалось затруднительным в (2F)-экспериментах оценить T_N . Для определения температуры перехода T_N в антиферромагнитное состояние были проведены эксперименты типа (FC) при $H_L \sim 100$ Э. При этом функция P(t) выбиралась в виде

$$P(t) = a_{\perp} e^{-\pi t} \cos \omega_{\mu} (t+t_o).$$
 (3)

Температура Нееля T_N в этом случае определялась по началу падения амплитуды сигнала прецессии a_\perp с уменьшением температуры образца (рис.2). По оценкам, T_N (x = 0.00) \simeq 250 K и T_N (x = 0.01) \simeq 170 K. Из рисунка видно, что переход в антиферромагнитное состояние сильно затянут (более, чем на 50 K).

При концентрации в образце Sr x = 0,05 в условиях (ZF) не наблядалось ларморовской частоты прецессии спина мюона в доступном нам для исследований температурном интервале 4,8+300 К. В этом случае

2

Рис.2. Зависимость коэффициента асимметрии \mathcal{A}_{\perp} (см. формулу (3)) от температуры во внешнем магнитном поле ~ 100 Э для образцов La_{2-x} Sr_x CU \mathcal{O}_4 (x = 0 и 0,01). Сплошные кривые проведены для наглядности.

экспериментальный спектр описывался функцией $P(t) = \alpha_{\Sigma} e^{-(\Lambda \cdot t)^{\alpha}}$ (4)

Рис.3. Температурная зависимость параметров Ли Х (см. формулу (4)) для образца La₁₉₅ Sr₀₀₅ GuQ.

На рис.3 представлены температурные зависимости Λ и \propto . При температурах, выше 7 К, где экспоненциальная функция релаксации хорошо аппроксимирует функцию поляризации, α принималась равной I. Ниже этой температуры начинает-

ся замедление флуктуаций магнитного поля на мюоне при приближении к точке фазового перехода.

Рис.4. Температурные зависимости скорости релаксации Λ и коэффициента асимметрии \mathcal{Q}_{\perp} во внешнем магнитном поле ~ 100 Э для образца $La_{4,93}$ 5 $r_{0,07}$ Cu O4 .

Образец с x = 0,07, как следует из (FC)-измерений (рис.4), испытывает переход в магнитоупорядоченное состояние при $T_f \sim 10$ К. При измерениях в условиях (ZF) для образца с x = 0,07 (как и для образца с x = 0,05) мы не наблюдали прецессии спина мюона при доступных нам низких температурах. Однако с понижением температуры функция поляризации начинает приобретать вид функции Кубо-Тойабе /18/. В связи с этим предполагается, что магнитоупорядоченное состояние образца с x = 0,07 при низких температурах является спин-стекольным. Поэтому для описания функции поляризации в условиях (ZF) использовалось выражение

$$P(t) = \left[\frac{1}{3} + \frac{2}{3}\left(1 - \Delta^{2}t^{2}\right) \exp\left(-\frac{1}{2}\Delta^{2}t^{2}\right)\right] + \left(a_{\Sigma} - a\right)e^{-ikt}, \quad (5)$$

где $\Delta^2 = \int_{M}^{2} \langle (B_{M} - \langle B_{M} \rangle)^2 \rangle$. При температуре 4,8 К Δ соответствует ширине распределения магнитных полей $\langle (B_{M} - \langle B_{M} \rangle)^2 \rangle^{\frac{1}{2}} \simeq 210$ Гс.

Магнитное упорядочение и сверхпроводимость в соединениях типа RE - Ba - Cu - O

Для изучения влияния магнитных моментов редкоземельных элементов в ВТСП были выбраны образцы Но $Ba_2Cu_3O_7 - \delta$ и ε r $Ba_2Cu_3O_7 - \delta$. Эксперименты проводились в условиях (ZF). Функция P(t) использовалась в виде

$$P(t) = a \cdot e^{-A \cdot t} + (a_{\Sigma} - a) e^{-(0 \cdot t)}, \qquad (6)$$

где первый член, как мы предполагаем, соответствует случаю, когда мюоны останавливаются в местоположениях, близких к атомам магнитного элемента (Ho, \pounds r), а второй член описывает релаксационный процесс для мюонов, останавливающихся вдали от атомов Ho(Er).

Рис.5. Температурная зависимость скорости релаксации спина мюона Λ (см. формулу (6)) для образцов Ho(\mathcal{E} r) Ba₂ \mathcal{C} a₃ \mathcal{O} ₇- \mathcal{S} в нулевом внешнем магнитном поле.

На рис.5 представлены зависимости $\Lambda(T)$ для образцов Ho (\mathcal{E}_r) Ba₂ Cu₃ O₇- \mathcal{E}_s . Как видно из рисунка, для образца Ho Ba₂ Cu₃ O_{7- \mathcal{E}_s}/I3/ в области температур 4,2-IO К наблюдается быстрая деполяризация спина мюона, на порядок превышающая скорость деполяризации (~0,2 мкс^{-I}) сличае \mathcal{E}_r Ba₂ Cu₂ O_{7- \mathcal{E}_s} скорость депо-

при высоких температурах. В случае Er Ba₂ Cu₃O₇-5 скорость деполяризации остается низкой (~ 0,2 мкс^{-I}) в области температур 4,6-270 К.

Исследование ВТСП в смешанном состоянии

Для получения данных о глубинах проникновения магнитного поля в сверхпроводники и эффектах пиннинга исследовались следующие керамики: La_{2-x} Sr_x Cu O₄ (x = 0,1; 0,15; 0,25), Er Ba₂ Cu₃ O₇₋₈ и Bi-Sr-Ga-Gu-O.

5

Измерения выполнялись в условиях (FC) и (ZFC) при значениях внешнего магнитного поля ~ 100 3 и ~ 400 3. Функция P(t) аппроксимировалась выражением (S.t)²

$$P(t) = a_{\perp} e^{-(0+t)} \cos \omega_{\mu} (t+t_{o}), \qquad (7)$$

где G' - скорость релаксации спина мюна, связанная с дисперсией распределения матнитных полей соотношением $2G^2 = \chi^2_{\mu} \langle \Delta B^2 \rangle$.

Глубина проникновения магнитного поля рассчитывалась из экспериментальных зависимостей б(Т), полученных в условиях (FC), на основании формулы /19/

$$\langle \Delta B^2 \rangle = 0,0037 \ \varphi_0^2 \ \lambda_{eff}^2$$
, (8)

где $\Phi_0 = 2,07 \cdot 10^{-7}$ Гс/см² – квант магнитного потока, λe_{ff} – эффективная глубина проникновения магнитного поля для поликристаллического сверхпроводника. Это соотношение может быть использовано для регулярной треугольной решетки вихрей, если $\lambda e_{ff} > L$ (где L – среднее расстояние между вихрями). Из значений λe_{ff} определялись глубины проникновения λ_{\perp} , соответствующие направлению внешнего магнитного поля перпендикулярно базовой плоскости кристалла, по формуле^{/20/} $\lambda_{eff} = 4,23 \lambda_{\perp}$ (при $\frac{\lambda_{\parallel}}{\lambda}$, > 5) (9)

Рис.6. Зависимость скорости релаксации (см. формулу (7)) от температури для образцов La_{2-x} Sr_x Cu O₄ (x = 0,10; 0,15 и 0,25) в магнитном поле 400 Э. Кривые проведены для наглящности.

На рис.6 для образцов La - Sr - Cu - Oпредставлены зависимости G(T), полученные в условиях (FC, RA) во внешнем магнитном поле $\simeq 400$ Э. При поле $\simeq 100$ Э G(T)

имеют такой же вид. Независимость \mathfrak{S} от магнитного поля дает основание при вычислении λ_{eff} пользоваться формулой (8). Положительная кривизна в $\mathfrak{S}(\mathsf{T})$ волизи T_{c} объясняется конечной шириной перехода в сверхпроводящее состояние. При обработке экспериментальных данных не учитывалась погрешность, связанная с размагничивающим фактором сверхпроводящих гранул.

Аналогичным образом были рассчитаны λ_{\perp} для образцов $\mathcal{E}_{r} Ba_{2} (u_{3} O_{7-\delta})$ и Bi-Sr-Ca-Cu-O (фаза 2212). Суммарные результаты для всех образцов представлены на рис.7. Полученные данные аппроксимировались формулой

Рис.7. Температурные зависимости глубины проникновения магнитного поля λ_{\perp} для образцов La-Sr-Cu-O, Bi-Sr-Ca-Cu-O и Er-Ba-Cu-O Сплошными линиями показаны теоретические зависимости, вычисленные по формуле (IO).

$$\lambda_{\perp}(T) = \lambda_{\perp}(0) / \sqrt{1 - (T/T_c)^4}$$
(10)

в которой значения $\lambda_{\perp}(O)$ подбирались по методу наименьших квадратов. Для образцов, для которых зависимости глубины проникновения $\lambda_{\perp}(T)$ хорошо описывались этой формулой, получены следующие значения $\lambda_{\perp}(O)$: 3200±70 Å - $L\alpha_{1,5}$ Sr_{0,1} Cu O_{4}_{O} ($T_{c} \simeq 30$ K); 2420±60 Å - $L\alpha_{1,85}$ Sr_{0,5} Cu O_{4} ($T_{c} \simeq 37$ K); (2000±50) Å -Bi-Sr-Ca-Cu-O (фаза 2212, $T_{c} \simeq 80$ K) и I600±50 Å - ε r Ba₂Cu₃O₇-S.

Глубина проникновения магнитного поля может быть вычислена также на основании зависимостей $\mathcal{O}(H_{ex}t)$, полученных в условиях (ZFC) при значениях магнитного поля, соответствующих установившейся решетке вихрей. Однако проявление пиннинга при такой процедуре может внести дополнительные ошибки при определении λ . Об эффектах пиннинга магнитных вихрей можно судить из рис.8, где представлены при разных температурах зависимости скорости релаксации \mathcal{O} и разносты \mathcal{B}_{M} - $\mathcal{H}_{ex}t$ от внешнего магнитного поля, полученные в условиях (ZFC) для образ-

ца $La_{1,85}$ Sr_{0,15} (и O_4 . Как видно из рисунка, в этих зависимостях проявляется заметный гистерезис при низких температурах, который уменьшается при повышении температуры.

Рис.8. Зависимость скорости релаксации спина мюна б и разности В_М - H_{ext}от внешнего магнитного поля при повышении и последующем понижении поля для образца La_{1,85} Sr_{o,15} Cu O₄ . Линии проведены для наглядности.

Заключение

Данная работа является кратким изложением основных результатов, полученных в течение последнего времени по изучению высокотемпературных сверхпроводников мSR-методом на фазотроне Лип ОИНИ. Более подробно результаты будут публиковаться в отдельных статьях. Будет также продолжено детальное исследование наиболее интересных явлений. Тцательного изучения заслуживают явления спин-стекольного типа, состояния сверхпроводящего стекла и связанных с этим долговременных релаксационных процессов. Предполагается также расширить измерения глубин проникновения магнитного поля в сверхпроводники разного состава с различными Т_о.

Литература

1.	Schenck A Muon Spin Rotation Spectroscopy (Adam Hilger Ltd)
	1985.
2.	Uemura Y.J. et al Phys.Rev.Lett., 1987, v. 59, p. 1045.
3.	Vaknin D. et al Phys.Rev.Lett., 1987, v. 58, p. 2802.
4.	Budnick J.I. et al Phys.Lett., 1987, v. A124, p. 103.
5.	Budnick J.I. et al Europhys.Lett., 1988, v. 5(7), p. 651.
6.	Watanabe I. et al J.Phys.Soc.Jpn., 1987, v. 56, p. 3028.
7.	Kitaoka Y. et al J.Phys.Soc.Jpn., 1987, v. 56, p. 3024.
8.	Mishida N. et al Jpn.J.Appl.Phys., 1987, v. 26, p.L1856,
	J.Phys.Soc.Jpn., 1988, v. 57, p. 599.
9.	Brewer J.H. et al Phys.Rev.Lett., 1988, v. 60, p. 1073.
10.	Tranquada J.M. et al Phys.Rev.Lett., 1988, v. 60, p. 156.
11.	Golnik A. et al Phys.Lett., 1987, v. A125, p. 71.
12.	Hishida N. et al Jap.J.Appl.Phys., 1988, v. 27, p. 194.
13.	Duginov V.N. et al JINR Ropid Commun., 1988, v. 4(30), p. 63.
14.	Kuno Y. et al Phys.Rev., 1988, v. B38, p. 9276.
15.	Anderson P.W. et al Phys.Rev.Lett., 1987, v. 58, p. 2790.
16.	Абазов В.М. и др. ОИЯИ, 9-87-322, Дубна, 1987.
17.	Гаганов И.А. и др. В кн.: "Мюоны и пионы в веществе". ОИЯИ, ДІ4-
	87-799, Дубна, 1987, с.431.
18.	Kubo R. and Toyabe T in: Magnetic Resonance and Relaxation,
	ed.by Blinc R., 1967, p. 810.
19.	Brandt E.H Phys.Rev., 1988, v. B37, p. 2349.
20.	Barford V. and Gunn J.L.E Physica, 1988, v. C156, p. 515.

Рукопись поступила в издательский отдел 27 июня 1989 года.

8