

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

98-180

Д12-98-180

Ю.Т.Чубурков

СРАВНЕНИЕ ЭЛЕМЕНТНЫХ СОСТАВОВ ВЕНЕРЫ, ЗЕМЛИ, МАРСА И ХОНДРИТОВ В СВЕТЕ ПЕРИОДИЧЕСКОГО ЗАКОНА Д.И. МЕНДЕЛЕЕВА

Направлено в журнал «Радиохимия»

І. Введение

และการข้องหมือสุราช เป็องไข้ได้ การสารีสัตร์สุราชนาส์เหลือได้ได้

and destine all states

В работе [1] обращено внимание на корреляцию между отношением распространенностей некоторых элементов EA (element abundance), в исходном веществе астероидов K_A (средний радиус орбит $R_A \approx 2,8$ астрономических единиц, а.е.) и Земли K_E (средний радиус орбиты, $R_E = 1$ а.е.) и эначением их первых потенциалов ионизации L_1 (в качестве K_A были приняты EA хондритов, K_{CH} , а в качестве K_E - содсржание элементов в гипотетическом веществе мантии Земли K_{EM}):

$$\ln(K_{CH}/K_{EM}) \approx f(L_1). \tag{1}$$

Функциональная зависимость (1) объяснялась протеканием процесса магнитной сепарации элементов в протопланетном облаке до аккреции вещества вдоль радиуса Солнечной системы R. Отсюда предсказывалось различие значений EA в исходных веществах Венеры, Земли и Марса. Предсказано также, что в исходных веществах планет земного типа должен быть дефицит кислорода (имеющего высокое значение $L_1 = 13,6$ эВ) по сравнению с элементами Na, Mg, Al, Si, K, Ca, Fe, составляющими основную часть масс этих планет. Сказанное выше выходит за рамки общепринятого хондритного постулата, согласно которому относительное содержание элементов в исходном веществе планет равно их относительному содержанию в хондритах. Например, для кислорода общепринято $K_E \geq 30\%$ (массовых).

В настоящей работе предпринята попытка устранить имеющее место значительное отклонение соответствующих экспериментальных данных для некоторого числа элементов от корреляции, следующей из формулы (1). С этой целью кроме L_1 были учтены и другие физикохимические параметры атомов и молекул, влияющие на поведение элементов в протопланетном облаке. Кроме того; с целью дополнительного независимого доказательства существования предсказанной сепарации элементов на ранней стадии образования Солнечной системы проанализированы данные по элементным составам образцов пород Венеры, Земли, Марса и хондритов в свете Периодического закона I.И. Менделеева.

> истерних естандоваров Библика естандоваров Библиютена

ىنى ئىلىك مەكەرىكە ئەرىپىدە بىرى يەرىكە يېرى -بىرى ئىلىك مەكەرىك ئېرىيە بىرى بىرى - ئەرىكى بىرى ئېرىكى - ئىلىكى - ئەرىكى ئېرىكى - ئەرىكى - ئىلىكى - ئەرىكى -بىرى - ئەرىكى - ئىلىكى بىرى - ئەرىكى - ئەرىكى - ئەرىكى - ئەرىكى - ئەرىكى - ئەرىكى - ئىلىكى - ئەرىكى - ئەرىكى -

and have been been

II. Физико-химическое состояние элементов в Протопланетном облаке

Примем, что у каждого элемента в Протопланетном. облаке доли атомов, находящихся в химически связанном N_m , и свободном, $N = 1 - N_m$, состояниях существуют в равновесии. А в свою очередь, атомы в нейтральном, N_o , и заряженных, N^+ - и N^- , состояниях, также будут находиться в равновесии между собой. Соотношения чисел атомов в разных состояниях будут определяться, в основном, их относительной распространенностью, взаимным химическим сродством и степенью взаимодействия их форм (атомов и молекул) с ионизирующим излучением Солнца. Если у какой-то формы элемента центробежная составляющая скорости будет значительно выше, чем у других, т.е., она (форма) будет "выметаться" из системы, то равновесие, упомянутое выше, будет носить динамический характер.

Наиболее быстро и свободно в магнитном поле Солнца, вероятно, будут двигаться свободные нейтральные атомы элементов, доля которых определена как N_o . С целью оценки N_o принято, что вероятности диссоциации молекул, которые, исходя из химического сродства, образуют в этих условиях элементы (см. Табл. 1), будут пропорциональны отношениям между энергиями разрыва химических связей в молекулах, D, и энергиями фотонов, испускаемых Солнцем. Максимальные энергии солнечных фотонов равны, в основном, оптическим пределам: $L_{\rm H}, L_{\rm He}$, и $L_{\rm He}^+$ атомов H, Не и иона He⁺. Суммарную вероятность релаксации соответствующих ионов H⁺, He⁺ и He²⁺ можно приравнять к единице, т.к. водород и гелий составляют основную массу Солнца:

$$P_{\rm H^+} + P_{\rm He^+} + P_{\rm He^{2+}} = 1.$$
(2)

Значение N, пропорциональное доле диссоциированных молекул, можно оценить по выражению

$$N = (1 - D_1 P)(1 - D_2 P)(1 - D_3 P) \dots (1 - D_n P),$$
(3)

где $D_1 \dots D_n$ - энергия связи адендов, общее число которых в молекуле равно n,

$$P = P_{\rm H^+}/L_{\rm H} + P_{\rm He^{2+}}/L_{\rm He^+} + P_{\rm He^+}/L_{\rm He}$$

Относительные доли отрицательных и положительных ионов, J^- и J^+ , можно найти, учитывая сродство к электрону, Ea, и потенциалы

понизации всех валентных электронов атомов данного і-того элемента. Li. по уравнениям: $J^{-} = EaP$ (4)

И

$$J^{+} = (1 - EaP)[(1 - L_1P) + (1 - L_1P)(1 - L_2P) + \dots + (1 - L_1P)(1 - L_2P)(1 - L_3P)\dots(1 - L_\nu P)],$$
(5)

and the second while the second of the

где $L_1 \dots L_v$ -потенциалы ионизации валентных электронов, v-число валентных электронов данного элемента.

Используя уравнения (3) - (5), получим:

$$N_o = N(1 - J^- - J^+). \tag{6}$$

Вычисленные эначения долей N_o атомов всех элементов даны в Табл. 1.

III. Распределение всех элементов между Землей и хондритами

а. Менее летучие элементы

Значения N_o в работе [2] использованы (вместо L_1) для получения функциональной зависимости, аналогичной уравнению (1). С этой целью в качестве K_A и K_E были приняты в хондритах, K_{CII} , и в изверженных породах Земли, K_{IR} , соответственно. Их отношения в полулогарифмическом масштабе были отложены в зависимости от N_o . Экспериментальные данные большинства элементов, см. Рис. 1, хорошо аппроксимируются прямой:

$$\ln(K_{CH}/K_{IR}) = a + bN_o, \tag{7}$$

где $a = -3,54 \pm 0,15$ и $b = 19,4 \pm 0,71$ и Δy - среднеквадратичное отклонение величины $\ln(K_{CH}/K_{IR})$, не превышающее 0,36 [3].

Однако некоторые более летучие элементы имели все же значительно большие значения Δy , и зависимость их экспериментально найденных отношений K_{CH}/K_{IR} от N_o неудовлетворительно описывалась уравнением (7).

3

а. Более летучие элементы

Элементы, имеющие необъяснимо высокие значения Δy - это газообразные или низкокипящие элементы: N, O, F, Ne, Cl, Ar, Zn, Br, Kr, Cd, J, Xe и Hg. Металлы Zn, Cd и Hg к тому же не имеют конгруентно кипящих оксидов. Очевидно, для указанных выше "летучих" элементов использовать равенство $K_E = K_{IR}$, как это было принято выше для "нелетучих" элементов, нельзя. Другими словами, в данном случае следует учесть коэффициенты возможного обогащения изверженных пород, f, "летучими" элементами. С этой целью оценим их с помощью уравнения: $(K_{CH}/K_E)_{(7)}/(K_{CH}/K_{IR}) = K_{IR}/K_E = f$, здесь $(K_{CH}/K_E)_{(7)}$ получено по уравнению (7).

В Табл. 2 указаны такие значения f, которые требуются для согласования соответствующих данных летучих элементов с уравнением (7).

Из этих данных можно видеть, что у химически активных летучих элементов (условно с $N_o < 0,5$) значения f лежат в интервале $3 \div 60$, за исключением Br, для которого f = 740 при $N_o = 0.440$. Если учесть кроме диффузии элементов и конвекцию вещества в мантии Земли [2, 4], то эти значения f в первом приближении можно принять в качестве реальных коэффициентов обогащения химически активными элементами, $f_{a.e.}$, литосферы (изверженных пород).

Известно [10], например, что определенные одновременно для Zn, Cd и Hg в интерметалле InSb при T < 800K коэффициенты диффузии, $(D_o/cm^2c^{-1}) \cdot 10^6$, равны: 1,6, 10 и 4, соответственно. Можно видеть, что соотношения указанных D_o согласуются с соотношением $f_{a.e.}$ этих элементов (см. Табл.2).

Используя $f_{a.c.}$, можно приближенно оценить K_E для таких летучих элементов в исходном веществе Земли, которые с точностью сделанного допущения будут согласовываться с уравнением (7), см. табл. 2.

Однако, химически инертные элементы с $N_o < 0.5$ (Ne, Ar, Kr, Xe и J) для той же цели нуждаются в эначениях f, лежащих в интервале $10^4 \div 10^6$. Такие очень высокие значения для соответствующих коэффициентов обогащения инертных элементов, $f_{i.e.}$ принять даже в нулевом приближении не представляется возможным.

С целью преодоления этого несоответствия, примем, что хондриты - это осколки гипотетической планеты, какое-то время существовавшей на орбите со средним радпусом $R_i = 2,8$ а.е. После фрагментации планеты, вещество фрагментов (частично расплавленное ("ки-

Таблица 1

Доля свободных нейтральных атомов в протопланетном облаке

a de la companya de l			<u> </u>
Наиболее вероятные соединения	No	Наиболее вероятные соединения	No
1	2	1	2
H ₂	0,630	, Kr	0,887
He	0,925	Rb_2O_2	0,136
$Li_2O_2H_2$	0,167	SrO	0,113
Be_2Cl_2	0,173	Y ₂ O ₃	0,119
B_2Cl_4	0,164	$2rO_2$	0,143
C(O, H, N)	0,206	NbO ₂	0,092
N(O, H, C)	0,190	МоО	0,246
O(C, N, M, H)	0,220	RuS_2	0,330
F(Al, Ca)	0,208	$\sim 10^{-10} { m KeV}$, $\sim 10^{-10} { m RhO}$ in () and () and (0,285
Ne	0,911	Pd(OH) ₄	0,272
$Na_2O_2H_2$	0,150	Ag_3Cl_3	0,241
$Mg(OH)_2$	0,229	Cd_2Cl_4	0,356
AlOF	0,133	InCl ₃	0,178
Si_2O_2	0,179	SnO ₂	0,241
PO ₂	0,217	Sb_2O_5	0,184
SO_2	0,274	1.4 and 1.5 TeO_2 and 1.5 TeO_2	0,268
Cl(Fe, Ni и др.)	0,284	IH	0,573
Ar	0,885	Xe	0,770
$K_2O_2H_2$	0,109	Cs_2O_2	0,130
$Ca(OH)_2[F]_2$	0,172	BaO	0,061
Sc_2O_3	0,156	LaO	0,075
TiO ₂	0,160	HfO_2	0,166
VO ₂	0,171	TaO ₂	0,110
wide the CrO with the set of the	0,250	WO 2 (1) 10 10 10 10 10 10 10 10 10 10 10 10 10	0,240
Mn(OH) ₂	0,216	\mathbf{ReO}_{2}	0,238
FeCl ₃ [(OH) ₃]	0,243	OsO4	0,330
$CoCl_2$	0,243	IrOCl	0,315
NiCl ₂	0,310	PtOCl ₂	0,304
$\mathbb{E}_{\mathbf{r}}$ and $\mathbb{E}_{\mathbf{r}}$ $\mathbb{E}_{\mathbf{r}}$ $\mathbb{E}_{\mathbf{r}}$	0,224	$AuCl_3$	0,286
Zn_2Cl_2	0,307	HgCl ₂	0,458
Ga_2O	0,160	Tl_2Cl_6	0,188
GeO ₂	0,221	PbCl ₂	0,225
As_2O_3	0,236	to BiO and a set to a set	0,158
Black Black Store SeO	0,274	ThO_{2}	0,050
BrH	0,440	UO ₂	0,100

• см. работу [2].

្ត5

¢	2	1		
		*		
	٢	ರ	ĺ	
	1	1		
	1	s		
	Ę	5		
1	5	2	J	
_	٢	d	1	
E		-		
-	-			
	۰.			

 $\sim 2M_{\odot}^{2}$

12.3.1	Оценочные оначения	K_A \mathbf{n}	K_{E}	пля хи л	ичес	ки актив	НЫХ	и инертнь	йX	о хирута	JEMEHTOI	и по да	HHEIM K_I	R, K_{CH} .		
	Элементы	. 94	z	+ 0	۰. ۲۰۰۰ - ۲۰۰۰	Ne	ŭ	Ar	Zn	Br	Kr	PO C	Ι	Xe	Hg	
	$(K_A = K_{CH})/\% \times 10^4$			3,5.10 ⁵	28	6.10-3+	70	0, 7*	20	0,5	7.10-5*	0,1	4.10-2	3.10-4*		
1.1.1.1.1.	$(K_E = K_{IR})/\% \times 10^4$		20	4,35.105	6.102	5-10-3	130	3,5	10	3	1.10-4	0,2	0,5	3.10-3	8.10-2	
1.1.1.1.1.1	$\frac{(K_{CH^*}/K_E)(t)}{K_{CH^*}/K_{IR}} = K_{IR}/K_E = f$	9	5,8	3	3	1.10***	13	4.10***	16	7.10 ²	1.106**	58	2.104	1.10***	11	
22 E S2	$(K_E = K_{IR}/f_{a.e.})/\% \times 10^4$	in the second	 	1,7.105	17		10	anti Ma n ti Alana	4	4.10-3++		3.10-3			5.10-3	
物的复数形式	$\frac{K_{en}}{K_{en}} = \frac{K_{en}}{A_{e}} = \sqrt{f} = f_{i.e.} =$	fi.e.	1 - P	2.5. 4. • •	. 2004. • 1	> 1 • 10 ³	1999 - 1997	2 .10 ³	۰,	~ 27	> 1 · 10 ³	-1	~ 2 · 10 ²	> 1 · 10 ²		
·	$(K_A = K_{CH} \cdot f'_{i,\epsilon}) / \% \times 10^4$			• •	хў. — 1, •	, 6 • 6 • •	- 27 B	+ 10 ³	19.1	~ 14	, > 0, 1	•	~ 3	> 4 · 10-2		1.1.1.1.1.1.1.
	$(K_{\mathcal{E}}=K_{IR}/f_{i,*})/\%\times 10^4$	in fe Longo A	10 483 4 1		37835	< 4 • 10 ⁻⁶	ya di Secol	< 1, 6 · 10 ⁻³	•	~ 0,1	<1.10 ⁻⁷		~ 3 · 10-3	< 3 · 10-7	· · · ·	ار الشار
	+ - для кислорода К. A. «Ксл * - для инертных газов в каче ления К.с., не превышающие 2	ч, см. т стве К. 20 %, да	екст. <i>СН</i> П	Кв лежит Риняты из работе [6	с концен	ервале 11-25 Нтрации во с	% [2] Ъракц	ии "Сномистички	Ken,	ана стала стала Хонндринта	Алленде, см.	Texcr., I	огрешности	view iero ioneder of the state outer in the state of the		I Burger Backwarder

пящее"), т.к. в недрах плансты до этого были высокие температура и давление) могло в значительной мере потерять газообразные элементы, не имеющие в этих условиях прочных химических связей с менес летучими элементами. Следовательно, приближенное равенство $K_A = K_{CH}$, используемое ранее для химически активных летучих элементов, в данном случае использовать нельзя. Очевидно, что для химически инертных летучих элементов будет справедливо неравенство $K_A > K_{CH}$ и тогда $(K_A/K_E)_7/(K_{CH}/K_{IR})$ не будет равно K_{IR}/K_E . Следовательно, у инсртных летучих элементов коэффициенты обогащения $f_{i.e.} = K_{IR}/K_E$ становятся сопряженными с коэффициентами их обеднения $f'_{i.e.} = K_A/K_{CH}$. Если принять, что $f_{i.e.} = |f'_{i.e.}|$, то их эначения будут лежать в интервале $\sqrt{10^4} \div \sqrt{10^6}$. Значения $f_{i.e.}$, равные $10^2 \div 10^3$. уже становятся более приемлимыми в качестве первых приближений к их истинным значениям, особенно, если учесть, что объем литосферы значительно меньше объема Земли. Поэтому, $f_{i.e.}$ (п $f_{i.e.}^{\prime}$, как сопряженную с ней величину) также можно использовать для приближенных оценок $K_E(K_A)$ в рамках данного допущения (см. Табл. 2).

В Табл. 2 в качестве K_{CH} указаны концентрации Ne, Ar, Kr и Xe в тугоплавкой фракции (chromite), K_{ch} , хондрита Алленде [5]: Тугоплавкие фракции вещества фрагментов гипотетической планеты, если и могли быть расплавлены, то должны были бы кристаллизоваться значительно раньше основной части их вещества. Поэтому примем. что для летучих инертных элементов $K_{ch} > K_{CII}$. Отсюда полученные значения $f_{i.e.}$ и $f'_{i.e.}$ будут являться соответствующими пределами истинных значений этих коэффициентов (см. Табл. 2).

В качестве K_E инертных газов в Табл. 2 взяты их $K_{IR}/f_{i.c.}$ (Отметим, что согласно уравнению (7), тела, попадающие на планету с внешних орбит должны иметь значительно отличающийся элементный состав от состава данной планеты. В этом случае инертные газы. приносимые на планеты из космоса, будут искажать исходные относительные составы газов в планетарных атмосферах. Поэтому вряд ли целесообразно для *EA* инертных газов в исходном веществе Земли и планет эсмного типа было бы использовать их содержание в атмосферах рах этих планет [2, 6]).

Из сказанного выше можно видеть, что в данном случае для согласования соответствующих дапных летучих элементов с уравнением (7) необходимо было получить приемлемые значения $f_{a.c.}$, $f_{i.c.}$ и $f'_{i.c.}$. Таким образом, с точностью сделанных выше допущений и полученых значений коэффициентов обогащения (обеднения) соотношения концентраций в хондритах и Земле у всех химических элементов теперь согласуются с протеканием процесса их сепарации в протопланетном облаке.

Из данных Табл. 2 можно также видеть, что K_A у летучих элементов, имеющих достаточно большие N_o , заметно превосходит их K_E , как и у менее летучих элементов [2]. Кроме того, вещество Земли (видимо, и планет земного типа) обеднено, по сравнению с Солнцем, элементами с $N_o > 0,2$. Например, макроэлемент кислород ($N_o = 0,208$) имеет оценочное значение K_E почти в три раза меньше, чем то, которое можно было бы ожидать, исходя из хондритного постулата (см. выше).

Дефицит кислорода в веществе мантии Земли, очевидно, должен проявиться при изучении элементного состава глубинных флюидов. Они при этом должны обогащаться металлами, особенно имеющими менее устойчивые оксиды и летучие формы (металлы, гидриды, хлориды, сульфиды, низшие оксиды, органические и др. соединения). Несмотря на существующий фон (техногенный и космический [3]), в местах разгрузки таких флюидов упомянутый эффект должен отчетливо проявляться. В работе [2] указаны и другие возможные следствия дефицита кислорода в мантии Земли и планет земного типа (см. также [7]). Отметим, что для кислорода величина $K_{CH} = 35\%$ (массовых) получена без учета кислородного барьера земной атмосферы. Дело в том, что химически ненасыщенное кислородом вещество фрагментов мантий гипотетической планеты достичь поверхности Земли не может. Все макрометаллы (Na, Mg, Al, Si, K и Ca) очень химически активны

и при соприкосновении с атмосферой Земли будут сгорать в ее кислороде с образованием белых мелкодисперсных оксидов, способных вызывать свечение неба. Очевидно, что при входе в атмосферу большой массы такого ненасыщенного кислородом вещества возможен взрыв, напоминающий тунгусское событие, а при малой массе - метеоры. Поэтому, если относительный элементный состав Тунгусского метеорита (TM) окажется близким к составу хондритов, то среди астероидов должны быть представители, способные гореть в атмосфере Земли, т.е. содержащие полиметаллы, оставшиеся неокисленными из-за дефицита кислорода в мантии их материнской планеты. IV. Сепарация элементов в Солнечной системе в свете Периодического Закона

С целью доказательства существования процесса сепарации элементов в протопланетном облаке, было сделано допущение о существовании гипотетической планеты. С целью окончательного доказательства существование упомянутого выше процесса необходимо и достаточно будет показать, что относительные элементные составы существующих планет, например, Венеры и Марса, также зависят от N_o и от средних радиусов их орбит, R_i .

В настоящее время известны результаты элементных анализов лишь нескольких образцов поверхностных пород Венеры [7] и Марса [8]. Основной трудностью для использования этих данных с указанной выше целью является "фон", обусловленный процессами дифференциации вещества в телах планет.

В работах [2, 3] было предложено эти данные анализировать в свете Периодического Закона.

С целью пояснения этого способа, сравним составы двух земных пород, имеющих разные степени метаморфизма [2], - это изверженные и карбонатные породы. Элементы разных групп Периодической системы: Na, Mg, Al, Zr и P имеют среднеквадратичные отклонения их EA в этих породах от средних значений \overline{EA} по обеим породам равные: 0,61, 0,32, 0,79, 0,80 и 0,36, соответственно.

В тех же породах отношения концентраций $K_{(1)}/K_{(2)}$ у двух элементов $Z_{(1)}/Z_{(2)}$, принадлежащих к одной и той же группе: Na/K, Mg/Sr, Al/Jn, Ti/Zr и P/As, имеют среднеквадратичные отклонения от средних значений этих же отношений по двум породам равные: 0,12, 0,16, 0,08, 0,26 и 0,08, соответственно. Из этих данных можно видеть, что таким способом последствия разного по глубине метаморфизма пород могут быть снижены до минимума.

Отметим, что с определенной осторожностью можно сравнивать отношения концентраций у элементов, взятых из разных групп Периодической системы, но имеющих близкие между собой некоторые химические свойства.

На Рис. 2 в полулогарифмическом масштабе экспериментальные значения $K_{(1)}/K_{(2)}$ пород Венеры, Земли, Марса и хондритов отложены в зависимости от R_i^2 . При этом элементы $Z_{(1)}$ и $Z_{(2)}$ имеют $N_{o(1)} > N_{o(2)}$, соответственно (см. Табл.1).

ଂ 9

Рис. 1. Зависимость (7): $\ln(K_{CH}/K_{IR})$ от N_o представлена в десятичных погарифмах. Слева указаны номера групп Периодической системы, к которым принадлежат элементы размещенные в строчку в соответствии с их N_o , а справа - энаки, с помощью которых на рисунке отмечены их экспериментальные данные.

Рпс. 2. Завпсимость $\ln K_{(1)}/K_{(2)}$ от R_i для веществ Венеры-V, Земли-Е, Марса-М и хондритов-А, по данным [3].

Таблица З

Параметры прямой (8), 1 и N_{o(1)}/N_{o(2)}

•	Z_1/Z_2	A	B	- l - 1	$N_{o(1)}/N_{o(2)}$	$l/(N_{o(1)}/N_{o(2)})$	in the
	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	100	1.50	³ .	см. табл. 1	al de la gradita	
	Mg/Ca	-0,60	0,34	1,42	1,33	1,07	1913 - N
	Mg/Sr	4,00	0,70	2,00	1,77	1,13	7
	Ca/Sr	4,35	0,35	$1,\!42$	1,29	1,10	: *
	Al/U	10,45	0,37	1,44	1,33	1,08	14.13
	Fe/Al	-0,65	0,43	1,51	1,82	0,85*	
	Si/Ti	3,95	0,28	1,24	1,12	1,11	

причина низкого значения, очевидно, может заключаться в том, что в данном случае не учтена разница магнитных свойств Fe и Al.

Таблица 4

Значения $l = N_{0(1)}/N_{0(2)}$ и отношение концентраций элементов Z₁ и Z₂ в разных материалах: IR - изверженные породы Земли, Sh - метеорите Shergotty [15], M - породы, отобранные на Марсе [12], CH - каменные хондриты [16], TTM и СФТМ - торф [17] и силикатные сферулы [18], отобранные на месте паления TM.

010	оралл	DIC DI		CIC	падспия	T TAT'
1 12 12	e Serri e de		111			

	NN	7.17	1	ID	C1.	CU	TTNI	1
5		21/22	•	1 In	31	Сп		
	n/n			•	(M)	-	$(C\Phi TM)$	
	1.	Mn/Sc	$^{\circ}1.32$	43	1. C. M.	$3 \cdot 10^2$	$(7 \cdot 10^3)$	
	2.	Mg/Ca	1.33	0.6	0.9	10		
	5				(1.3)			
	3.	Na/K	1:38	1	5	8. 8.	the second	સ્વાર દારત સંવયત્વે ત
•	4.	Ca/Sr	1.52	91 ···	170	. 10 ³		an an teachean
					(530)			1 K - 1 - 2 K - 140 - 14 - 1
1.11	5.	Mn/Cs	1.66	10 ³	1	$2 \cdot 10^{4}$	(104)	AND TO TAKE
	6.	Ag/Rb	1.77	8 · 10-4	2.10-3	$3 \cdot 10^{-2}$		Section 199
	7.	Al/Eu	1.77	7 · 104		$2 \cdot 10^{5}$	$8 \cdot 10^{6}$	
	8.	Ag/Cs	1.85	$7 \cdot 10^{-2}$	1970 - SA D	5 ⁷⁷ . 1 (2017)	(4) ^{MC}	
1 . C	9.	Mg/Sr	2.03	62	2 · 10 ³	$3 \cdot 10^{5}$		
					$(7 \cdot 10^2)$	5. 5. 6		
	10.	Fe/U	2.43	$2 \cdot 10^{4}$	10 ⁶	$2 \cdot 10^7$	$\geq 7\cdot 10^{6}$	
1.1	· 11.	Au/K	2.62	$2 \cdot 10^{-7}$	$\leq 4 \cdot 10^{-5}$	$2 \cdot 10^{-4}$	10-4	
	12.	Ir/K	2.76	$5 \cdot 10^{-8}$	$2 \cdot 10^{-7}$	6 · 10 ⁻⁴	4	
£,	13.	Be/Ba	2.84	$7 \cdot 10^{-3}$	- April - China Sha	0.2 •	0.1	명하기 위험한 이 관련
1 a 1	14.	Hg/Cs	3.53	0.1	11111	30	11	ne Selatrocké
	15.	Pb/Ba	3.69	$3 \cdot 10^{-2}$	dia state t	0.1**	0.4	
10.10	16.	Mg/Ba	3.75	55	$3 \cdot 10^3$	$2 \cdot 10^{-1}$	san shirin 1893. Tan	
2000 - 100 - 100 100 - 100 - 100	17.	Zn/Ba	5.03	0.2	0.4	10 ²	$2\cdot 10^2$	
	18.	Hg/Ba	7.51	$2 \cdot 10^{-4}$	Sec. Sec.	0.5	2 · 10 ²	i konstruktivni se traktivni s

いたえ ふかださ (手) はかくられ)

11

Экспериментальные точки на Рис. 2 аппроксимированны к прямым:

$$\ln(K_{(1)}/K_{(2)}) = A + BR_i^2,$$
(8)

где A пропорциональны $\ln k$, где k - константы, возможно, обусловленные EA элементов и макропараметрами, например, определяющими центробежную составляющую скорости их атомов в протопланетном облаке, B - пропорциональны $\ln l$, где l - константы, вероятно отражающие разницу физико-химических свойств сравниваемых элементов, например, отношение: $N_{o(1)}/N_{o(2)}$.

В Табл. 3 представлены значения A, B, l и $N_{o(1)}/N_{o(2)}$, вычисленные по данным Табл. 1, и отношения $l/(N_{o(1)}/N_{o(2)})$. Из этих данных можно видеть, что значения l, полученные по данным элементных анализов пород космических тел с помощью Периодического Закона, и отношений $N_{o(1)}/N_{o(2)}$, вычисленных, исходя из физико-химических свойств элементов, согласуются между собой для рассмотренных пар элементов.

Кроме того, уравнение (8) приближенно описывает аналогичные данные для тел, формировавшихся на периферии Солнечной системы. Например, отношения $K_{(1)}/K_{(2)}$ для пары химических аналогов углерода ($N_o = 0,206$) и кремния ($N_o = 0,179$) в изверженных породах Земли, хондритах и в пыли кометы Галея [9] равны: $7 \cdot 10^{-4}$, $2 \cdot 10^{-3}$ и 13, соответственно.

Следовательно, поставленную выше задачу о более строгом доказательстве существования процесса сепарации элементов в протопланетном облаке [1] можно считать решенной с достаточной степенью достоверности.

Таким образом, отношение концентраций двух элементов Z_1 и Z_2 в образцах пород разных планет (тел) Солнечной системы должно отличаться между собой, если отношение $N_{0(1)}/N_{0(2)} = l$ достаточно велико и химические свойства сравниваемых элементов в соответствующей мере сопоставимы. Это обстоятельство может быть полезным при определении принадлежности анализируемых материалов к тем или иным материнским телам Солнечной системы, имеющих разные R_i .

Например, из данных табл. 4 можно видеть, что по относительному элементному составу породы Марса и Shergotty занимают промежуточное положение между составами пород Земли и хондритов. В то же время составы ТТМ и СФТМ наиболее близки к соответствующим данным хондритов. В этой связи заметим, что изотопный состав Pb в ТТМ близок к таковому у железных метеоритов группы II группы [19]. Эти факты, очевидно, можно объяснить тем, что Shergotty генетически связаны с Марсом, а ТМ - с хондритами (астероидами). Однако взрыв ТМ был возможен лишь в том случае, если, в отличии от хондритов, в его состав входили полиметаллы, несвязанные с кислородом (см. выше).

Заключение ender the engine if the second second still a second still

1. Совокупность изложенных выше данных достаточна, чтобы процесс сепарации элементов в протопланетном облаке из разряда гипотезы перевести в разряд реально существующих физико-химических процессов.

2. Исходное вещество Земли (видимо, и планет земного типа) в результате этого процесса должно быть обеднено кислородом и другими элементами с высоким значением N_o

Автор приносит свою благодарность чл.корр. РАН проф. Ю.Ц.Оганесяну и акад. РАН, проф. Б.Ф.Мясоедову за интерес к работе и д-рам В.П.Перелыгину и С.Н.Дмитриеву за полезную дискуссию.

and the manual and the property of

- AFS address Star (Section 24, Comparisonal 181)

Литература

[1] Ларин. В.Н. // Гипотеза изначально гидридной Земли, М.: Недра. 1980. С.215.

[2] Чубурков Ю.Е. Препринт ОИЯИ Р12-92-221. Дубна. 1992. С.30.

[3] Chuburkov Yu.T. Communication of JINR. D12-90-123. Dubna. 1990.
[4] Пущадовский Ю.М., Новиков В.Л., Савелбев А.А., Фадеев В.Е., Геотектоника. 1989. N.5. C.3-13.

[5] Физические величины, справочник под ред. И.С.Григорьева И.С. и Мейлихова Е.З. М.: Энергоатомиздат. 1991. С.390.

[6] Lewls R.S. et al., // Science 1975, 26 December. V.190. N.1221. P.1251-1262.

> tali da elizabilitzari in contralizzatione addice e di la segunda de la segunda de la segunda de la segunda de Contral de la segunda de la

[7] Hunter D.M., Pepin R.U., Owen T.C. // Planetary Atmospheres, in: Meteorites and the Early Solar System. Editors Kerridge J.F., The University of Arisona Press, Tueson, 1988.

[8] Чубурков Ю.Т., Лебедев Л.М. // Радиохимия. 1974. Т.16. вып.4. С.524-529.

[9] Чубурков Ю.Т., Зотов И.А. // Доклады АН СССР. 1985. Т.280. N.5. С.1234-1238.

[10] Алексеев В.А., Алексеева Н.Г. Поступление аэрозолей в зонах тектонической активности, в: Регуля́рности и симметрии в строениях Земли. М.: РОСТ. 1997.

[7] Регулярности и симметрия в строении Земли. М.: РОСТ. 1997.

[11] Барсуков В.Л., Базилевский Л.Т. // Природа. 1986. N.6. C.24-35.

[12] Toulmin B. et al. // J. Geophys. Res. 1977. V.187. P.859-866.

[13] Geiss J. // Actron. Astrophys. 1987. V. 187. P.859-866.

[14] Bowen H.S.M. // Trace Elements in Biochemistry. New York-London. Academic Press. 1966. P.241.

[15] Meyer Ch. // Mars Meteorite. Compendium-1996. Hausten. Texas. 1996. P.175.

[16] Войткевич Г.В. и др. // Краткий справочник по геохимии. М.: Недра. 1977. С.184.

[17] Голеницкий С.П., Степанов В.В., Колесников Е.М., Мурашова Д.А. // Астрологический вестник. 1977. Т.ХІ. No.3. С.126.

[18] Колесников Е.М., Луле Л.Ю., Иванова Г.М. // Астрологический вестник. 1977. Т.ХІ. No.2. С.120.

[19] Колесников Е.М., Шестаков Г.Н. // Геохимия. 1979. No.8. С.1202.

医生物学 化正式试验 法法法法法 化化化

離り連載したであったが、「Bary Charlesterney」 - Strangeren er er

國際性 나는 다른 여름을 다 있는 것을 하는 것을 가 나라.

- Standard a general design of the provide strategy and the proves

and the second of the second second second

13、19月1日,小清Y、14月1日,总统大学

Рукопись поступила в издательский отдел 22 июня 1998 года.