90-123

СООБЩЕНИЯ Объединенного института ядерных исследований дубна 4

4 818

Д12-90-123

Ю.Т.Чубурков

СЕПАРАЦИЯ ЭЛЕМЕНТОВ ДО АККРЕЦИИ ВЕЩЕСТВА ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ В СВЕТЕ ПЕРИОДИЧЕСКОГО ЗАКОНА

I. Сепарация элементов в протопланетном облаке

По мере эволюции Вселенной происходит ее обогащение тяжелыми элементами. Изучение этого процесса является весьма актуальным. Среди бальшого числа работ в этой области зометное место занимают работы, связанные с определением распространенности тяжелых нуклидов. Не ставя задачу полного обзара этих работ, остановимся на анализе некоторых из них в свете нового подхода к относительной распространенности элементов в различных объектах, основанного на Периодическом законе.

Распространеннасть элементов в галактических космических лучах (ГКЛ), солнечных энергичных частицах (СЭЧ) и в телах Солнечной системы, очевидно, в основном обусловлена процессами нуклеасинтеза и разделения элементов. Последние из-за своего многообразия остаются еще не до конца определены. Заканы же нуклеосинтеза оказались более изучены. С их помощью удалось рассчитать распространенность элементав в Солнце и локальную голактическую распространенность /1,2/. Эти значения близки к значениям, измеренным в солнечной атмосфере /3/.

Однако попытки предсказать элементный состав, например, планеты Марса или нашего спутника Луны ^{/3/}, как оказалось, были не столь удачны. Одной из причин этого было то, что не учитывался процесс сепарации элементов в протопланетном облоке, на возможность существования котарого указывалось еще в работе ^{/4/}. В работе ^{/5/} было показано, что имеются новые экспериментальные факты, подтверждающие это предположение. Был найден навый подход к анализу данных по распространенности элементов в сравниваемых телах, позволивший снизить камуфлирующее влияние дифференциации вещества в самих плонетах. С этой целью сравнивались не абсолютные значения концентраций элементов К в различных телах, а отношения К химических аналогов, которые по определению Д.И.Менделеева должны иметь меньшие, чем у других пар элементов, значения коэффициентов разделения в ходе природных физико-химических процессов.

Строго говоря, химические анологи - это элементы, имеющие аналогичную структуру внешних электронных оболочек, т.к., как правила, это элементы, являющиеся членами одной падгруппы Периодической системы химических элементов. В более широком смысле к химическим аналогам могут быть отнесены элементы - члены одной группы и даже разных групп, но имеющих одинаковые устойчивые окислительно-восстановительные состаяния, например: A1³⁺ - Fe³⁺, Mn²⁺ - Fe²⁺, Mo^{3,4,6+} - U^{3,4,6+}. Однако при этом неабходимо более строго учитывать условия, при которых протекали процессы дифференциации вещества.

> Bolerenseund fucteryt Cerenter en teneradd Boler infert feiste

Таблица 1

Отношение концентраций К₁/К₂ для некоторых пар элементов – химических аналогов Z₁ и Z₂ в поверхностных образцах пород Венеры, Земли, Марса и метеоритах

R(a,e) Z_1/Z_2	о,72 _{Венера} /б/	1,00 Земля ^{/3/*}	1,52 Mapc/7/	2,8 Метеориты /3/**
Mg/Ca	1,0 ⁺ 0,5	0,6 [±] 0,2	1,3 [±] 0,2	8,8 [±] 2,8
Mg/Sr		50,2 [±] 8,1	(6,7 ⁺ 1,6).10 ²	(1,1 ⁺ 0,2).10 ⁴
Ca/Sr		91,3 [±] 10,6	(5,3 ⁺ 1,3).10 ²	(1,2 [±] 0,3).10 ³
A1/U	(7,9 [±] 4,9).10 ⁴	(4 [±] 2).10 ⁴		(6,3 [±] 3,3).10 ⁵
Fe/Al	0,9 [±] 0,3	0,7 [±] 0,2		16,7-5,4
Si/Ti	38,3 [±] 19,8	72,5 [±] 11,0		(2,8 [±] 3,8).10 ²

Среднее значение К₁/К₂ для литосферы, горных пород, глин, песчаникав и сланцев.

Средние значения для З классов метеоритов, см. табл. З.

В табл. 1 для некоторых тел Солнечнай системы приведены отношения концентраций K_1/K_2 пар элементов- химических аналогав. Отсюда видно, что K_1/K_2 для образцов Венеры, вазможно, меньше или, по крайней мере, соизмеримо, а для образцов Марса, и тем более для метеоритов, зночи-тельно (на несколька порядков величины) превосходят K_1/K_2 земных пород. Таким образом, обнаружена зависимость $K_1/K_2 = f(R)$, где R - среднее расстояние тела от Солнца. Этот факт согласуется с поедположением о сепарации элементов еще до образавания планет $^{/4/}$. И действительно, под действием фотонного излучения протосолнца в протопланетном облаке могли протекать процессы ионизации, фотоиндуцированных магнетизма и дрейфа атомов, ионов, молекул и аэрозольных частиц $^{/8-10'}$. При наличии магнитного поля сепарация элементов в основном должна была определяться долей ионизованных атомов кождого элемента. В первом приближении относительную долю заряженных атомов у разных элементов можно представить в виде:

 $J = N^{+} + N^{2+} + \ldots + N^{1+}$, rge

$$N^{+} = N^{\circ} \left[\left(1 - \frac{\Pi_{1}}{\Omega\Pi_{H}}\right) P_{H} + \left(1 - \frac{\Pi_{1}}{\Omega\Pi_{He}}\right) P_{He} + \left(1 - \frac{\Pi_{1}}{\Omega\Pi_{He}}\right) P_{He}^{+} \right] , \Gamma_{A}e$$

$$N^{\circ} = \left(1 - \frac{C.3}{\Omega\Pi_{H}}\right) P_{H}^{} + \left(1 - \frac{C.3}{\Omega\Pi_{He}}\right) P_{He}^{} + \left(1 - \frac{C.3}{\Omega\Pi_{He}}\right) P_{He}^{} + \left(1 - \frac{C.3}{\Omega\Pi_{He}}\right) P_{He}^{} + \Gamma_{A}e$$

$$C^{3} - CDOACTBO K 3AEKTDOHY.$$

 $N^{i+} = N^{(i-1)+} \left[(1 - \frac{\Pi_{i}}{\Pi_{H}}) P_{H} + (1 - \frac{\Pi_{i}}{\Pi_{He}}) P_{He} + (1 - \frac{\Pi_{i}}{\Pi_{He}}) P_{He+} \right]$

(члены, имеющие $\Pi_1 \ge 0\Pi_1$, приравниваются к нулю), где Π_1 - потенциалы ионизации валентных электронов у элементов, $0\Pi_1$ - потенциалы ионизации (оптические пределы) атамов H, He и иона He⁺, а P_H, P_{He} и P_{He⁺} - вераятности испускания протосолнцем одного из фотонов с энергиеМ, равной указанным 0П₁, имеющим энергию (эВ): 13,5985, 24,5876 и 54,4182 саатветственно. Сумма этих вероятностей равна единице, а их значения равны: 0,8352, 0,0272 и 0,1376 соответственно. При их оценке принималось соотношение распространенностей водорода и гелия, равное 7,60:1,50 (близкое к солнечному).

В табл. 2 даны расчетные значения J для некоторых элементов. Следует подчеркнуть, что для всех представленных в табл. 1, 3 и 4 элементов - химических аналогов с порядковыми номерами Z_1 и Z_2 выполнено требование, чтобы J_2/J_1 было больше единицы. Следовательно, рост K_1/K_2 с увеличением R можно объяснить тем, что у элемента Z_1 была выше 1- J-доля нейтральных атамов, которые под действием света более свободно двигались в магнитном поле, чем у элемента Z_2 . Дифференциация вещество в телах планет не могла бы привести к зависимости $K_1/K_2 = f(R)$.

В табл. З представлены K_1/K_2 для гораздо большего числа пар элементов, распространенность которых определена в изверженных и гранитных породах Земли и трех классах метеоритов. Эти данные также показывают, что тела, более удаленные от Солнца, обогащены элементами с меньшим значением J. Имеются и другие экспериментальные результаты, подтверждающие сепарацию элементов. Известно /11/, например, что K_1/K_2 у благородных газов He- Ne,Ne-Ar, Ar-Kr и Kr-Xe в земной атмосфере приблизительно равно: 0,1; 0,5; 25 и 7,5, а в космических объектах – 1200, 28, 7600 и 17 соответственна.

Безусловно, если существует зависимость K₁/K₂ = f(R), то должны быть и ее следствия, котарые можно предсказать. Разумно предположить, что наименее дифференцированным веществом Солнечной системы должно быть вещество самого Солнца, т.к. в отличие от протопланетного облака протосолнце имело значительно более сильное гравитационное поле, затрудняющее протекание упамянутого процесса сепарации элементов. На примере Венеры видна, что она по отнашению к Земле, возможно, обеднена элементами с малым J, см. табл. 1, но не так резко как Земля по отнашению к внешним телам Солнечной системы. Состав Меркурия представляет еще больший интерес.

В табл. З и 5 даны К₁/К₂ для солнечной атмосферы, Земли и метеоритов. Из этих данных видна, что хондриты (даже углистые) нельзя считать исходным веществом Солнечной системы, т.к. Солнце, имеющее

2

Таблица 2

Энергия образования прастых веществ, оксидов Е и доля ионизованных атомов химических элементов **Л**

Эл-т_	-E(3B)	J	Эл-т	-E(3B)	J	<u>Эл-т</u>	-E(3B)	J
_1	2	3	4	55	6	7		9
[H]	1,61	0,10	Zn	1,87	0,43	I,	1,39	0,28
Ne		0,08	Ga	1,21	0,65	Xe	•	0,23
c*	0,93	0,27	Ge*	0,78	0,50	Cs	1,2	0,78
[N]	2,15	0,12	As	1,33	0,38	Ва	3,02	0,90
o*	1,62	0,11	Se [*]	1,41	0,35	La	3,82	0,81
г*	4,28	0,09	Br [*]	1,93	0,20	Се	3,84	0,85
Ne		0,09	Kr		0,13	Yb	3,84	0,73
Na	1,52	0,66	Rb	1,26	0,76	Lu	3,96	0,75
Mg	3,17	0,56	Sr	3,15	0,81	Hf	3,91	0,58
A1	3,51	0,65	Y	3,72	0,73	Та	3,10	0,52
Si [*]	1,63	0,46	Zr	3,84	0,61	W	2,04	0,52
Р	2,35	0,33	Nb	2,18	0,57	Re	1,56	0,54
s*	1,87	0,31	Мо	1,96	0,56	0s	0,92	0,44
cı*	2,32	0,13	Ru	0,82	0,52	Ir	0,71	0,10
Ar		0,12	Rh	0,54	0,52	Pt	0,46	0,40
ĸ	1,35	0,74	Pd	0,66	0,47	`Au [*]	0,32	0,37
Ca	3,58	0,74	Ag	0,23	0,51	Hg	0,58	0,36
Mn	2,09	0,58	Cđ	1,44	0,46	т1 -	0,72	0,64
Fe	1,47	0,54	In	1,51	0,67	РЬ	1,24	0,54
Co	1,31	0,52	Sn	1,57	0,54	Bi	1,18	0,55
Ni	1,32	0,52	Sb	1,62	0,46	Th	3,25	0,77
Cu	0,68	0,50	те*	1,09	0,40	υ	2,91	0,61

Исходя из солнечной распространенности, для С и его аналогов S1 и Ge взяты средние значения Е оксидов и гидридов. Ръ и Sn в газе устойчивых гидридов не образуют. MgS, MgSe 12 , MgTe 12 , MgCl, MgBr, MgI и Ca F – взяты как наиболее устойчивые соединения с наиболее распространенным металлом. У Mg на абразование этих соединений может израсходоваться всего около 15% атамов. Для Ca взято среднее Е фторидов и хлоридов, так как атомов F не хватит, чтобы связать весь Ca, Au(OH)₃ $^{12/}$, т.к. оксиды Au в газе не известны.

значительно бо́льшие (чем у хондритов) значения К₁/К₂ многих пар химических аналогов (например, H-Na, Na-Rb, C-Pb, S1-Sn и др.), не могло образоваться из одного и того же материала с хондритами. Эти данные (см. табл. 3,5) скорее согласуются с тем, что именно вещество Солнца является наименее дифференцированным, а хондриты, как и Земля, образовались после сепарации элементов в протоплонетнам облаке.

Далее, если при этом элементы с малым J в заметной степени были удалены на периферию Солнечной системы, то, имея J \simeq 0,1, водород и кислород были в их числе. С другой стороны, исходная распространенность кислорода на три порядка ниже, чем водорода. Поэтому, при относительно низкой атомной концентрации водорада в Земле, кислорода должна быть настолько мало, что силикатный слой Земли не может занимать всю талщу мантии. Вероятно, по этой причине на глубине 400 км в мантии звуковые волны резко меняют сваю скорость распространения. В работе /5/ приведены и другие экспериментальные факты, подтверждающие это следствие, вытекающее из зависимости K₁/K₂ = f(R).

Более того, на периферии Солнечной системы обнаружена аблако Сорта, R 🛥 л·10⁴ а.е., которое, видимо, состоит из комет. Следавательно, К₁/К₂ у комет согласно функции К₁/К₂ = f(R) далжны быть значительно выше, чем у хандритов. И действительно, в пыли кометы Галлея для пары химических аналогов C-Si $K_1/K_2 \simeq 13^{/13/}$, что приблизительно в 30 раз превышает К1/К2 углистых хондритов. Отсюда следует, что среди вещества, подающего на Землю, должна быть и вещество, имеющее К₁/К₂ саответствующих пар химических аналогов значительно больше, чем у метеоритов. Учитывая это, сравним составы метеоров и метеоритов. Сравнение абсолютных значений К затруднено из-за низкой точности измерений содержания элементов в метеорах.В табл.4 даны значения отношений К1/К2 элементов аналогов. Отметим достаточна ярка выраженную близость значений К₁/К₂ у всех хондритов, имеющих разный тип. С вышеизложенной тачки зрения эта согласуется с предположением о существовании на месте пояса астероидов их общего материнского тела (планеты), в 🖛 2,8 а.е. В этом случае различие составов хондритов и железных метеоритов было бы обусловлено высокотемпературными акислительно-восстановительными працессами, протекавшими при выделении железного ядра этой планеты. Знаменательной является близость К₁/К₂ для Fe-Ni у хандритов и железных метеоритов, чта хорошо согласуется с близостью их поведения в этих высокатемпературных процессох.

Из данных табл. 4 видно, что среди метеоров присутствует не более 60% таких, у которых отношения K_1/K_2 близки к метеоритным. Однака, как и предпологалось выше, имеются и другие метеоры со значительно большими K_1/K_2 . Наиболее вероятно – это кометное вещество. Если это так, то, видимо, можно обнаружить факты, гаворящие а поступлении кометной воды на Землю. И действительно, в последнее время стала известно о вспышках земной атмосферы, наблюдаемых со спутников. Измерения показали, что излучают возбужденные молекулы H_20 . Чтобы объяснить это водой,

4

5

Продолжение таблицы З

1	2	3	4	5	6	7
A1/U	6,8.10 ⁴	1,7.10 ⁵	4.107	3,0.10-3	1,5	1,1.10 ⁵ A-11
	(2,5.10 ⁴)	(8,7.10 ⁵	8,5.10 ⁵)			5,0.10 ⁴ A-12
Sc/La	0,7	2,7			0,5	3,5 [±] 0,7
	(0,1)	(20,0	26,4)			
Y/La	1,1	3,0			4,1	6,7 A-11
•	(0,7)	(2,7	8,4)			5,3L-16
C/05	16 0	2 0 102	2 2 10 ⁴	12.0	9.4.10 ⁵	48-27
0,70	(15.8)	$(2.0.10^3)$	$1.2.10^4$)			
Si/Pb	$2.3.10^4$	1.0.105	8.0.10 ²	5.0	3,4.104	$(7,5^{\pm}4,9).10^{4}$
01/10	(1.8.10 ⁴)	$(9.1.10^5)$	3.7.10 ⁴)			
Ge/Pb	9.1.102	4.5	3.9.10 ³	5,0.10-3	3 2,0	<0,4 A-11
	(6.9.10-2	²) (50,0	12,2)			0,3 L-16
Sn/Pb	0,2	1,4	157,2	·**.	0,4	0,7 [±] 0,2
	(0,2)	(5,0	5,7)			
Si/Hf	2,8.104	2,1.10 ⁵			1,3.10 ⁵	1,5.10 ⁴ A-11
	(8,7.104)) (3,6.10 ⁵	3,2.10 ⁵)			
Zr/Hf	55,0	100			a and	28,5 A-11
	(46,2)	(60,0	28,2)			37,7 L-16
Hf/Th	0,3	0,5			~ 2,0.10 ²	6,5 A-11
	(0,3)	(12,5	8.0)			
N/Bi	1,2.102	1,0.10 ³		· •.	2,5.10 ⁴	3,4.10 ⁵ A-11
	$(3,0.10^3)$	$(3, 4.10^2)$	1,7.104)			· · · · · ·
P/Bi	6,2.103	1,0 106	.4,4.10		3,5.10	(4,4-3,2).10
	(6,0.104)	(1,7.10	1,1.104)		2	2
As/Bi	10,7	5,9.102	6,3	~ 20 **	1,2.10	1,7.10° A-11
	(150,0)	(94,5	29,7)		. 4	
N/Ta	10,0	2,4	_		2,5.10	58,8 A-11
(1	0,8) (5	50,0 3	1,0.10)			4
P/Ta	5,3.10 4	4,2.10 ³	3,7.10		3,5.10	3,0.10 ⁻ A-11
	(1,6.10 ²)(2,5.10	7,0.107)			
Ta/Nb	0,1	1,3	3,4		12,0	0,8 A-11
	(0,1)	(15,0	25,0)			
Te/O	2,0.10 ⁻⁹	`			1,2.10	5,0.10 ⁻⁸ A-11
	(2,0.10 9)) (1,5.10 ⁻⁰	⁶ 7,3.10 ⁻⁶)			, E
Te/S	3,9.10-6		-		5.10-8	1,2.10 ⁻³ A-11
	(2,5.10-6)) (2,5.10	5,3)			·
Te/W	6,7.10 ⁻⁴				8,3	0,2±0,1
	(4,6.10 ⁻⁴)	(3,4	23,6)			

7

Таблица З

Отношени	е концеі	нтр	алий Н	(₁ /	И2 ДЛЯ	элементов	3 -	химичес	ских
аналогов	^z 1 ^{/z} 2	в	Земле	И	других	объектах	Col	нечной	системы

Обьек	ты Земля	/3/ Men	еориты /3/		Океани-	(7/1
	Извержени	ње Каменны	е Телезные	Рассолы	-ческая	Луна ^{/3/*}
	(гранит	ные)Хс	НДРИТЬ	/14/	вода	
<u>Z</u> 1/_Z		(каменны	е углистые)_			
<u>1</u>	2		44	55	66	77
H/Na	5,9.10	⁻ в,о.10 ⁻		1,2	9,3	
	(2,3.10	²)				
Na/Cs	2,4.10	7,8.10 ⁴		2,0.10	2,0.10 ⁸ (1,	3 [±] 1,0).10 ⁵
	(5,3.10	³) (7,0.10 ⁴	2,9.104)	_ ·	· - · · -
K/Cs	2,2.10	2.10 ⁴	· ·	2,0.10	7,0·10 ⁷ (9,	6 [±] 5,7).10 ³
	(7,0.10	³) (8,5.10 ³	7,9.10 ³)		
Rb/Cs	90.0	45,0		2,0.10 ³	2,0.10	27,4-6,6
	(40,0)	(50,0	12,1)		
Ag/Rb	7,8.10-4	1	1	,0.10 ^{-4**} (8,0.10 ⁻⁴ (5,	0 ⁺ 4,8).10 ⁻²
	(1,9.10-4	¹) (1,9.10	² 0,2)	4,1	D.10 ⁻⁴ A-11
Au/Cs	4,0.10-3	5	1	,0.10 ^{-5**}	1,0.10 ⁻² 6,	3.10 ⁻³ A-12
	(1,6.10 ⁻³	5) (1,7	0,95)	2	,3.10 ⁻² L-16
Au/Cu	7,0.10-5	5	5,8.10 ⁻³	1,0.10 ⁻⁵	1,7.10 ⁻³ 5	,4.10 ⁻⁴ L-16
	(8,0.10-5)(1,7.10	$3 1,3.10^{-3}$	2		
Mg/Ba	54,B	1,8.104	1,2.104	60,0 4	,4.10 ⁴ (2,0	0 [±] 0,3).10 ²
	(39)	(2,3.10 ⁴	2,4.10 ⁴)			
Ca/Ba	81,33	2,2.10 ³	30	0,00,0	,4.10 ⁴ (2,	5 [±] 1,0).10 ²
	(13,0)	(2,3.10 ³	2,8.10 ³)			
Sr/Ba	0,9	1,7		12,0	275,0	0,6 [±] 0,3
	(0,2)	(1,7	2,0)			
Hg/Ba	1,9.10 4	1,1.10 ⁻³	1,	7.10 ** 1	,7.10 ⁻³ 2,2	2.10 ⁻³ L-16
		(0,5	0,3)		6,!	5.10 ⁻⁵ A-11
Hg/Zn	1.2.10 ⁻³	3,0.10 ⁻³	(5,0+2	.5).10** 1	.0.10 ⁻² 1,2	2.10 ⁻² L-16
	$(1.0.10^{-3})$	$(6, 0.10^{-2})$	3,0.10 ⁻³)			
Hg/Cd	0.4		(6,0	0 [±] 3,0).10 * \$	0,04-5,0	1,3 L-16
•	(0,3)	(30.0	1.0)	•		-
Ga/T1	33.3	3.4			3.0 (4.9	$(2^{+}2.2).10^{3}$
	(8.7)	$(3.0.10^3 1)$.0.10 ³)			
Y/La	1.1	3.0	,,		4.1 6	7 A-11
,	(0.7)	(2.7	8.4)		5.3	5 L-16
In/T1	0.3	1.7	_, , ,		1.0 4	1.7 [±] 2.8
	(0.1)	$(1.0.10^2)$	0.9)		2,0	
		,	-,-,			

,

Продолжение таблицы 3

1	2	3	4	5	6	7
Cr/Mo	***	1,4.10 ³	14,1		6.10 ⁻²	4,2.10 ³ A-11
	(7,6)	(41,7	3,7.10 ³)			
Mo/U	0,6	2,0	2,5.10 ³	~7	3,1	1,0 A-11
•	(0,4)	(40,0,	60,0)			
Mo/W*	**1,0	0,2	2,1		83,4	1,7 A-11
	(0,6)	(4,0	4,3)			
C1/I	260,0	7,2.10 ²	6,4.10 ³		3,3.10 ⁵	<2,3.10 ³ A-11
	(400,0)	(1,8.10 ³	86,7)	•	_	105,0 L-16
Br/l	5,0	19,8	1,7	2,0	1,2.10 ³	16,7 A-11
	(2,6)	(12,5	16,7)			1,3_L-16
Ru∕F€	9 [.] 1,8.10 ⁻	8	1,2.10 ⁻⁵		2,4.10-4	7,0.10 ⁻⁷ L-16
		(4,0.10 ⁻⁶	3,8.10 ⁻⁶)			-
Os/Fe	3 2,7.10	8	8,4.10-6	•		2,0.10 ⁻⁷ L-16
		(2,0.10-6	2,5.10-6)			
Os/RL	ı 3,0.10 ⁻	3	12,7			0,3 L-16
		(12,5	1,5)			
Rh/Co	4,0.10	5	6,5.10-4		(4,2-0,9).10-3
		(2,4.10 ⁻⁴	4,2.10 ⁻⁴)			0 0 10-4
Ir/Co	o 4,0.10 [¯]	5	4,8.10-4			Z,Z•10 A-12
	(1,0.10	⁴)(6.10 ⁻⁴	8,4.10 ⁻⁴)			3,0.10 ⁻³ L-16
Ni/Po	1 7,2.10	2,4.104				4,5.10 ² L-16
		(1,4.10 ⁴	1,7.104)			-5
Pt/Ni	6,7.10	-5	2,2.10-4			2,9.10 ⁻³ L-16
		(1,5.10 ⁻⁴	9.10 ⁻⁵)	·		-2
Pt/Pc	1 0,5		5,2			1,3.10 ⁻² L-16
		(2,0	<u>1,5)</u>			0.9 L-16.A-11

Космические тела, удаленные от Солнца, а значит,и океаническая водо, обогащены легкими изотопами, особенно у элементов с малым J . Луна также обогащена легкими изотопами /14-19/.

**Концентрации элементов взяты из работ /20,21/

** Если у пары элементов Z₁ и Z₂ отношение J₂/J₁ близко к единице, то следует учитывать отношения долей многозарядных ионав №²³⁺/№²³⁺. Например, у пар Ст-Мо и Мо-W эти отношения равны 1,7 и 2,5 соответственно. поступающей из космоса, необходимо предположить, что каждую минуту на Землю привносится около 2.10³ т воды, о за 10⁹ лет это будет ровно моссе океанической воды (~1,4.10¹⁸ т) /22/.Конечно, такое объяснение необычного состава метеоров и свечения атмосферы является дискуссионным. Но при его реальности следует предсказоть необычный состав океанической воды, отличающийся от геотермальных вод, т.к. в океан, которому принадлежит 2/3 поверхности Земли, а также сточные воды с материка, попадает основная часть космического вещества, поступоющего на Землю.

Рассмотрим подробнее относительный элементный состов океанической воды. Известны данные /23/, позволяющие утверждать, что макросостав вод океана привнесен из мантии Земли с геотермольными рассолами. В работе 151 выполнен более глубокий анализ относительного содержания микрозлементов в океанической воде и в геотермальных рассолах, из результатов которого видно, что микросостав рассолов резко отличен от состава морской воды. В табл. З сравниваются К₁/К₂ океанической воды, рассола полуострова Челекен, изверженных и гранитных пород Земли и метеоритов. Отсюда видно, что для всех рассматриваемых пар элементов - химических аналогов, кроме щелочных элементов (из-за больших Ј их земная концентрация значительно выше метеоритной) в океанической воде К1/К2 значительно больше, чем в геотермальной воде и породах Земли. К₁/К₂, например, для Мо и U не подчиняется общему правилу. Но подобные исключения скорее подтверждают общее правило, т.к. в данных условиях №о не образует устойчивых карбонатных комплексов, и в океанической воде, богатой карбонатами, Мо и И нельзя считать химическими аналогами.

Обнаруженное обогащение морской воды, по сравнению с рассолами, большим числом химических аналогов с меньшим значением $\mathcal J$ объяснить процессами метаморфизма (упаривание и др.) не представляется возможным. К тому же наблюдается обогащение легкими изотопами космических тел и океанической воды, см., например, /14-19/. И действительно, под действием света легкие изотопы должны приобретать большие ускорения при индуцированном дрейфе. Особенно этот эффект должен быть заметным у легких элементов с малым значением J.

Замечательным является то, что для некоторых пар химических аналогов K_1/K_2 в океанической воде (С-Ръ, С1 – I, Мо-W, Вг – I и др.) не только больше, чем в рассоле и Земле, но и превосходят, как и ожидалось выше, значения K_1/K_2 даже углистых хондритов.

Безусловно, если океон получает космическое вещество, обогащенное элементами согласно зависимости $K_1/K_2 = f(R)$, то это вещество можно наблюдать и в атмосфере, и не только в виде метеоров. На рисунке изображен $l_g(K_{az}/K_E)$ от 1 – J, где K_{az} и K_E – концентрации элементов в аэрозолях, собранных над Южным полюсом Земли ^{/24}, и в земных породах

9

8

Таблица 4

Отношения распространенностей и концентраций К₁/К₂ для некоторых пар элементов – химических аналогов в метеорах и метеоритах

OGSERTH Z1/Z2	Mg/Ca	Fe/Al	Fe/Mn	Ni/Fe
Метеоры :			+	
Цеплеха	7,8	2754,2	575,4	0,105
Цеплеха	2344,0	4466,8	741,3	0,501
Харин	25,7			
Харин	7,6	15,0		0,100
Нагасова	11749,0			
Нагасова	4570,0		4677,0	
Миллман	11,2			
Метеориты :				
Б. Мэйсон				
тип Н	11,7	27,5	123,0	0,06
L	11,7	20,0	91,2	0,05
LL	12,0	17,8	79,4	0,04
Cl	9,1	21,9	97,7	0,05
C 11	7,9	20,4	134,9	0,06
C 111	8,5	18,2	169,8	0,06
А.А. Явнель				
Хондриты	10,0	20,0	112,2	0,05
Телезные метеорит	u 0,64	22700,0	3026,7	0,095

Данные заимствованы из работы^{/25/}.

Зависимость $lg(K_{az}/K_E)$ от 1- J. $K_{az} = (K_x/K_{Fe})$ а z - относительное содержание элемента в аэрозолях²⁴, $K_E = (K_x/K_{Fe})_E$ - относительное содержание элемента в Земле ^{/3/}, K_{az} / K_E = 1 выбрано условно. соответственно. Из этих данных отчетливо видно относительное обогащение аэрозольного вещества элементами с малыми значениями J , что согласуется с вышеизложенным.

Видимо, можно указать и другие следствия существования процесса сепарации элементов в протопланетном облаке. Однако приведенных фактов достаточно, чтобы этот процесс из гипотетического перевести в разряд реально существовавших.

Попытка найти аналитическое выражение зависимости K₁/K₂ = f(R) показывает, что для его нахождения требуются дополнительные данные и более тщательный их анализ. Однако и в таком виде эту зависимость можно использовать для сравнения различных объектов с целью обнаружения их неземного происхождения.

II. Сравнение К₁/К₂ лунного грунта, зежных пород и ГКЛ

В работе $^{/5/}$ уже сравнивали значения K_1/K_2 для некоторых пар химических аналогов в лунном грунте, в осадочных породах и литосфере Земли. В этой роботе были отмечены более высокие значения K_1/K_2 у Луны. В табл. З лунный грунт сравнивается с изверженными и гранитными породами Земли и веществом трех классов метеоритов. Для Луны приведены средние значения K_1/K_2 по трем измерениям: Аполло-II (A-II) и-I2 (A-I2) и Луна-I6 (I-I6) и даны среднеквадратичные отклонения. Иногда приводятся K_1/K_2 по результатам каждого имеющегося измерения. Из этих данных видно, что лунный грунт действительно, хоть и в меньшей степени, чем метеориты, заметно отличается от изверженных и гранитных земных пород. Лунный грунт, как и марсианский, см. табл. 1, занимает по значениям K_1/K_2 промежуточное положение между Землей и метеоритами. К тому же в работе $^{/26/}$ найдено обогащение Луны легкими изотопами некоторых элементов, см. выше.

Анализ абсолютных концентраций элементов в Земле, Луне и метеоритах показывает, что получить лунный грунт из земного вещества с помощью добавки метеоритов не представляется возможным.

Однако нельзя исключить, что лунный грунт отличается от земного из-за его бомбардировки галактическими космическими лучами (ГКЛ)и солнечными знергичными частицами (СЭЧ).

Рассмотрим несколько подробнее элементный состав этих дополнительных источников нуклидов. В табл. 5 представлены значения К₁/К₂ для ГКЛ и Солнца. Из этих данных видно, что экспериментальные значения К₁/К₂ для ГКЛ заметно отличаются от К₁/К₂ для Солнца, значения которых отражают соотношение концентраций элементов в продуктах нуклеосинтеза /1/. В работах /27-29/ обращено внимание на обогащение ГКЛ тяжелыми

В работах / ²⁷⁻²⁹ обращено внимание на обогащение ГКЛ тяжелыми изотопами, которые являются абсолютными химическими аналогами. Указанное

Продолжение таблицы 5

Таблица 5.

Отношения	1	распрост	rpi	оненностей	K1/F	12	для	элемен	тов	-	химических
аналогав	в	Солнце	И	голоктиче	ских	кс	смич	еских	луч	אנ	(ГКЛ)

	Сол	нце	гкл	ГКЛ. Ү	Y=E1/E2.	
(pacyer/1/	(оптические	(эксперим-		J. /J. VII./M.	
$\underline{Z}_1 / \underline{Z}_2$		данные/3/)	данные)		1. 2	
	2	3	44	55	6	
He/Ne	6,9.102	4,4.102 ($(1,9^{\pm}0,2).10^{2}(a)$	(5,1 [±] 0,6).1	10 ² 2,67	
Ne/Ar	24,5	10,0	$17,5^{+}3,1$ (a)	31,8 ¹ 5,7	1,92	
H/Na	4,4.105	4,8.10 ⁵ ($(1,5^{\pm}0,8).10^{4}(a)$	(4,6 [±] 2,5).1	10 ⁵ 30,48	
Na/K	17,1	20,5	2,9 [±] 0,9 (c)	4,8 [±] 1,6	1,65	
Na/Rb	9,8.10 ³	9,4.10 ⁴ (1	1,5 [±] 1,4).10 ⁴ (a,c)) (4,0 [±] 3,8).1	10 ⁴ 2,68	
Na/Cs	1,6.105	($(2,3^{\pm}1,3).10^{4}(a,c)$	1) (8,3 [±] 4,7).	10 ⁴ 3,60	
Rb/Ag	13,2	5,0	1,6 ⁻ 1,3 (e)	6,6-5,4	4,13	
<u>Cu/Au</u>	1,2.10		2,9.10 (b,d)	<u>8,1,10</u>	2,80	
Mg/Ca	17,0	13,0	8,2 ⁻ 2,5(b)	24,0-7,4	1,63	
Sr/Ba	4,8	3,1	2,0 [±] 0,8(c)	2,9-1,2	1,45	
Ca/Ba	1,3.104	1,2.104	(2,7 [±] 1,1).10 ⁴ (b,	c) (7,2 [±] 3,1)	.10 ⁴ 2,65	
Zn/Cd	8,1.102	4,7.102	$(2,5^{+},2,0).10^{2}(a,$	o) (4,6 [±] 3,7)	.10 ² 1,83	
Zn/Hg_	<u>6,0.10</u>	3,5.10	$(4,7-3,6).10^{2}(a)$	<u>c) (2,3⁺1,7)</u>	$\frac{10^3}{4,74}$	
Al/Ga	2,3.10	3,3.10	$(1,2^{\pm}0,9).10^{3}(a,$	(1, $3^{\pm}1,0$)	.10 4,67	
Ga/In	2,0.102	1,0.10 ²	4.10 ² (d)	4.102	1,06	
Y/La	13,0	20,0	11,5 [±] 5,3(c,d)	15,6 ⁻ 7,2	1,35	
La/In	1,95	61,8	5,4(d)	20,6	3,82	
In/Tl	1,0 .		2,3 (d)	6,0	2,67	
Fe/U*	7,0.10		1,0.10 [′] (g)	1,3.10'	1,30	
Ce/U*	88,3		19,6(0,9)	24,3	1,24	
C/Ge	9,5.104	1,8.10	$(1,1^{-1}0,3).10^{-1}(a,$	e) (6,1-1,7).	.10 5,56	
Si/Sn	2,7.105	1,9.10	(2,4 [±] 0,5).10 ⁵ (b,	.c) (1,1-0,3)	.10 4,39	
C/Pb	4,3.10 ⁶	1,8.10	(2,8 [±] 1,5).10 ⁰ (a,	c) (1,8 ⁻ 0,9)	.10′ 6,38	
Zr/Hf	70,6	1,3.10 ²	≤ 80(c)	<u>≤</u> 103	1,28	
Zr/In*	2,7.10 ²		<u>1,6.10²(e,g)</u>	3,8,10	2,38	
N/P	3,6.10 ²	4,4.10	40 [±] 19 (b) 4	(1,5-0,7).10 ² 3,81	
P/Sb	2,1.10 ⁴	1,0.105	(2,6 [±] 1,3).10 ⁺ (b	,d) (1,1-0,6).10 ⁻⁴ ,01	
Nb/Sb	2,9	10,0	4,1 ⁺ 2,8 (c,d)	5,1-3,5	1,23	
Nb/Ta	50,0	<u>6,4.10²</u>	<u>(1,7⁺1,2).10²(d</u>))(1,9-1,4).10 ² 1,13	
0/S 3	36,8	79,1	28,7 ⁺ 2,5 (b)	99,0 8,	7 3,45	
S/Se	7,5.10 ³	7,2.10 ³	(3,0 [±] 1,1).10 ³ (a,0	o) (7,1 [±] 2,6).10 2,35	
Mo/W	13,3	15,7	9,9 [±] 9,8(c)	12,4-12	,3 1,25	

1	2	3	4	5	6
F/Cl	0,2	0,4	3,3 ⁺ 0,9 (b) [*]	9,7+2,7	2,93
Br/J_	7,3		7,9 ⁺ 2,6 (c,d)	19,3+6,4	2,45
Fe/Ru*	[*] 4,8.10 ⁵	2,0.10 ⁶	(2,9 ⁺ 0,2).10 ⁵ (c)	$(7,4^{\pm}0,5).10^{5}$	2,54
Fe/Os	1,3.10 ⁴	.3,1.10 ⁷	(9,7 ⁺ 6,6).10 ⁵ (c)	$(2,6^{+}1,8).10^{6}$	2,69
Co/Rh	2,0.10 ⁴	5,6.10 ³	9.10 ² (b,c)	3.10 ³	3,09
Ni/Pd	3,7.104	7,9.104	2.10 ⁴ (a,c)	9.10 ⁴	4,50
10 110					

К₁/К₂ Rb-Cs можно получить, имея К₁/К₂ Na-Rb и Na-Cs.

* B padote $\binom{30}{K_1/K_2}$ для Th+U и Fe равно (1-2) 10^{-7} . Здесь для Th-Fe и U-Fe K_1/K_2 принято – 1.10⁻⁷. Однако для сближения K_1/K_2 Солнца и ГКЛ у пар Zr-Th , Fe-U и Ce-U необходимо принять у Th-U $K_1/K_2 > 3$. * Оксиды подобных элементов неустойчивы в присутствии H₂ a - $\binom{31}{5}$, b - $\binom{32}{5}$, c - $\binom{33}{5}$, d - $\binom{34}{5}$, e - $\binom{35}{5}$, g⁻

обогащение связывается с разной магнитной жесткостью изатопов. Учитывая этот факт, с целью компенсации разности масс сравниваемых элементов – химических аналогов, умножим экспериментальное значение К $_1/K_2$ в ГКЛ на множитель $\sqrt{M_2/M_1}$, где M_1 и M_2 – массы сравниваемых нуклидов. Полученные произведения, действительно, становятся ближе к солнечным значениям, например, у пары H-Na. Но все же отмеченное выше различие остается довольно заметным.

В этой связи обращает на себя внимание обнаруженная в работах /29, 30,36,37 корреляция дефицита элементов в ГКЛ и СЭЧ по сравнению с Солнцем от потенциала ионизации их атомов. Эту корреляцию можно объяснить разной долей заряженных атомов J, если ускорение ГКЛ происхадит в электрическом поле. И действительно, для некоторых сравниваемых элементав, близких по химической активности (особенно для благородных газав), умножение экспериментальных значений K_1/K_2 у ГКЛ на два множителя $\sqrt{M_2/M_1}$ и J_2/J_1 приводит к произведению, равному K_1/K_2 у Солнца. Однако у целого ряда сравниваемых элементов подобного полного сближения не происходит. Общим признаком таких пар нуклидов является значительное различие их химической активности, а значит, и прочности возможных химических соединений. Безусловно, указанные различия могли бы реализоваться лишь в том случае, если ГКЛ ускорялись из среды с температурой меньшей, чем энергия связи химических соединений. Напомним, что 1 эВ эквивалентен 11604,5 К, а в фотосфере Солнца Т $\simeq 5800$ К $^{/38}$.

В настоящее время известно о существовании в космосе различных радиколов и молекул, см. например, ^{/39/}. Однако в первом приближении достаточно сровнить энергии образования наиболее устойчивых форм элементов при нормольных условиях.

Для наиболее распространенных элементов в солнечной атмосфере Н и N (в табл. 2 их символы заключены в квадратные скобки) в качестве более устойчивой формы приняты их простые вещества. У кислорода в качестве ноиболее устойчивого взято соединение с углеродом, т.к. оксиды метоллов могут связать меньшую часть кислорода, которой можно пренебречь. Микроэлементы, символы которых не выделены, имеют более устайчивые соединения с кислородом.

В тобл. 2 приведены значения энергий образования (E) при нормальных условиях указонных форм элементов, оцененные по данным работы^{/40/}. В тобл. 5 даны значения фактора Y = $E_1/E_2 J_2/J_1 \sqrt{M_2/M_1}$, который учитывоет отклонения K_1/K_2 в ГКЛ, обусловленные процессами диссоциации, ионизоции и магнитной сепарации. Сравнивая исправленные с помощью Y значения K_1/K_2 ГКЛ и Солнца, см. табл. 5, видим, что они в подавляющем большинстве значимо не различаются. Полученный результат можно объяснить тем, что отношения концентраций стабильных продуктов нуклеосинтеза. Отметим, что из рассмотрения были исключены микраэлементы типа Sc+Cr, которые могут оброзовываться при взаимодействиях ускаренных нуклидов более тяжелых мокроэлементов с межзвездным веществом. В табл. 5 для примеро приведена K_1/K_2 для F-C1 и Br-I.

Далее, известна зависимость K_1/K_2 в ГКЛ от их энергии. Например, в диапазоне 1-10 ГэВ на нуклон для некоторых пар элементов: C1-Fe, Ar-Fe, K-Fe, Co-Fe, Na-Mg и S1-Fe $-K_1/K_2$ уменьшается в 1,1-2,8 раза. Оценка покозывает, что отношение $N^{\geq 2+}/J$, см. выше, т.е. относительная доля многозарядных ионов, у Fe и Mg выше, чем у сравниваемых элементов. Для Fe, Mg, Na, C1, Ar и K она равна: 0,1; 0,099; 0,018; 0,075; 0,065 и 0,056, а $N^{\geq 3+}/J$ для Fe, S1 и Ca равно: 5,8.10⁻³; 5,2.10⁻³ и 1,8.10⁻³ соответственно. Эти факты хотя и говорят о предпочтительном ускорении многозарядных ионав, но, из-за малости их доли в общем числе ионов, они не сильна искажают описанную выше картину относительной распространенности элементов в ГКЛ.

В солнечных энергичных частицах (СЭЧ)также измерено содержание некоторых элементов. Нопример $\binom{41}{4}$ для He-Ne, Ne-Ar, O-S, Mg-Ca и Fe-N1 (Cu,Zn) K₁/K₂ приближенно составляют не менее 2,1.10², 30; 48; 6 и 5 соответственно. Интересно отметить, что дефицит элементов в СЭЧ по отношению к Солнцу $\binom{41}{1}$ практически не выходит за рамки факторо Y, найденного для ГКЛ. Следовательно, механизмы образования СЭЧ и ГКЛ имеют определенное сходство. Более глубокий анализ природы ГКЛ и СЭЧ не является целью настоящей работы. Однако необходимо обратить внимание на следующие моменты: ГКЛ и СЭЧ относительно Солнца обогащены тяжелыми элементами, см., например, K_1/K_2 у пар He-Ne, C-S1, Zn-Hg и др. Однако механизм такого обогащения отличается от механизма сепарации элементов в протопланетном облаке, поэтому в табл. З иногда элемент (Rb, Ag и др.) стоит в числителе, а в табл. 5 он же стоит в знаменателе и наоборот. Кроме того, в этих таблицах помещены иногда разные пары элементов одной и той же группы. Например, пара Ga-Zn , хотя и рассматривается в табл. 5, но т.к. у нее J_2/J_1 близко к единице и четко обнаружить их сепарацию в протопланетном облаке не удается, то эта пара элементов отсутствует в табл.3.

Остается открытым вопрос о существовании хотя бы слабой компоненты ГКЛ, у которой К $_1/{\rm K}_2$ не зависит от ${\rm Y}$.

Сравним K_1/K_2 лунного грунта и ГКЛ, см. табл.3 и 5. Видно, что K_1/K_2 у пары элементов Rb-Cs в лунном грунте выше, чем в ГКЛ. В то же время K_1/K_2 для других пар химических аналогов при их близости в земных и лунных породах в ГКЛ очень велики (например, у C-Pb и др.). Сопоставление K_1/K_2 и других пар элементов (табл. 3 и 5) позволяет утверждать, что различие составов лунного грунта, изверженных и гранитных пород Земли не обусловлено привносом элементов на Луну с ГКЛ и СЭЧ, имеющих современную интенсивность.

Следовательно, предположение, высказанное в работе ^{/5/} о том, что аккреция вещества Луны происходила не на земной, а на более отдаленной от Солнца орбите (возможно, более далекой, чем марсианская) остается пока единственным объяснением обнаруженного факта.

В свете сказанного выше (учитывая недоступность для деструктивного анализа больших масс метеоритов) океаническая вода, осадки океана, а также вещество Луны, которое в недалеком будущем может оказаться более доступным, чем метеориты, приобретают дополнительный научный интерес, т.к. их состав значительно отличается от земного. Более тщательное изучение этих объектов в указанном выше свете может ускорить понимание механизма образования планетарной системы Солнца.

В заключение автор приносит искреннюю благодарность Ю.Ц.Оганесяну за интерес к данной проблеме и ценные советы, Ю.С.Лютостанскому за полезную дискуссию, Л.Каштуре и Нгуен Тхи Динь за помощь в работе.

Учитывая важность рассмотренных проблем и то, что автор не считает себя специалистом во многих затронутых вопросах, он заранее благодарен читателям за замечания в адрес данной работы, которая нуждается в дискуссии.

Литература

- A.G.W.Cameron -Essaysin Nuclear Astrophysics Edited by C.A.Barnss, D.D.Clayton, D.N.Schramm, 1982 Cembridge University Press, p.23-43.
- 2. S.P.Meyer -16th JCRC, 1979, Kyoto, pp. 115-120.
- А.А.Кист -Феноменология биогеохимии и бионеорганической химии, Ташкент, "Фан", 1987, 236 стр.
- 4. Б.Н.Ларин Гипотеза изначально гидридной Земли, М.: Недра, 1980,215с.
- 5. П.Т.Чубурков -Труды IX Всесоюзного симпозиума по проблемам космохимии и метеоритике. Киев: Наукова думка, 1988, 100 с.
- 6. В.Л.Барсуков, А.Т.Базилевский Природа, 1986, № 6, с.24-35.
- 7. P.Toulmin et al.-J.Geophys. Res. 1977, v.82, p. 4625-4634.
- V.F.Mikhailov, J.Ruzicka -Acta physica univ. comen. XXIX, 1989, p. 97-148.
- 9. С.Н.Атутов и др.-ЖЭТФ, 1987, т.92, вып.1, с.1215.
- 10. В.Ф.Коваленко, Э.Л.Нагаев —Усп. физ. наук, 1986, т. 148, № 4, с. 561-602.
- 11. А.Б.Верховский --Природо 1986, № 3, с. 45-54.
- Л.П.Рузинов, Б.С.Гуляницкий Равновесные превращения металлургических реакций, М.: Металлургия, 1975, 289 с.
- 13.J.Geiss -Astron. Astrophys. 1987, 187, p. 859-866.
- Л.М.Лебедев, И.Б.Никитина Челекенская рудообразующая система.
 М.: Наука, 1983, 240 с.
- R.H.Clayton, N.Onhma -Earth and Planetary Science Letters, 1976, v.30, p.10-18.
- 16. R.K.Kuroda Geoch. J. 1975, v.9, pp. 51-62.
- 17. P.Eberhardt et al.-Astron. Astrophys. 1987, v.187, pp. 435-437.
- 18. В.И.Кононов, Б.Г.Поляк Геохимия, 1982, № 2, с. 163-177.
- R.A.Ziercnberg, W.C.Shanks -Geochim. et Cosmochim. Acta, 1986, v.50. p. 2205-2214.
- 20. Ю.Т.Чубурков, А.Г.Попеко, Н.К.Скобелев Радиохимия, 1988, № 1, с. 112-121.
- 21. С.Н. Дмитриев и др.-Препринт ОИЯИ 12-88-401, Дубна, 1988, 8 с.
- 22. J.Anderson -New Scientist, 25 December 1986/1 January 1987, № 1540/1541, p.7.
- 23. Ю.Т.Чубурков и И.А.Зотов —ДАН СССР, Геохимия, 1985, т.280, № 5, с. ¶234-1238.
- 24. W.Maenhant, W.H.Zoller -J. of Radioanal. Chem. 1977, v.37, № 2, p. 637-650.
- 25. В.А.Бронштен -Физика метеорных явлений, М.: Наука, 1981, 250 с.

- 26. B.Srinivasan -Supplement 4, Geochim. et Cosmochim. Acta, v.2, pp. 2049-2064.
- 27. V.K.Balasubrahmanyan -16th JCRC, 1979, v.14, p. 1-1-134.
- 28. M.E.Wiedenbeck and D.E.Greiner --17th JCRC, 1981, № 2, p. 76-79.
- 29. R.A.Mewaldt -Geophysics and space physics, 1983, v.21, № 2, p. 295-305.
- 30. V.P.Perelygin et al.-Preprint of JINR, Dubna, 1989, E7-89-88, 19 p.
- 31. P.Goret et al.-17th JCRC, Paris, France, 1981, v.9, p.122-125.
- 32. M.M.Shapiro et al.-13th JCRC, 1973, p. 578-583.
- F.H.Fowleer et al.-The Astrophysical Journal, 1987, v.314, p.739-746.
- 34. P.B.Price Space Science Reviews, 1973, v.15, pp. 69-88.
- 35. M.H.Israel et al.-16th JCRC, 1979, v.12, p.65-69.
- 36. M.Casse, P.Goret -15th JCRC, 1973, p.584-589.
- 37. R.A.Mewaldt -Proc. Conf. Ancient Sun Fossil record in the Earth, Moon and meteorites. Edited by R.O.Pepin, J.A.Eddy, R.B.Merrill, Printed in the USA, 1980, pp. 81-101.
- 38. J.E.Ross, L.H.Aller -Science, 1976, v.191, № 4233, p.1223-1229.
- 39. M.Guelin and P.Thaddeus -The Astrophysical Journal, 1977, 212, L81-L85.
- 40. И.Д.Верятин и др.-Термодинамические свойства неорганических веществ, редак. А.П.Зефиров, справочник, Атомиздат, М., 1965, 460 с.
- 41. J.D.Sullivan et al.-13th JCRC, Denrer, Colorado, 1973, p.357 (1-4).

Рукопись поступила в издательский отдел 20 февраля 1990 года.