90-168

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

A 458

Д1-90-168

А-ЗАВИСИМОСТЬ СЕЧЕНИЯ РОЖДЕНИЯ ф -МЕЗОНОВ В НЕЙТРОН-ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ 30-70 ГэВ

Сотрудничество БИС-2

1990

В предыдущей публикации $^{\prime 1\prime}$ были представлены результаты исследования инклюзивного рождения ϕ -мезонов в нейтрон-протонных взаимодействиях. В данной работе анализируется зависимость сечения инклюзивного рождения ϕ -мезонов от атомного веса мишени А.

Экспериментальные данные по А-зависимости сечений образования адронов позволяют оценить величины сечений их поглощения ядерной материей. При этом большие значения показателя α в рамках параметризации A^{α} должны соответствовать меньшим сечениям взаимодействия исследуемых адронов h с нуклонами ядра $\sigma(h + N)$. Сравнение экспериментальных данных по рождению π , K и J/ Ψ на ядрах указывает на рост величины α и соответственно уменьшение $\sigma(h + N)$ для адронов, состоящих из более тяжелых кварков. Так как ϕ -мезон представляет в основном систему кварков ss, то в этом смысле занимает промежуточное положение между π , K и J/ Ψ . Поэтому представляет интерес, соответствуют ли данные по А-зависимости сечения его образования общей тенденции.

В настоящее время имеется мало данных по А-зависимости сечения рождения ф-мезонов. Измерения на разных ядерных мишенях проведены только в эксперименте ACCMOR в ограниченной кинематической области по фейнмановской переменной $0 < x_F < 0,3^{/2/}$. Этой же группой получено отношение сечений образования ф-мезонов на бериллии и водороде для $0,11 < x_F < 0,24^{/3/}$. Однако эти исследования проведены при разных экспериментальных условиях и их сравнение затруднено из-за разных величин систематических ошибок. Данные по А-зависимости сечения рождения $\mu^+\mu^-$ -пар в области массы ф-мезона, полученные в эксперименте /4/, не согласуются с результатами группы ACCMOR. Но в данном случае большой уровень фона не позволяет выделить А-зависимость сечения рождения ϕ -мезонов из общих данных. Таким образом, необходимы дополнительные измерения в более широкой кинематической области для выяснения устойчивости результатов и их зависимости от фейнмановской переменной х_к.

Эксперимент выполнен с помощью спектрометра БИС-2 на серпуховском ускорителе. ϕ -мезоны регистрировались по моде распада К[†]К[–] в кинематической области $\mathbf{x}_{\mathbf{r}} > 0$ и $\mathbf{p}_{\mathbf{T}} < 1$ ГэВ/с со средними значениями $<\mathbf{x}_{\mathbf{r}} > = 0,28$ и $<\mathbf{p}_{\mathbf{T}} >= 0,35$ ГэВ/с. Максимальная энергия нейтронного пучка была ограничена значением 70 ГэВ. Аксептанс спектрометра позволял регистрировать ϕ -мезо-

98493.5 BUSINOTENA

ны, рожденные нейтронами с минимальной энергией 30 ГэВ. Образование ф-мезонов исследовалось на трех материалах - углероде /A = 12/, алюминии /A = 27/ и меди /A = 63,5/. Сравнение с данными на водороде ^{/1/} было затруднено из-за различия экспериментальных условий, что приводило к разным систематическим ошибкам. Толщина мишеней по отношению к длине ядерного взаимодействия была выбрана приблизительно одинаковой во избежание разного поглощения пучка и продуктов распада ф-мезонов. Используемые толщины мишеней приведены в табл.1. В ходе измерений мишени чередовались через каждые ≈50 тыс. принимаемых спектрометром событий.

Таблица 1

	Толщины испол	ей	
	C	Al	Cu
Т (г/см ²)	7,8	10,2	13,4
Т/l _{ядер}	0,091	0,096	0,099

Основными элементами спектрометра являлись спектрометрический магнит, две группы многопроволочных пропорциональных камер и два многоканальных пороговых газовых черенковских счетчика. Подробное описание спектрометра и триггерных условий можно найти в работе¹⁵¹. Пороговые характеристики черенковских счетчиков приведены в табл.2.

Таблица 2

Характеристики пороговых черенковских счетчиков

			Импульс порога, ГэВ/с			
Счетчик № каналов Газ		π	К	р		
C1	7	воздух	6,0	21,2	40,3	
C2	14	фреон 12	3,1	10,8	20,5	

Информация с черенковских счетчиков позволяла вычислять для каждой заряженной частицы три вероятности /статистических веса/ – быть пионом, каоном или протоном $^{/6/}$. Распределения каонного веса $W_{\rm w}$ /максимальный вес равен 3/ для положительных

Рис.1. Статистический вес каонной гипотезы: а – для отрицательных частиц и б – для положительных частиц.

и отрицательных частиц показаны на рис.1а и 16. Выбросы при W_v < 0,5 соответствуют однозначно идентифицированным пионам и протонам. Значительная часть треков является неидентифицированными. Этому соответствует пик при ₩_к= 1. Импульсы большинства частиц лежат ниже порога регистрации каонов в черенковских счетчиках. В этом случае можно исключить только пионную гипотезу, тогда как каонная и протонная гипотезы равновероятны / W макс = 1,5/. И только малая доля треков однозначно идентифицируется как каоны. При анализе в ка-

честве кандидатов в K^{\pm} -мезоны выбирались частицы с каонным весом $W_K > 1,2$. Это ограничение исключало однозначно идентифицированные пионы и протоны, а также неидентифицированные частицы.

Анализ был основан на статистике ~4.10⁶ событий для каждого материала мишени. Примерно в 1,5% событий были выделены кандидаты в пары K⁺K⁻ с эффективной массой меньше 1,08 ГэВ/с². При восстановлении событий налагались также ограничения на перпендикулярное к пучку отклонение вершины взаимодействия в пределах радиуса мишени 3 см и на отклонение вдоль оси пучка в пределах 10 см от краев мишени. В табл.3 приведены данные о величине потока нейтронов и количестве событий, удовлетворяющих всем критериям отбора.

Слектры эффективных масс K^+K^- для каждой из трех мишеней представлены на рис.2. Кривые линии показывают результаты аппроксимации функцией Брейта - Вигнера, наложенной на гладкую функцию фона. Фон включает в себя неправильно идентифицированные K^+K^- -пары, а также реально рожденные пары K^+K^- , не являющиеся продуктами распада резонанса. Количество наблюдаемых фмезонов для каждой мишени приведено в табл.3. Также показаны величины фона под резонансом. Таблица 3 🕯

Рис.2. Спектры эффективных масс К⁺К⁻для событий на углеродной, алюминиевой и медной мишенях.

При анализе А-зависимости использовались отношения сечений рождения ϕ -мезонов на каждой мишени к сечению на углероде, полученные из следующей формулы:

 $R = \sigma(A) / \sigma(C) = \frac{N_{\phi}(A) \cdot A \cdot T(C) \cdot M_{n}(C)}{N_{\phi}(C) \cdot C \cdot T(A) \cdot M_{n}(A)};$

где A и C – атомные веса мишеней, N_{ϕ} – количество наблюдаемых ϕ -мезонов, T – толщины мишеней, M_n – потоки нейтронов.

Отношение R может быть получено с меньшей систематической погрешностью, чем сами значения сечений, так как коррекции на геометрическую и триггерную эффективность регистрации событий, а также на эффективность восстановления событий и идентификации частиц не зависят от материала мишени и в отношении компенсируются. Кроме этого, отношение нейтронных потоков известно значительно лучше, чем их абсолютные значения. Из сравнения различных способов вычисления потоков пучка получена оценка систематической ошибки их отношения в пределах 3%, тогда как абсолютные величины потоков имеют ошибки $\approx 30\%$. При определении погрешности величины отношения сечений принимались во внимание статистические ошибки сигналов ф-мезонов и систематическая ошибка отношений потоков нейтронов. Вычисленные таким образом отношения сечений составили $\sigma(Al)/\sigma(C) = 1,91\pm0,21$, $\sigma(Cu)/\sigma(C) = 3,85\pm0,40$.

Восстановленные спектры продольных импульсов ф-мезонов для каждой мишени представлены на рис.3. Кривые линии показывают результаты параметризации спектров степенной функцией $(1 - x_r)^N$. Полученные значения показателей N, также приведенные на рис.3, согласуются в пределах ошибок. Из этого можно сделать вывод, что приближение скейлинга по фейнмановской переменной x_r не зависит от типа ядра мишени. В спектрах по p_T^2 также

не наблюдается существенных различий, что позволяет сделать вывод о приблизительно одинаковом в пределах ошибок измерений поглощении продуктов распада ф-мезонов в разных материалах мишени.

На рис.4 представлены отношения сечений рождения ф-мезонов к сечению на углероде в зависимости от величины атомного

Рис. 3. Восстановленные инвариантные спектры ф-мезонов по продольному импульсу для событий на углеродной, алюминиевой и медной мишенях. Сплошные линии показывают аппроксимацию спектров функцией /1 - x г/^N.

5

Рис.4. Отношение сечений рождения на ядрах к сечению на углероде для ϕ -мезонов и фоновых событий. Сплошные линии показывают аппроксимацию данных степенной зависимостью A^a .

веса мишени А. Используя параметризацию A^{α} для отношений сечений, получаем значения показателя $\alpha = 0,81 \pm 0,06$ в кинематической области $p_L > 6$ ГэВ/с и $p_T < 1$ ГэВ/с. Сравнение отношений сечений $\sigma(Cu) / \sigma(A1)$ и $\sigma(A1) / \sigma(C)$ показывает, что

в пределах ошибок измерений величина показателя a не уменьшается с ростом атомного веса ядра А. Соответствующие отношения для фона также показаны на рис.4. В рамках той же параметризации получено значение $a = 0,65 \pm 0,03$, что существенно меньше показателя a для ϕ -мезонов и согласуется с данными по рождению π^{\pm} , K[±], р на ядрах⁷⁷.

На рис.5 представлена величина α как функция продольного p_L и поперечного p_T импульсов ϕ -мезонов. Из рисунка видно, что показатель α существенно не меняется в пределах кинематической области $p_L > 6$ ГэВ/с и $p_T < 1$ ГэВ/с. Нижний предел по p_L с учетом энергетического спектра нейтронного пучка соответствует значению $x_T = 0$.

Группой ACCMOR получена величина $\alpha = 0,86 \pm 0,02$ из данных по рождению ϕ -мезонов в протонном пучке на ядрах бериллия и тантала ²²⁷. В кинематической области $0 < x_F < 0,3$ ими также не наблюдается сильного изме-

Рис.5. Зависимость показателя a от продольного p_L и поперечного p_T импульсов ϕ -мезонов. нения α от фейнмановской переменной x_F . Хотя наши данные соответствуют полной передней области $x_F > 0$, имеется согласие в пределах ошибок с данными группы ACCMOR.

Параметризация ядерных сечений в виде $\sigma(A) = \sigma_0 \cdot A^{\alpha}$ дает обычно величину σ_0 , которая значительно больше сечения на водороде $\sigma(A = 1)^{77}$. Поэтому значения a, полученные путем сравнения с сечением на водороде, систематически отличаются от результатов измерений только на ядерных мишенях. Величина $a = 0,96 \pm 0,04$ из данных по рождению ϕ -мезонов протонами на бериллии и водороде в области $0,11 < x_F < 0,24^{/8}$ существенно превышает показатель a, полученный в описанных выше экспериментах на ядрах, что является следствием разницы между σ_0 и $\sigma(A = 1)$.

Для большинства частиц показатель *а* падает с ростом $x_F^{7/2}$. На рис.6 представлена величина *а* в зависимости от среднего значения x_F зарегистрированных ϕ -мезонов в экспериментах на протонном и нейтронном пучках. Здесь также имеется указание на уменьшение *a* с увеличением x_F . Однако эти данные охватывают узкую область по x_F , что наряду с ограниченной статистической и систематической точностью не позволяет сделать однозначный вывод. Кривая линия на рис.6 представляет параметризацию параболической функцией величины *a* для рождения π^{\pm} и K^{\pm} в протон-ядерных взаимодействиях⁷⁷. Сравнение этих данных с результатами, полученными для ϕ -мезона и J/Ψ /*a* ≈ 0,97/⁷⁸⁷, указывает на существенный рост величины показателя *a* с увеличением массы кварков, входящих в состав адрона.

Для оценки величины сечения поглощения ф-мезонов ядром по данным об А-зависимости сечения их образования была исполь-

зована модель длины формирования адронов⁹⁹. В данной модели предполагается, что в результате взаимодействия частицы пучка с нуклоном ядра возникает промежуточное состояние, из которого на протяжении длины формирования λ образуется

Рис.6. Зависимость показателя aот среднего значения x_F зарегистрированных ϕ -мезонов в экспериментах на протонном и нейтронном пучках. Сплошная линия описывает зависимость $a(x_F)$ для π^{\pm} и $K^{\pm /7/}$.

6

Рис.7. Предсказания модели длины формирования адронов /9/ для зависимости: а – сечения поглощения ϕ -мезонов нуклонами ядра $\sigma(\phi + N)$ и б – длины формирования ϕ -мезонов λ от сечения поглощения начального состояния $\sigma(n + N)$. Кривые получены модельной аппроксимацией экспериментальных отношений сечений рождения ϕ -мезонов на ядрах $\sigma(A1)/\sigma(C)$ и $\sigma(Cu)/\sigma(C)$.

конечный адрон. Поглощение начального, промежуточного и конечного состояний нуклонами ядра характеризуется соответствующими сечениями поглощения, В данном анализе пренебрегалось поглощением промежуточного состояния в соответствии с партонной моделью/10/ и моделью цветной струны/11/. В нашей кинематической области обе модели предсказывают значение длины формирования ~ 7 фм.

Используя измеренные отношения сечений образования ф-мезонов на ядрах, можно вычислить сечение поглощения ф-мезонов нуклонами ядра $\sigma(\phi + \mathrm{N})$ в зависимости от сечения поглощения начального состояния $\sigma(n + N)$. Как видно из рис.7а. величина $\sigma(\phi + N)$ быстро падает с ростом $\sigma(n + N)$. Для иллюстрации влияния длины формирования λ на величину $\sigma(\phi + N)$ были сделаны вычисления при $\lambda =$ = 4,7 и 10 фм. Модель предсказывает меньшее значение $\sigma(\phi + N)$ для малой длины формирования. Другие эксперименты дают величины $\sigma(\phi + N) = /8,8 \pm 2,2/$ мб из анализа рождения ϕ в π^{+}/p -ядерных взаимодействиях $^{/2/}$ и $\sigma(\phi + N) = /8,3 \pm 0,5/$ мб из данных по фоторождению ϕ на ядрах $^{/12/}$. Модель дает близкие величины $\sigma(\phi + N)$, если предположить сечение поглощения начального состояния $\sigma(n + N) \approx 12$ мб. Это составляет примерно половину экспериментального значения $\sigma(n+N)$ /13/. Отсюда можно сделать вывод, что поглощение начального нейтрона ядром не сильно уменьшает вероятность рождения ф-мезона.

Зависимость полученной в модели длины формирования λ от величины сечения поглощения нейтронов при фиксированных значе-

ниях $\sigma(\phi + N)$ показана на рис.76. Величина $\sigma(\phi + N) = 8,5$ мб близка к описанным выше экспериментальным данным², ^{12/}, тогда как $\sigma(\phi + N) = 13$ мб соответствует предсказаниям аддитивной кварковой модели^{14/}. В результате с ростом $\sigma(n + N)$ модель дает большие значения длины формирования. Использование экспериментальных данных по $\sigma(n + N)$ требует очень большой величины λ для описания А-зависимости рождения ϕ -мезонов. В этом случае ϕ -мезоны в основном должны формироваться вне ядра и их эффективное поглощение нуклонами мало.

Описанные выше эксперименты показывают, что $\sigma(\phi + N)$ существенно меньше величин, полученных для π^{\pm} и $K^{\pm/13/}$, но больше значения $\sigma(J/\Psi + N) = /2, 2 \pm 0, 7/$ мб, вычисленного из данных по рождению J/Ψ в протон-ядерных взаимодействиях $^{/8/}$.

В заключение можно сделать вывод, что эффективный радиус адрон-ядерного взаимодействия уменьшается для адронов, состоящих из более тяжелых кварков. Данные по рождению ф-мезонов на ядрах, полученные в нашем эксперименте, хорошо согласуются с этой тенденцией.

Авторы признательны А.М.Балдину, Э.И.Мальцеву, И.А.Савину за поддержку этих исследований, Н.В.Власову, Е.М.Лихачевой, Л.В.Сильвестрову, В.Е.Симонову, Г.Г.Тахтамышеву за участие в эксперименте.

ЛИТЕРАТУРА

- 1. Алеев А.Н. и др. ОИЯИ, Д1-89-345, Дубна, 1989.
- 2. Bailey R. et al. Z.Phys.C, 1984, v.22, p.125.
- 3. Daum C. et al. Z.Phys.C, 1983, v.18, p.1.
- Binkley M. et al. Phys. Rev. Lett., 1976, v.37, p.571; Branson J. et al. - Phys. Rev. Lett., 1977, v.38, p.1334.
- 5. Алеев А.Н. и др. ОИЯИ, Р1-89-854, Дубна, 1989.
- 6. Гуськов Б.Н. и др. 5- ОИЯИ, Р1-86-248, Дубна, 1986.
- 7. Denisov S.P. et al. Nucl.Phys., 1973, v.B61, p.62; Barton D.S. et al. - Phys. Rev., 1983, v.D27, p.2580; Abreu M.G. et al. - Z.Phys.C, 1984, v.25, p.115.
- 8. Badier J. et al. Z.Phys.C, 1983, v.20, p.101.
- 9. Bialas A. Z.Phys. C, 1984, v.26, p.301; Novak M., Nemcik J. - Czech. J. Phys., 1988, v.B38, p.267.
- 10. Николаев Н.Н. УФН, 1981, т.134, с.369.
- 11. Casher A. et al. Phys. Rew., 1979, v.D20, p.179.
- 12. Behrend H. et al. Phys. Lett., 1975, v.B56, p.408.
- Total Cross-Sections for Reactions of High Energy Particles - Landolt-Bornstein, New Series, 1987, v.12A,12B.

8

9

14. Kokkedee J. - The quark model, New York, Benjamin 1969; Simak V., Varva J. - Czech. J. Phys., 1984, v.B34, p.635.

Рукопись поступила в издательский отдел 11 марта 1990 года.