923

A - 139

Объединенный институт ядерных исследований дубна

ЛЯП

456-81

Д1-81-756

1981

А.Абдивалиев,¹ К.Бешлиу,² С.Груиа,² А.П.Иерусалимов, Ф.Которобай,² В.И.Мороз, А.В.Никитин, Ю.А.Троян

СЕЧЕНИЯ КАНАЛОВ РЕАКЦИЙ **пр-** ВЗАИМОДЕЙСТВИЙ ПРИ **Р**_n = 1-5 ГэВ/с

Направлено в "Nuclear Physics"

¹ Ленинградский государственный педагогический институт им. С.М.Кирова. ²Бухарестский университет, Румыния.

1. ВВЕДЕНИЕ

Для изучения пр -взаимодействий в интервале импульсов 1÷ ÷5 ГэВ/с однометровая водородная пузырьковая камера Лаборатории высоких энергий ОИЯИ была облучена нейтронами от стриппинга ускоренных дейтронов. Импульсы и ширины спектров нейтронов составляли: P_n ± σ_{P_n} =/1,25+0,03/; /1,73+0,05/; /2,23+ +0,07/; /3,83+0,12/; /4,35+0,14/ и /5,10+0,17/ ГэВ/с. Условия облучения и спектры пучков первичных нейтронов

Условия облучения и спектры пучков первичных нейтронов приведены в $^{/1/}$. На рис.1 в качестве примера показан спектр первичного пучка при P_n =3,83 ГэВ/с.

В данной работе представлены результаты определения сечений реакций 1-, 3- и 5-лучевых звезд. Исследовались следующие реакции:

5-лучевые звезды:	$np \rightarrow pp\pi^+\pi^-\pi^-,$	/1.1/
an a	$\rightarrow pp\pi^+\pi^-\pi^-\pi^\circ,$	/1.2/
	$\rightarrow np \pi^+ \pi^+ \pi^- \pi^-,$	/1.3/
	., 5 заряж. + m нейт. (m ≥ 2);	/1.4/
3-лучевые звезды:	$np \rightarrow pp \pi^{-},$	/2.1/
	$\rightarrow pp \pi^- \pi^\circ$,	/2.2/
	\rightarrow np $\pi^+\pi^-$,	/2.3/
	$\rightarrow d\pi^+\pi^-$,	/2.4/
	→ 3 заряж. + m нейт. (m≥2);	/2.5/
1-лучевые звезды:	$np \rightarrow np$,	/3.1/
	→ pn /перезарядка/,	/3.1*/
	$\rightarrow np + m \pi^{\circ} (m \geq 1)$	/3.2/
	$\rightarrow nn\pi^+ + m\pi^\circ (m \ge 0)$.	/3.3/
	Ольединенный пастати ядетных иссорацалним БИБЛИОТЕКА	1

<u>Рис.1.</u> Импульсный спектр налетающих нейтронов при P_n = = =3.83 ГэВ/с.

Ранее нами были определены топологические сечения mp взаимодействий для звезд указанных множественностей ^{/2/}и изучена реакция mp→dπ⁺π^{-/3}

Представленные результаты могут быть полезны как при изучении нуклон-ядерных и ядер-ядерных взаимодействий, так и для проверки различных теоретических моделей взаимодействий элементарных частиц.

2. ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНОГО МАТЕРИАЛА

События, отобранные при просмотре, эффективность которого превышала 99%, измерялись на сканирующем автомате HPD и полуавтоматах ПУОС. Геометрическая реконструкция событий и идентификация каналов реакций осуществлялась по соответствующим программам ⁷⁴⁷. Плохо измеренные события и события, расположенные вне эффективного объема камеры, исключались из рассмотрения.

Дальнейшая идентификация каналов реакций основывалась на анализе величин χ^2 для каждого конкретного события. Типичные распределения величин χ^2 для реакций 4с- и 1с-фита приведены

на <u>рис.2.</u> В качестве доверительных границ принимались значения $c_4 = 25$ для 4с-фита и $c_1 = 12,5$ для 1с-фита. Если значения χ^2 для двух или большего числа гипотез о канале реакции данного события попадали в доверительную область,

<u>Рис.2.</u> χ^2 – распределение для реакций /1.1/, /1.2/ и /1.3/ при P_n =5,10 ГэВ/с.

то дополнительно использовалась визуальная оценка ионизации для идентификации треков положительно заряженных частиц. Эта процедура применялась для P_+ <1100 MэB/c при условии, что трек частицы имеет угол погружения |a| < 45°.

3. ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ РЕАКЦИЙ 3- И 5-ЛУЧЕВЫХ ЗВЕЗД

Одной из трудностей при разделении каналов реакций являлось то, что значительное количество событий может удовлетворять одновременно как гипотезам 4с-фита /реакция /1.1/ 5-лучевых звезд и /2.1/ 3-лучевых звезд/, так и гипотезам 1с-фита /соответственно реакции/1.2/-/1.3/и /2.2/-/2.3//, то есть для конкретного 5- или 3-лучевого события может случиться, что $\chi^2_{4c} < c_4$ и $\chi^2_{1c} < c_1$. Анализ распределений по недостающей массе показал, что все события с $\chi^2_{4c} < c_4$ следует независимо от величин χ^2_{1c} отнести к реакциям 4с-фита, то есть к реакции /1.1/ 5-лучевых звезд или /2.1/ 3-лучевых звезд. Этот вывод согласуется с приведенными в работе ^{/5/} расчетами, показывающими, что при разделении каналов реакций, характеризующихся разным числом уравнений связи, предпочтение следует отдавать гипотезам с большим числом уравнений связи. В поддержку сказанному выше дополнительно следует отметить, что при идентификации событий по ионизации положительных треков не найдено противоречий условию $\chi^2_{4c} < c_4$.

Более сложной является задача разделения каналов реакций, если для событий с $\chi_{4c}^2 > c_4$ величины χ^2 двух гипотез 1с-фита находятся в допустимых пределах, то есть $\chi_{1,2}^2 < c_1$ и $\chi_{1,3}^2 < c_1$ в случае 5-лучевых или $\chi_{2,2}^2 < c_1$ и $\chi_{2,3}^2 < c_1$ в случае 3-лучевых звезд. Важным критерием правильности разделения "перекрывающихся" гипотез в этом случае является изотопическая симметрия реакций /1.3/ и /2.3/. Вследствие этого для реакций /1.3/ и /2.3/ импульсные спектры в лабораторной системе π мезонов одного знака должны совпадать с импульсными спектрами в антилабораторной системе π -мезонов другого знака, а распределения по $\cos\theta^*$ в с.ц.м. π^+ -и π^- -мезонов, а также нейтронов и протонов должны быть зеркально симметричны относительно 0°.

Анализ показал, что для лучшего согласия с критерием изотопической симметрии большую часть таких "перекрывающихся" событий следует отнести к каналу с π° в конечном состоянии. Справедливость такого разделения подтверждается результатами моделирования реакций /2.2/ и /2.3/^{66/.} В частности, при импульсе налетающего нейтрона $P_{\rm H}$ =5,10 ГэВ/с ~77% "перекрывающихся" событий следует отнести к реакции /2.2/.

Кроме того, учет критерия изотопической симметрии позволил определить поправки на потери низкоэнергетичных π -мезонов.

2

3

Другой трудностью в определении сечений каналов реакций 5- и 3-лучевых звезд является необходимость учета вклада в них фоновых событий. К фоновым отнесены события следующих типов:

а/ события с более чем одной нейтральной частицей в конечном состоянии, образованные первичными нейтронами и имитирующие реакции 1с-фита;

б/ события, обусловленные взаимодействием вторичных нейтронов, то есть нейтронов, образованных в результате взаимодействия первичных нейтронов пучка со стальным окном камеры и непросматриваемым объемом водорода.

Относительные доли фоновых событий типа б для звезд различной множественности оценены в работе 121.

Учет фоновых событий в 5-лучевых звездах не представляет проблемы, так как подавляющее большинство их идентифицируется как реакция /1.4/ и практически не дает вклада в события 1с-фита.

Однако в 3-лучевых звездах вклад таких фоновых событий в реакции 1с-фита может быть значителен, что приведет к заметному искажению формы распределений по MM², в частности, к появлению "хвостов" в правой части распределений. Поэтому для учета вклада фоновых событий в реакциях /2.2/ и /2.3/ была использована специальная процедура. Анализ показал, что при наложении условия χ_{1c}^2 <1 вклад фона в события, идентифицированные как реакция /2.2/ или /2.3/, становится существенно меньше. На основе отобранных по такому критерию событий было проведено моделирование распределения по MM², заключавшееся в следующем: для каждого такого события параметры треков зарегистрированных частиц разыгрывались по следующему закону:

741

 $P_i^{mod} = P_i^{mes} + \Delta P_i \cdot \eta_i ,$

где P_i^{mod} и P_i^{mes} - соответственно новое и измеренное значения і -го параметра; ΔP_i - его измерительная ошибка, а η_j -случайное число, распределенное по нормальному закону; затем по новым значениям параметров вычислялась величина MM²для моделированного события. Сравнение моделированного и экспериментального распределений по MM² позволило подобрать веса событий для коррекции экспериментальных распределений. На <u>рис.3</u> показано распределение по MM² для реакции /2.3/ при $P_n = 3,83$ ГэВ/с до и после коррекции. Более детально рассмотренная процедура изложена в работах^{76,77}. На <u>рис.4</u> приведено распределение по сов θ^* в с.ц.м. для нуклонов и π -мезонов реакции /2.3/ при $P_n = 5,10$ ГэВ/с. Симметрия распределений частиц относительно 0°, свидетельствующая об изотопической инвариантности реакции /2.3/, иллюстрирует достаточную надежность рассмотренного

Рис.3. Распределение по MM² для реакции /2.3/ при P_n = =3,83 ГэВ/с; зачерненная часть соответствует результату коррекции.

Другой подход к определению величины вклада фоновых событий в сечения реакций /2.2/ и /2.3/ 3-лучевых звезд основан на использовании для этой цели реальных 5- и 3-лучевых событий настоящего эксперимента. Такой метод моделирования позволяет избежать трудностей выбора определенного матричного элемента взаимодействия

5

и, кроме того, применять сложившуюся методику обработки экспериментальных данных.

При моделировании пр-взаимодействия, обусловленного вторичными нейтронами, были использованы 3-лучевые звезды при значениях импульсов налетающего нейтрона, меньших номинального, то есть для моделирования фона при $P_n = 5,10$ ГэВ/с использовались данные при $P_n = 3,83$ и 2,23 ГэВ/с и т.д. Для моделирования

<u>Рис.4.</u> Распределение по $\cos \theta^*$ для нуклонов и π - мезонов из реакции /2.3/ при Р_n =5,10 ГэВ/с.

4

реакции /2.5/, то есть 3-лучевой звезды с 5-6 частицами в конечном состоянии, использовались 5-лучевые звезды при тех же импульсах налетающего нейтрона. Моделирование 3-лучевой звезды обеспечивалось путем исключения по определенному принципу двух заряженных треков 5-лучевой звезды.

Использование некоторого оценочного аналога величины χ^2 для моделированных таким образом фоновых событий и идентификации по ионизации положительных треков событий, отнесенных к реакции /2.5/, позволило определить вклады фоновых событий в реакцию /2.5/, а также в реакции /2.2/ и /2.3/. Подробнее этот метод учета фона изложен в работе /8/.

Следует отметить, что в результате применения метода, основанного на моделировании распределений по MM²,а также независимого метода моделирования с использованием реальных 5и 3-лучевых событий при определении сечений реакций /2.2/ и /2.3/, получены совпадающие результаты.

Для вычисления величины сечений использовалась формула

 $\sigma_{i} = \frac{N_{i}}{N_{tot}} \cdot \sigma_{top} , \qquad (5)$

где N_i - количество событий /с учетом весов и поправок/, идентифицированных как процесс (i); N_{tot} - количество соответственно 5- и 3-лучевых событий, зарегистрированных в рабочем объеме камеры /без неизмеримых/; σ_{top} - топологическое сечение соответственно 5- или 3-лучевых звезд. Ошибка в сечении определалась с учетом дисперсий всех членов в формуле /5/.

Полученные данные по сечениям реакций 5- и 3-лучевых звезд пр -взаимодействий приведены в табл. 1,2 и на рис.7а и б.

4. ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ РЕАКЦИЙ 1-ЛУЧЕВЫХ ЗВЕЗД

При определении сечений каналов реакций в 1-лучевых звездах была использована методика, отличная от применявшейся для 5- и 3-лучевых звезд. В качестве основного критерия при разделении каналов 1-лучевых звезд была взята величина недостающей масси MM^2 , а не величина χ^2 , вычисленная для гипотез реакций /3.1/. На <u>рис.5</u> для примера приведено распределение по MM^2 при импульсе налетающего нейтрона $P_n=3,83$ ГэВ/с. Следует отметить, что при вычислении величины MM^2 положительные частицы /за исключением однозначно идентифицированных *т*-мезонов/ считались протонами.

Анализ распределений по MM^2 позволил выбрать границы величины MM^2 , соответствующие событиям упругого канала, то есть реакциям /3.1/ и /3.1/. Эти пределы оказались равными: /0,74 ÷ 1,06/ ГэВ²/с⁴ для $P_n = 1,25$, 1,73 и 2,23 ГэВ/с; /0,66 ÷ ÷ 1,10/ ГэВ²/с⁴ для 3,83 ГэВ/с; /0,66 ÷ 1,14/ ГэВ²/с⁴ для $P_n = 5,10$ ГэВ/с.

					11 12 02 30 5	
				5,10	$\begin{array}{c} 2,36\pm0,\\ 2,27\pm0,\\ 6,89\pm0,\\ 0,03\pm0,\\ 5,95\pm0,\\ 17,5\pm0,\end{array}$	
	5,10	$\begin{array}{c} 0, 64+0, 04\\ 0, 39+0, 03\\ 0, 49+0, 04\\ 0, 19+0, 01\\ 1, 70+0, 08\end{array}$	7	3,83	$\begin{array}{c} 2,84\pm0,12\\ 2,21\pm0,13\\ 7,80\pm0,32\\ 0,05\pm0,02\\ 2,31\pm0,24\\ 15,2\pm0,5 \end{array}$	
•),03),02),02),01),06		2,23	$\begin{array}{c} 3,46\pm0,15\\ 0,56\pm0,05\\ 4,35\pm0,18\\ 0,33\pm0,02\\ 8,7\pm0,3\end{array}$	
	4,35	0,48+(0,20+(0,28+(0,06+(1,02+(2	1,73	$\begin{array}{c} 3, 15+0, 14\\ 0, 10+0, 01\\ 0, 58+0, 04\\ 0, 27+0, 02\\ 4, 10+0, 15 \end{array}$	
Таблица 1	3,83	$\begin{array}{c} 0, 37+0, 04\\ 0, 09+0, 01\\ 0, 09+0, 02\\ 0, 12+0, 02\\ 0, 03+0, 01\\ 0, 61+0, 04\end{array}$	Таблица	1,25	1,45 <u>+</u> 0,06 1,45 <u>+</u> 0,06	
	P _n /ГэВ/с/	σ _{pp} π ⁺ π ⁻ π ⁻ /M6/ σ _{pp} π ⁺ π ⁻ π ⁻ π ^o /M6/ σ _{np} π ⁺ π ⁺ π ⁻ π ⁻ /M6/ σ ₅ sap.+mileWT/M6/ σ _{bp}		P _n /r ₃ B/c/	р <i>π</i> ⁻ ¬m ⁻ π ^o ¬m ⁺ π ⁻ (m6/ m6/ (m ⁺ π ⁻ (m6/ 132).+ шнейт. /м6/ 322).	

2013 Contraction of the Contract

6

Рис.6. Распределение по t _{т-т} для реакции /3.1/ при P_n =3,83 ГэВ/с. Сплошная линия - результат аппроксимации данных кривой вида A exp (bt) в интервале $0,1 \div 0,5 \ \Gamma \Rightarrow B^2/c^2$.

Возможная примесь событий реакции /3.3/ в упругом канале не превышает 1,2% для всех значений P_n. Такая оценка получена на основе обработки событий реакции $mp \rightarrow pp \pi^{-}(m\pi^{\circ}), m \geq 0,$ которая является изотопически сопряженной с реакцией /3.3/. Чтобы получить распределение по MM² реакции /3.3/, достаточно использовать события реакции пр → pp π¯(m π°) из 3-лучевых звезд, исключив треки двух протонов и приписав оставшемуся *п*-мезону массу протона.

P = 3,83 [3B/c

04 05

0.6

Для оценки величины примеси в упругом канале от событий реакции /3.2/ было проведено моделирование этой реакции по программе ФОРС /8/, учитывающее измерительные ошибки параметров трека протона. Анализ показал, что при P_n =5,10 ГэВ/с лишь

~2,5% событий реакции /3.2/ могут быть ошибочно отнесены к упругому каналу, причем с уменьшением P_n эта доля падает. Учитывая же, что при рассматриваемых импульсах налетающего нейтрона сечение реакции /3.2/ в несколько раз меньше упругого, можно сделать вывод, что примесь событий реакции /3.2/ в упругом канале не превышает 1%.

На рис.6 приведено распределение по квадрату переданного 4-импульса от протона-мишени к протону отдачи t_{т→n} при P_n= =3,83 ГэВ/с. Отчетливо заметен дефицит событий с малыми ^tт→р, что связано с трудностью регистрации и измерения треков Протонов низких энергий, обладающих малым пробегом. Для определения поправок на потерю таких событий распределение по t_{тър} аппроксимировалось функцией вида A exp(bt) в интервале 0,1 ГэВ $^{2}/c^{4} < |t| < 0,5$ ГэВ $^{2}/c^{2}$. Последовавшая затем экстраполяция данных к величине |t| =0 позволила вычислить коэффициенты коррекции, учитывающие потери медленных протонов a corr, В табл. 3 представлены параметры, полученные при аппроксимации, и коэффициенты а соп для разных импульсов первичных нейтронов.

Сечение упругого рассеяния /включая перезарядку/ вычислялось по формуле

σ

$$e\ell = \frac{N_{e\ell}}{N_{tot}^1} \cdot \sigma_{top}^1 , \qquad /6/$$

где $N_{e\ell}$ - количество упругих событий с учетом всех поправок; N_{tot}^1 - общее число 1-лучевых звезд; σ_{top}^1 - топологическое сечение 1-лучевых звезд. К упругому рассеянию с перезарядкой были отнесены события из упругого канала, для которых рассеянный протон в с.ц.м. реакции вылетал в переднюю полусферу, то есть $\sigma_{ex} = \sigma_{e\ell} (\cos \theta_p^* > 0)$. Для аппроксимации зависимости σ_{ex} от импульса пучка использовалась функция вида $\sigma_{ex} = A P_n^{-k}$, Для аппроксимации зависимости где P_n - импульс нейтронного пучка в ГэВ/с. Были получены следующие значения коэффициентов: A =/15,6+0,8/ мб, k = =/2,15+0,08/, при среднем значении χ^2 на одну степень свободы, равном 0,6.

Сечение реакции /3.3/ $np \rightarrow nn \pi^+ (m \pi^\circ)$, m > 0, в силу изотопической инвариантности равно сечению реакции $n_{D} \rightarrow pp \pi - (m \pi^{\circ}), m > 0,$ ееличина которого определяется из рассмотренных выше данных по 3-лучевым звездам.

Сечение реакции /3.2/ вычислялось по формуле

17/ $\sigma_{np(m\pi^{o})} = \sigma_{1}^{1} - \sigma_{el} - \sigma_{nn\pi^{+}(m\pi^{o})}, m \ge 0$ Полученные данные по сечениям реакций 1-лучевых звезд np взаимодействий приведены в табл. 4 и на рис. 7в.

8

Q

Таблица 3

P _n /ГэВ/с/	Р	1,25	1,73	2,23	3,83	5,10 ·
b /ГэВ -2	/c ² /	5,18+0,46	6,58+0,52	7,03+0,50	8,39+0,51	8,64+0,56
a ^{corr} / 7		17	27	27	30	37
			Таблица 4			
Ρ _n /Γ ₃	B/c/	1,25	1,73	2,23	3,83	5,10
oeℓ o	/m6/ /m6/	29,65 <u>+</u> 1,36 9,62+0.47	25,0 <u>+</u> 1,31 5.00+0.33	20,77 <u>+</u> 0,97 2.67+0.22	15,34 <u>+</u> 0,83 0.89+0.20	13,03 <u>+0,75</u> 0.46+0.08
σnex. σnp+mπ ^o	/мб/	5,00+1,48	7,65+1,45	8,51+1,15	6,31 <u>+</u> 1,04	4,14+0,95
σ _{nnπ} + +mπ ^o	/w6/	1,45+0,06	3,25+0,14	4,02+0,18	5,05+0,18	5,63+0,34
σtop	/W6/	36,1 <u>+</u> 0,6	35,9+0,6	33,3+0,06	26,7+0,6	22,8+0,5

имодействий для 5-лучевых звезд /a/: o – np \rightarrow pp $\pi^+\pi^-\pi^-$; × – np \rightarrow pp $\pi^+\pi^-\pi^-\pi^\circ$; $\mathbf{\nabla} - \mathbf{n}\mathbf{p} \rightarrow \mathbf{n}\mathbf{p} \,\pi^+\pi^-\pi^-;$ • – Брэнраааа, • – 5-заряж.+т нейт.; для 3-лу-чевых звезд /б/: о – пр → рр π^- ; × – пр → рр $\pi^-\pi^\circ$; ▼ – пр → пр $\pi^+\pi^-$; $\Delta - np \rightarrow d\pi^+\pi^-; \bullet - np \rightarrow 3$ -заряж. + + тнейт.; для 1-лучевых звезд $/B/: = -np \rightarrow np; o - np \rightarrow pn / nepe$ зарядка/; \times - пр \rightarrow пр + m π° ; • - пр \rightarrow пп π^{+} + m π° . Сплошная линия для реакции np → pn /перезарядка/ - результат аппроксимации кривой вида AP^{-k} при A =15,6 и K =2,15. Пунктирные линии проведены от руки.

б

10

: 11

5. ЗАКЛЮЧЕНИЕ

Следует отметить, что использование квазимонохроматических пучков нейтронов в сочетании с таким высокоточным прибором, как 1-метровая водородная пузырьковая камера ЛВЭ ОИЯИ, оказалось чрезвычайно плодотворным. В результате удалось определить сечения реакций пр-взаимодействий в области импульсов налетающего нейтрона 1÷5 ГэВ/с со значительно более высокой точностью, чем в других работах '9'.

Авторы считают своим приятным долгом выразить благодарность лаборантам нейтронной группы научно-экспериментального камерного отдела ЛВЭ и коллективам сектора HPD и сектора измерения на полуавтоматах ЛВТА за проведение измерений и помощь в обработке материала.

ЛИТЕРАТУРА

- 1. Гаспарян А.П. и др. ОИЯИ, 1-9111, Дубна, 1976; ПТЭ, 1976, т. 2, с. 37.
- 2. Абдивалиев А. и др. ОИЯИ, 1-8565, Дубна, 1975; Nucl.Phys., 1975, B99, p.445.
- 3. Абдивалиев А. и др. ОИЯИ, 1-10034, Дубна, 1976; Nucl.Phys., 1980, B168, p.385.
- 4. Маркова Н.Ф. и др. ОИЯИ, Р10-3768, Дубна, 1968; Иванченко З.М. и др. ОИЯИ, Р10-3983, Дубна, 1968.
- 5. Мороз В.И. и др. ЯФ, 1967, 6, с. 90.
- 6. Абдивалиев А. и др. ОИЯИ, Р1-81-126, Дубна, 1981.
- 7. Абдивалиев А. и др. ОИЯИ, Р1-12179, Дубна, 1979.
- Копылов Г.И. Основы кинематики резонансов. "Наука", М., 1970; ОИЯИ, Р-2027, Дубна, 1965.
- 9. Flaminio V.et al. Compilation of Cross Sections III-p and p Induced Reactions, CERN-HERA, 79-03, 1979.

Рукопись поступила в издательский отдел 27 ноября 1981 года.