

СООБЩЕНИЯ Объединенного института ядерных исследований дубна et t

3254 -81

29/11-81 Д1-81-210

Б.А.Шахбазян, П.П.Темников, А.А.Тимонина

Лр - ДИБАРИОНЫ

Исследованы спектры инвариантных масс сорока девяти систем, гиперзаряд, странность и барионное число которых варьировались в следующих пределах: $0 \le Y \le 6$, $-2 \le 8 \le +1, 0 \le B \le 6$. Резонансные пики обнаруживаются в спектрах масс лишь тех систем, гиперзаряд которых не превышает единицы: $Y \le 1$. Этому же условию удовлетворяют все установленные табличные резонансы ^{/1/}. Напрашивается правило отбора по гиперзаряду: "В слабых гравитационных полях гиперзаряд адронных резонансов не может превышать единицы: $Y \le 1$ ". Это правило определяет условия и классы взаимодействий, при которых в слабых гравитационных полях возможно образование адронов. Поэтому не исключено, что оно основано на новом, неизвестном ранее принципе симметрии ^{/2/}.

В последние годы появился ряд теоретических исследований мультикварковых резонансов, основанных на модели мешков /3-23/. Значения масс резонансных пиков и особенностей, обнаруженных в наших экспериментах, находятся в удивительном согласии с предсказаниями работ Дж.Дж. де Сварта и коллег /3,5-8,11-13,20-23/ Ниже приведено это сопоставление. Настоящая работа выполнена с номощью пропановой пузырьковой камеры ОИЯИ, облученной нейтронами со средним импульсом 7.0 ГэВ/с и отрицательными пионами с импульсом 4.0 ГэВ/с. Изучалось рождение мультикварковых адронов на ядрах углерода ¹²С. Детали эксперимента и анализа данных приведены в более ранних публикациях ^{/23-р/}. Напомним. тем не менее, что массы Л°-и К°-частиц, а также известных резонансов Σ[±](1385) и К^{±*}(892), наблюдавшихся в этих экспериментах, весьма близки к табличным значениям. Кроме того, разрешение по инвариантным массам системы Ар /среднеквадратичное отклонение/ равно 3.00 МэВ/с² в начальной части спектра; 4.25 МэВ/с² в области пика 2128 МэВ/с² и 6.40 МэВ/с² в области пика 2256 МэВ/с², Разрешение по инвариантным массам системы АА вблизи пика 2365 МэВ/с² составляет ∆М_{А⊼}/10,0+2,4/ МэВ/с².

 Λp - ДИБАРИОНЫ (I=1/2; Y = 1; B = 2; S = -1)

Информацию об этом классе дибарионов удалось получить в результате успешного анализа экспериментального спектра инвариантных масс системы Ар, полученного прежде всего из нейтронного облучения. Для этой цели была разработана модель, способная имитировать все конечные состояния, наблюдавшиеся в нашем эксперименте. Она основана на двух гипотезах. Первая предполагает справедливость импульсного приближения при $<\!\!p_n\!\!>=\!\!7,0$ ГзВ/с. Согласно второй гипотезе любой пик или особенность в спектрах масс систем, изученных в этой работе, в данном случае в спектрах масс Λp , есть результат внутриядерного взаимодействия гиперон-нуклон. В соответствии с этим сечение упругого Λp -рассеяния, которое доминирует над неупругим в рассмотренной области спектра инвариантных масс Λp , параметризовано в виде суммы сечений рассеяния при низких энергиях в приближении эффективного радиуса, потенциального и резонансного рассеяния при одиннадцать знергий гиперона или, что то же самое, инвариантных масс Λp , предсказываемых моделью мешков. Последние одиннадцать брейт-вигнеровы члены зависят от полного спина и орбитального момента резонанса, что в принципе может дать информацию об этих квантовых числах.

Согласно вышеуказанной второй гипотезе сечения упругого Λp -рассеяния, вычисленные при помощи наилучших параметров, полученных в результате подгонки спектра инвариантных масс, должны быть в хорошем согласии с соответствующими значениями сечений, измеренных в прямых опытах. Ввиду этого спектр ин-вариантных масс Λp до значений масс 2553,8796 MэB/c² и сечения упругого Λp -рассеяния, измеренные в интервале импульсов $p_{\Lambda} = = /0, 1-2, 0/$ ГэB/с, подгонялись одновременно с помощью общего функционала χ_n^2 .

Процедуры моделирования и совместной подгонки теоретического спектра масс и сечения упругого Лр-рассеяния под соответствующие данные описаны ранее^{/2м-р/}.

Спектр инвариантных масс Λp подгонялся одновременно 1/ с сечениями упругого рассеяния, измеренными тремя группами ^{/24-26/} в диапазоне импульсов 0,11 $\leq p_{\Lambda} \leq 2,0$ ГэВ/с и 2/ с данными ранних экспериментов ^{/24-26/} и последнего по времени проведения эксперимента ^{/27/}.

На <u>рис.1</u> и <u>2</u> черными точками изображены наилучшие подогнанные гистограммы, вычисленные в рамках нашей модели с учетом эффективности детектирования и погрешностей измерения импульсов частиц. Подгонка выполнена при помощи программы MINUIT. Ниже экспериментальной гистограммы изображены слагаемые упругого Λp -рассеяния, фоны от невзаимодействующих Λ -гиперонов и протонов и от процессов конверсии $\Lambda p * \Sigma ° p + \Lambda p_Y$; $\Sigma ^{8} N * \Lambda p$. Качество первой подгонки характеризуется χ^{2}_{41} = 38,90 и доверительным уровнем C.L. =56,00%. Во втором случае имеем χ^{2}_{58} =67,67 и C.L. =21,32%. В области инвариантных масс Λp до ~2600 M3B/c² обнаружено двенадцать особенностей. Десять из них очень близки к значениям масс резонансов, предсказанных моделью мешков^{(20, 22/}. Однако только два из этих кандидатов в шестикварковые адроны

2

Рис.!. Результаты одновременной подгонки спектра инвариантных масс Ар из п¹²С -взаимодействий при <P_n>=7,0 ГэВ/с и сечений упругого Ар-рассеяния, измеренных Кодайком и др.^{/24-28/}

Рис.2. Тот же спектр масс /рис.1/ подогнан одновременно с сечениями упругого рассеяния из работ /24-27/.

4

оказались статистически значимыми в нашем эксперименте. Ниже для удобства результаты подгонок обозначены индексами 1 и 2.

1. Пик при $M_1 = /2257, \frac{4+2}{2}, 3/M_3B/c^2, \Gamma_1 = /18, 1+1, 1/M_3B/c^2$ или $M_2 = /2255, 5\pm 0, 4/M_3B/c^2, \Gamma_2 = /15, 6\pm 0, 8/M_3B/c^2$ установлен со статистической значимостью, определяемой $N_1 = \frac{85,57}{\sqrt{122,43}} = (7.73 \pm 1.30)$ и $N_2 = \frac{82.54}{\sqrt{125,46}} = (7.37 \pm 1.29)$ стандартными отклонениями /85,57 /82,54/событий над фоном из 122,43 /125,46/событий/. Вероятнее всего, этот пик следует отождествить с резонансом M = 2241 M_3B/c², $J^2 = 2^+$, предсказанным Дж. Дж. де Свартом и его коллегами / 20.22': $B^2(\frac{1}{2}, 255,5) = D(\frac{1}{2}, 2^+; 2241)$.

2. Пик при $M_1 = 72350, 8+2, 4/$ MэB/c², $\Gamma_1 = 744, 2+2, 2/$ МэB/c² или $M_2 = 72358, 4\pm1, 3/$ МэB/c², $\Gamma_2 = 777, 2\pm6, 6/$ МэB/c² установлен со статистической значимостью, определяемой $N_1 = \frac{60,70}{128,30} = 5.36 \pm 1.21$) и $N_2 = \frac{64,93}{\sqrt{124,07}} = (5.83 \pm 1,23)$ стандартными отклонениями. Можно утверждать, что установлен новый дибарион $\Lambda p: B^2(\frac{1}{2}, 2358, 4) = D(\frac{1}{2}, 2; 2253)$.

Известный пик, расположенный на пороге ΣN . описывается параметрами $M_1 = /2129, 2+1, 2/$ MэB/c², $\Gamma_1 = /2, 2+0, 6/$ МэB/c² и $M_2 = /2124, 8+0, 4/$ МэB/c², $\Gamma_2 = /2, 1+0, 1/$ МэB/c². Он установлен со статистической значимостью, определяемой 10 стандартными отклонениями /<u>рис.3</u>/. Вероятнее всего, этот пик есть проявление антисвязанного ΣN -состояния, которое проявляется в виде Λp резонанса на пороге ΣN ^{/2,28,29/}. Но наши эксперименты не могут исключить и истинный резонанс при 2128 МэB/c².

Согласно основной гипотезе о механизме рождения мультикварковых адронов с Y=1 и S=-1. упоминавшейся выше, интенсивность резонансного пика в спектре масс должна зависеть от положения максимума импульсного спектра Λ -гиперонов, родившихся на нуклонах ядра в первичном акте. При заданном импульсе первичной частицы в спектре масс интенсивнее всего проявляются те резонансы, для которых минимальные импульсы гиперона, необходимые для возбуждения этих резонансов в **Л**N-столкновениях, находятся в области максимума импульсного спектра Λ -гиперонов из первичного акта. Нетрудно видеть, что с ростом энергии первичной частицы максимум импульсного спектра А-гиперонов будет перемешаться к большим импульсам. Это приведет к тому, ЧТО В спектрах инвариантных масс с ростом импульса первичных частиц интенсивности резонансов меньших масс будут убывать. а больших масс - расти. В справедливости этих представлений можно убедиться с помощью следующих фактов. Максимум импульсного спектра гиперонов из реакции $\pi^-N \to \Lambda X$ при 4,0 ГэВ/с находится в области /0,5-0,6/ ГэВ/с, то есть охватывает импульс

5

Рис.3. Спектр инвариантных масс Ар из *п*⁻С-взаимодействий при 4,0 ГэВ/с.

0,62 ГэВ/с, необходимый для возбуждения резонанса 2128 МэВ/с² в реакции $\Lambda p \cdot \Lambda p$. Интенсивность этого же спектра в области /1,0-1,2/ ГэВ/с, содержащей импульс 1,12 ГэВ/с, необходимый для возбуждения в реакции $\Lambda p \cdot \Lambda p$ резонанса 2256 МэВ/с², в несколько раз ниже. Соответственно в спектре масс из π^{-12} Свзаимодействий при $P_{\pi^{-}} = 4,0$ ГэВ/с пик 2128 МэВ/с² проявляется за ~10 стандартных отклонений от фона, тогда как в области массы 2256 МэВ/с² наблюдается лишь "плечо" /<u>рис.3</u>/. В n^{12} С взаимодействиях при $< p_n > = 7,0$ ГэВ/с картина прямо противоположная. Широкий максимум импульсного спектра Λ -гиперонов в этом случае охватывает область /1,0÷1,2/ ГэВ/с и в несколько раз интенсивнее области спектра /0,5÷0,7/ ГэВ/с. Соответственно в спектре масс Лр из п¹²С-взаимодействий пик 2128 МэВ/с² выражен слабее пика 2256 МэВ/с², отстоящего от фона на 7,73 /7,37/ стандартных отклонений /<u>рис.1</u> и <u>2</u>/. Подчеркнем еще одно важное обстоятельство: в обоих наших спектрах исследуется инклюзивный спектр масс Лр, содержащий в основном многочастичные конечные состояния.

Ситуация в спектрах масс Λp из $K^- D$ -взаимодействий аналогична описанной. До тех пор, пока исследуются спектры масс из трехчастичных конечных состояний $\Lambda p \pi^-$ при низких энергиях, ниже $P_{K^+} = 0,8$ ГэВ/с наблюдаются лишь пик 2128 и "плечо" в области /2140÷2180/ MзB/c² ^{/30-34/}. При переходе же к пятичастичным конечным состояниям $\Lambda p \pi^- \pi^+ \pi^-$ при импульсе K^- -мезона $P_{K^-} = 1,5$ ГэВ/с проявляются пики при 2180 и 2255 MзB/c² и в целом спектр масс Λp сходен с нашими /см. соответствующие рисунки в^{/35/} и рис.1 и 2 в настоящей работе/.

Сечения упругого Λp -рассеяния, вычисленные в результате совместных подгонск 1 и 2, показаны светлыми и заштрихованными кружками на рис.4 и 5. Крестики обоих рисунков относятся к данным из экспериментов $^{/24-26/}$, тогда как черные кружки на рис.5 соответствуют более позднему эксперименту $^{/27/}$.

Здесь уместно отметить, что точности современных весьма трудных экспериментов по прямому измерению сечений упругого

Ар -рассеяния при низких энергиях совершенно недостаточны для надежной регистрации резонанса 2128 МэВ/с². Ширина его составляет всего несколько МэВ/с²/2,2 и 2,1 МэВ/с² в этом эксперименте, см. <u>рис.1</u> и <u>2</u> и <u>табл.1</u>/, тогда как усреднение производится по интервалу импульсов /0,5÷0,6/ ГэВ/с, что в шкале масс составляет 22 МэВ/с², то есть ширина интервала усреднения почти на порядок величины превышает физическую ширину резонанса /рис.4,5/.

В более благоприятных условиях оказывается резонанс 2256 МэВ/с², который в эксперименте^{/24/} усредняется по интервалу $\Delta M_{\Lambda p} = 58$ МэВ/с² / $\Delta p_{\Lambda} = /1,0-1,2/$ ГэВ/с/, который менее чем в четыре раза /<u>рис.4</u>/, а в эксперименте^{/27/} менее чем в два раза $\Delta M_{\Lambda p} = 29$ МэВ/с², $\Delta p_{\Lambda} = /1,0-1,1/$ ГэВ/с превышает ширину пика. Поэтому выброс, соответствующий этому пику, причем во втором из них этот пик выражен сильнее, наблюдается в обоих этих экспериментах. В то же время наблюдение пика 2128 МэВ/с² в эксперименте^{/24/} и отсутствие его в ^{/27/} нельзя еще считать аргументом против существования особенности с массой 2128 МэВ/с²

По тем же причинам широкий резонанс 2358 MsB/c² проявляется в виде выброса в сечениях упругого Ар-рассеяния в последнем эксперименте^{/27/} и полностью размыт в более раннем экспе-

Рис.4. Сечения упругого Ар-рассеяния, измеренные в экспериментах ^{/24-26/} (+), и наилучшие сечения, вычисленные и усредненные по иитервалам импульсов, принятых в этих экспериментах (0).

рименте^{/24/}. Значимости всех остальных пиков, за исключением пика при 2098 МэВ/с, определяются менее чем пятью стандартными отклонениями. Кандидат в резонанс $D(\frac{1}{4}, 1^{-};2112)$ при первой подгонке характеризуется параметрами $M_1 = /2119, 9+4, 0/M$ эВ/с², $\Gamma_1 = /0,0002+4, 2/$ МэВ/с², то есть ширину его не удалось определить. Вторая подгонка приводит к более разумным результатам: $M_2 = /2092+0, 1/$ МэВ/с², $\Gamma_g = /0,013+0,002/$ МэВ/с². Таким образом, наши результаты указывают, что если этот резонанс существует вообще, то ширина его должна быть чрезвычайно мала. Статистика больших объемов в сочетании с точностями измерений инвариантных масс не ниже, чем в наших экспериментах, будет иметь решающее значение не только для рассматриваемого резонансе, но и для всех остальных не значимых пока, за исключением 2256 и 2258 МэВ/с², пиков в спектрах инвариантных масс.

Уместно упомянуть, что в работе 1966 г.²⁸.6 мы наблюдали в спектре масс Λp из нуклонсподобных nN-взаимодействий пик при массе 2573 M9B/c² с шириной E < 80 M9B/c², выходящий за три стандартных отклонения от фона. Модель мешков предсказывает несколько резонансов, близких к этой массо

Широкий максимум при ~2093 МэВ/с² обусловлен Λ_p -рассеянием при низких энергиях. Его значимость определяется $N_1 =$ = /8,28+1,04/ и $N_2 = /6,30+1,19/$ стандартными отклонениями. Параметры рассеяния, найденные из анализа наших данных, находятся а хорошем согласии с измеренными в прямых опытах ^{/25,28/}. Твердо установлено, что длина рассеяния $a_{\Lambda p}$ имеет отрицательный знак. Тем самым существование Λ -гипердейтрона исключается. Значения параметров рассеяния приведены на рис.4,5 и в табл.1.

Отметим, наконец, что в процессе подгонки вклад потенциального рассеяния в сечения упругого рассеяния устремлялся к нулю, так как параметр $R^{/2H-C/}$ стремится к нулю. Поэтому в дальнейшем вклад этого вида рассеяния был исключен. В табл.1 представлены наилучшие параметры, полученные в указанных выше двух подгонках. А, В, С⁻ суть вклады двухчастичных процессов $\Lambda p \rightarrow \Lambda p$, $\Lambda p \rightarrow \Sigma^{\circ} p \rightarrow \Lambda p \gamma$, $\Sigma^{\dagger} N \rightarrow \Lambda p$ соответственно, а D- вклад фона от невзаимодействующих Λ -гиперонов и протонов.

Вычислена также полная вероятность следующего внутриядерного каскадного процесса: нейтрон с импульсом 7 ГэВ/с образует на связанном нуклоне Λ -гиперон, который, в свою очередь, претерпевает упругое рассеяние на другом нуклоне ядра углегода. С помощью этой вероятности можно показать, что 2347 комбинаций, вошедших в спектр масс Λp , должны содержать 655,5 актоз внутриядерного упругого Λp -рассеяния. Используя наилучшие значения вклада Λ упругого рассеяния Λp , можно получить это же число, оказавшееся равным $N_1^{\Lambda p} = 649, 8\pm13,4$ и $N_2^{\Lambda p} = 632, 2\pm18,7$ согласно первой и второй подгонкам.

Рис.5. Сечения упругого Лр-рассеяния, измеренные в экспериментах^{/24-27/}. Сплошной кривой показана наилучшая кривая, не усредненная по интервалам импульсов.

M ₄ (MaB/c ²)	Г; (МэВ/с ²)	J₽ 1	Mg (MaB/c ²)	Γ <u>2</u> (MaB/c ²)	J۴ ۲	
2II9,6 <u>+</u> 4,0	2,10 ⁻³ ±4,2	I ⁻	2092,9 <u>+</u> 0,I	0,013 <u>+</u> 0,002	1	
2129,2 <u>+</u> 1,2	2,20 <u>+</u> 0,6	I+	2124,8 <u>+</u> 0,4	2,I ± 0,I	I+	
2144,9 <u>+</u> 0,7	3,4 <u>+</u> 0,2	1-	2145,8 <u>+</u> 0,4	3,8 ± 0,4	I_	
2183,3 <u>+</u> 0,4	3,0 <u>+</u> 0,3	τ+ -	2183,2 <u>+</u> 0,5	3,0 <u>+</u> 0,2	1+	
2222,I <u>+</u> I,5	10,5 <u>+</u> 1,8	I+	2223,I <u>+</u> 0,4	16,0 <u>+</u> 2,5	I+	
2257,4 <u>+</u> 2,3	18,1 <u>+</u> 1,1	2+	2255,5 <u>+</u> 0,4	I5,6 <u>+</u> 0,8	2+	
2293,2 <u>+</u> 0,9	6,I <u>+</u> I,2	2	2293,0 <u>+</u> 0,7	4,7 <u>+</u> 0,7	2	
2350,8 <u>+</u> 2,4	44,2 <u>+</u> 2,2	2	2358,4 <u>+</u> I,3	77,2 <u>+</u> 6,6	2	
2450,2 <u>+</u> I,5	12,5 <u>+</u> 3,0	2	2454,4 <u>+</u> I,8	24,5 <u>+</u> 6,0	2	
2494,9<u>+</u>0, 5	22,4 <u>+</u> 4,6	3_	2492 <u>+</u> 2,2	14,5 <u>+</u> 0,9	3	
2594,5 <u>+</u> I,5	6I,3 <u>+</u> I6,0	2	2520,5 <u>+</u> 4,4	33,I <u>+</u> II,8	3+	
а_{лы (ұм})	-2,24 <u>+</u> 0,I2		anne (IM)	-2,29 <u>+</u> 0,03		
Г _{АРІ} (ШМ)	4,4I <u>+</u> 0,I8		PAP2 (EM)	4,54 <u>+</u> 0,10		
A,(Ap-Ap)	0,277 <u>+</u> 0,002		$A_2(\Lambda p + \Lambda p)$	0,264 <u>+</u> 0,006		
B,(Λρ+Σ°ρ)	0,II2 <u>+</u> 0,002		$B_{2}(\Lambda \rho + \Sigma_{\rho}^{*})$	0,I67 <u>+</u> 0,005		
$C_{1}(\Sigma^{N+\Lambda_{p}})$	0,048 <u>+</u> 0,003		CE(EN-AP)	0,064 <u>+</u> 0,004		
Я, (фон)			€ (ČOH)	0,485 <u>+</u> 0,009		
X 41	38,90		Xa	67,71		
C.L.(%)	56,00		C.L. (%)	21,32		

Таблица 1. Наилучшие параметры, полученные в результате подгонок 1 и 2

Таким образом, согласно нашей модели сечение упругого Λp рассеяния может быть успешно параметризовано в виде суммы сечений рассеяния при низких энергиях в приближении эффективного радиуса и брейт-вигнеровскими сечениями резонансного рассеяния при импульсах /массах $\Lambda p / \Lambda$ -гиперонов, предсказанных моделью мешков. Кроме того, наша модель позволила непротиворечивым образом описать всю совокупность данных по упругому Λp -рассеянию /<u>рис.4,5</u> и табл.2/. Анализ показал, что лег-

متعاديم والالارمة والمطلح والمرادلي

(PA) (HoB/c)	$\langle (\vec{6}_{AP} \pm \Delta \vec{6}_{AP})_{AA} \rangle$ (MG)	(1.10)	〈ዖ_ヘ〉 (MaB/c)	$\langle (6_{Ap} \pm 4 6_{Ap})_{ug} \rangle$ (MO)	(MO)
185 *	209,0 <u>+</u> 58,0	238,5	750 **	13,6 <u>+</u> 4,5	10,8
140 ^{#}	180,0 <u>+</u> 22,0	216,2	850 ^{*}	I0,2 <u>+</u> 2,7	10,7
165 [#]	177,0 <u>+</u> 38,0	172,7	850 ^{##}	II,3 <u>+</u> 3,6	10,7
185 ^{*}	I30,0 <u>+</u> 17,0	139,7	950 [#]	8,9 <u>+</u> 2,4	9,9
195 [*]	153,0 <u>+</u> 27,0	125,9	950 ^{##}	II,3 <u>+</u> 2,8	9,9
2 10 ^{*}	IIC,0 <u>+</u> I6,0	107,6	1050 ^{##}	2I,I <u>+</u> 4,8	I6 , 4
225 [#]	111,0 <u>+</u> 18,0	92,7	1100 31	12,8 <u>+</u> 2,4	16,4
230 [#]	IOI,0 <u>+</u> I2,0	88,0	1150 ^{##}	14,0 <u>+</u> 3,4	16,8
250 ***	83,0 <u>+</u> 9,0	72,5	1250 ^{##}	9,6 <u>+</u> 2,9	11,0
255 [¥]	٤٦,0 <u>+</u> IL,0	69,3	1300 [#]	II,4 <u>+</u> 2,4	11,6
590 *	57,0 <u>+</u> 9,0	50,8	1350 ^{##}	13,5 <u>+</u> 3,4	12,0
300 *	46,0 <u>+</u> II,0	46,4	1450 ³⁶⁸	26,0 <u>+</u> 4,8	18,4
350 [*] .	24,0 <u>+</u> 5,0	SI,0	1500 [*]	12,2 <u>+</u> 3,2	15,5
550 ***	17,2 <u>+</u> 8,6	51,0	1550 ^{##}	IG,4 <u>+</u> 3,7	12,7
450 ^{##}	26,9 <u>+</u> 8,7	14,7	1650 ^{##}	15 ,9<u>+</u>4,1	9,6
500 *	9,0 <u>+</u> 2,0	11,8	1700 [#]	13,0 <u>+</u> 3,8	I4,I
550 **	7,0 <u>⊦</u> 4,0	8,8	1750 ^{##}	23,5 <u>+</u> 5,0	18,6
650 *	I6,7 <u>+</u> 3,6	13,8	1850 ^{##}	23,3 <u>+</u> 6,0	15,8
550 ***	9,0 <u>+</u> 4,0	IS,8	1900 [#]	15,2+8,4	IG,5
750 *	10,7 <u>+</u> 2,8	10,8	1950 ^{##}	19,9 <u>+</u> 4,4	17,2

Таблица 2. Средние эффективные сечения упругого Ар-рассеяния согласно работам ^{/24-27/} и одновременной подгонке

* - эксперименты ^{/24-26/}.

** - эксперимент /27/.

кие ядра /не тяжелее ¹²С / могут служить в качестве нуклонных мишеней ядерных плотностей для изучения взаимодействий нестабильных частиц с нуклонами. Подводя итоги, можно утверждать, что в наших экспериментах установлено существование двух Λp -дибарионов: M = = /2255,5±0,4/ MэB/c²; Γ = /15,6±0,8/ MэB/c²; σ = /85,3±20,0/мкб и M = /2358,4±1,3/ МэB/c²; Γ = /77,2±6,6/ МэB/c²; σ = /65,0± ±17,0/ мкб. Сечение рождения особенности 2128 МэB/с равно σ = /22,0±7,0/ мкб/2п-с/.Сечения вычислены с помощью данных нейтронного облучения и рассчитаны на ядро углерода.

Авторы выражают глубокую благодарность проф. А.М.Балдину за постоянный интерес к работе.

ЛИТЕРАТУРА

- Review of Particle Properties. Rev.Mod.Phys., 1980, v.52, No.2.
- 2. Shahbazian B.A. et al. a) Proc. of the 13th Int. Conf. on High Energy Physics. Berkeley. 1966: Годовой отчет ОИЯИ. РО-3410, Дубна, 1966, с.46; б/ Letters to JETP, 1967, 5, D.307: ОИЯИ. P1-3169, Дубна, 1967; в/ Proc. of the 14th Int. Conf. on High Energy Phys., Vienna, 1968, p.173; JINR. E1-4022. Dubna, 1968; High Energy Physics and Nucl. Structure, Plenum Press, N.Y.-L., Sept.8-12, 1968, p.524; Годовой отчет ОИЯИ. Р-4431. Дубна. 1968. с.26; г/ JINR. E1-4584, Dubna, 1969; Годовой отчет ОИЯИ, Р-5309, Дубна, 1969, c.30; д/ Proc. of the 15 Int. Conf. on High Energy Phys., Kiev, 1970, р.187; Годовой отчет ОИЯИ, Дубна, 1970, c.38; e/ Proc. of the Int.Conf. on Elementary Particles, Amsterdam, June 30 - July 6,1971. (Eds. A.G.Tenner and M.J.G.Veltman), N.H.P.C., Amsterdam, 1972; JINR, E1-5935, Dubna, 1971; Proc. of the 4th Int. Conf. on High Energy Phys. and Nucl. Struct. JINR.D1-5988, Dubna, 1971, р.57; Годовой отчет ОИЯИ, Р-6468, Дубна, 1971, c.36: m/ Proc. of the 16th Int.Conf., Batavia, 1972, p.855; JINR, E1-6704, Dubna, 1972; ОИЯИ, Р1-6439, Дубна, 1972; Годовой отчет ОИЯИ, Р-7136, Дубна, 1972, с.43; з/ Nucl. Phys., 1973, B53, p.19; и/ Lett. Nuovo Cim., 1973, v.2, p.63; Proc. II Int. Symp. on High Energy and Elem.Part. Phys., Strbske Pleso, CSSR, October 3-9, 1972. JINR, D-6840, Dubna, 1973, p.88; k/ Particles and Nucleus, 1973, v.4, part 3, p.811; Годовой отчет ОИЯИ. Р-7975, Дубна. 1973. с. 38: л/ JINR. E1-7669. Dubna. 1974: Годовой отчет ОИЯИ, Р-9447, Дубна, 1974, с.39; м/ Proc. Vth Int.Symp. on High Energy and Elementary Particle Physics, Warsaw. September 3-9, 1975, р.65; Годовой отчет ОИЯИ, Р-10262.

Дубна, 1975, c.37; н/ Proc. of the 18th Int. Conf. on High Energy Phys., JINR, D1,2-10400, Dubna, 1977, v.1. р.С-35; JINR, E1-10037, Dubna, 1976; Годовой отчет ОИЯИ, P-10595, Дубна, 1976, c.45; o/ Proc. of the Seminar Kaon-Nuclear Interaction and Hypernuclei, Zvenigorod, September 12-14, 1977, "Nauka", М., 1979, р.74; Годовой отчет ОИЯИ. Р-11450, Дубна, 1977, с.41; п/ JINR, E1-11774, Dubna, 1978; JINR, E1-11839, Dubna, 1978; JINR, E1-11877, Dubna, 1978; Proc. of the Vth Int.Seminar on High En. Phys. Problems, Dubna, 21-27 June, 1978, JINR, D1,2-12036, Dubna, 1979; Годовой отчет ОИЯИ, Р-12406, Дубна, 1978, c. 38; p/ Proc. 1979 Int.Conf. on the Hypernuclear and Low Energy Kaon Phys., Nucleonika, 1980, v.25, No.3-4, р.345; Годовой отчет ОИЯИ, Р-80-330, Дубна, 1979, с.38; c/ Proc. int. Symp. on Few Part. Probl. in Nuclear Phys., Dubna, June 5-8, 1979. JINR, D4-80-271, Dubna, 1980, D.338.

- Jaffe R.L. Phys.Rev.Lett., 1977, v.38, No.5, p.195; 1977, v.38, p.617.
- 4. Matveev V., Sorba P. Lett. Nuovo Cim., 1977, v.20, p.425.
- 5. Aerts A.Th., Mulders P.J.G., de Swart J.J. Phys.Rev., 1978, D17, p.260.
- 6. Mulders P.J.D., Aerts A.Th.M., de Swart J.J. THEF-NYM-78.3.
- Mulders P.J.D., Aerts A.Th.M., de Swart J.J. Proc. Int. Meeting on Frontiers of Physics, Singapore, 1978, edited by K.K.Phua, C.K,Chew, Y.K.Lim. Singapore National Academy of Science, Singapore, 1978, v.2, p.863.
- Mulders P.J.D., Aerts A.Th.M., de Swart J.J. Proc. of the Meeting on Exotic Resonances, Hiroshima, 1978, ed. by I.Endo et al. Hiroshima Univ., Hiroshima, 1978, p.70.
- 9. Högaasen H., Sorba P. Nucl. Phys., 1978, B145, p.119.
- Högaasen H., Sorba P. Proc. Int. Colloquium on Hadron Physics at High Energies, 1978, v.21, 5-9 June, Marseilles, ed. by C-Bourrely, J.W.Dasn and I.Soffer.
- 11. de Swart J.J. et al. Proc.Int.Symp. on Few Part. Probl. in Nucl.Phys., Dubna, 5-8 July, 1979, JINR, D4-80-271, Dubna, 1980, p.292.
- de Swart J.J. Proc. 1979 Int. Conf. on Hypernuclear and Low Energy Kaon Phys., Nukleonika, 1980, v.25, No.3-4, p.397.
- 13. Aerts A. Th.M. Thesis, University of Nijmegen, 1979.
- 14. Högaasen H., Sorba P. Nucl. Phys., 1979, B156, p.347.
- 15. Strottman D. Phys.Rev., 1979, D20, p.748.
- 16. Jaffe R.L., Low F.E. Phys.Rev., 1979, D19, p.2105.
- 17. Low F.E. CTP N805, MIT, 1979.

- Wong C.W., Liu K.F. Resonances, Primitives and Multiquark States. Univ. of California, 1979; See also in Phys.Rev. Lett., 1978, v.41, p.82; Proc. of the 1978 Int. Meeting on Frontiers of Physics, Singapore, p.1197.
- 19. Roisnel C. Phys.Rev., 1979, D20, p.1646.
- Mulders P.J.D., Aerts A.Th.M., de Swart J.J. Phys.Rev., 1980, D21, p.2653.
- Mulders P.J., de Swart J.J. Report submitted to XX Int. Conf. on High Energy Phys., July 1980, Madison, Wisconsin, U.S.A., THEF-NYM-80-11.
- 22. Mulders P.J.G. Thesis, University of Nijmegen, 1980.
- 23. de Swart J.J., Mulders P.J., Somers L.J. THEF-NYM-80-15, Talk Presented by J.J. de Swart at the "Baryon 1980" Conference, Toronto, Canada.
- 24. Kadyk J. et al. Nucl. Phys., 1971, B27, p.13.
- 25. Alexander G. et al. Phys.Rev., 1968, v.173, p.1452.
- 26. Sechi-Zorn B. et al. Phys.Rev., 1968, v.175, p.1735.
- 27. Hauptmann J.M. et al. Nucl.Phys., 1977, B125, p.29-51.
- 28. Dosh H.D., Hepp V. Phys.Rev., 1978, v.D18, p.4071.
- 29. de Swart J.J., Iddings C.K. Phys.Rev., 1962, v.128, p.2810; Fast G., Helder J.C., de Swart J.J. Phys.Rev.Lett., 1966, v.22, p.1453; Nagels M.M., Rijken T.A., de Swart J.J. Phys.Rev., 1978, v.D17, p.768.
- 30. Tai Ho Tan. Phys.Rev.Lett., 1969, v.23, p.395.
- 31. Cline D.T. et al. Phys.Rev.Lett., 1968, v.20, p.1452.
- 32. Sims W. et al. Phys.Rev., 1971, v.3D, p.1162.
- 33. Eastwood D. et al. Phys.Rev., 1971, v.3, p.2603.
- 34. Braun O. et al. Nucl. Phys., 1977, B124, No.1, p.45.
- 35. Goyal D.P., Sodhi A.V. Phys.Rev., 1978, D18, p.948.

Рукопись поступила в издательский отдел 27 марта 1981 года.